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Socially Aware Dynamic Computation Offloading

Scheme for Fog Computing System With

Energy Harvesting Devices
Liqing Liu, Zheng Chang , Senior Member, IEEE, and Xijuan Guo

Abstract—Fog computing is considered as a promising technol-
ogy to meet the ever-increasing computation requests from a wide
variety of mobile applications. By offloading the computation-
intensive requests to the fog node or the central cloud, the
performance of the applications, such as energy consumption and
delay, are able to be significantly enhanced. Meanwhile, utilizing
the recent advances of social network and energy harvesting (EH)
techniques, the system performance could be further improved.
In this paper, we take the social relationships of the EH mobile
devices (MDs) into the design of computational offloading scheme
in fog computing. With the objective to minimize the social group
execution cost, we advocate game theoretic approach and propose
a dynamic computation offloading scheme designing the offload-
ing process in fog computing system with EH MDs. Different
queue models are applied to model the energy cost and delay
performance. It can be seen that the proposed problem can be
formulated as a generalized Nash equilibrium problem (GNEP)
and we can use exponential penalty function method to transform
the original GNEP into a classical Nash equilibrium problem and
address it with semi-smooth Newton method with Armijo line
search. The simulation results demonstrate the effectiveness of
the proposed scheme.

Index Terms—Computation offloading, energy consumption,
energy harvesting (EH), execution cost, fog computing, gener-
alized Nash equilibrium problem (GNEP), social-aware mobile
network.

I. INTRODUCTION

A. Background and Motivation

M
OBILE device (MD) has become an indispensable part

of our daily life as they can provide convenient commu-

nication almost anytime and anywhere. The mobile application

markets are also triggered by the advanced mobile technolo-

gies and high data rate wireless networks. However, due to the

resource and battery life restrictions, the gap between the lim-

ited computing capability and demand for executing complex

applications is gradually increasing. Many computational-

intensive and latency-sensitive mobile applications have poor
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performance when they are performed on smart phones, such

as image processing, chess gaming, etc [1].

Recent study shows that mobile cloud computing (MCC)

technology provides a promising opportunity to overcome the

limitation of hardware and save energy for MDs by offloading

the computational-intensive tasks to the cloud for execu-

tion [2]. To date, several types of mobile cloud architectures

are categorized [3], such as the traditional central cloud, ad

hoc mobile cloud, cloudlet, etc. The traditional central cloud

can provide huge storage, high computation power, as well

as reliable security. However, it is worth mentioning that the

traditional central cloud is usually remotely located and far

away from their users, thus long latency may be incurred.

Therefore, in some cases, the distant cloud may not be desir-

able for latency-sensitive mobile applications [2]. To overcome

these problems, fog computing, also known as “cloud at the

edge,” emerges as an alternative proximity solution to pro-

vide pervasive and agile computation services for the MDs

and support future cloud services and applications, especially

to the Internet-of-Things applications with strict requirement

of latency and high resilience [4]. Fog computing can provide

computing resources at the edge of radio access networks.

The idea of using fog computing brings both computational

and radio resource more closer to the MDs, thus improv-

ing scalability in both computation and radio aspects [5], [6].

However, it can be noticed that the computational resource in

the fog cannot be treated as sufficiently as the traditional cen-

tral cloud, as it is usually targeted to serve a smaller portion

of users [6].

Although computation offloading is an effective solution

for resource-limited MDs to use the powerful computational

resources at cloud servers. But for conventional battery-

powered MDs, the computation performance may be dis-

counted due to lack of sufficient battery energy, i.e., the being

executed applications have to be terminated when the battery

energy is exhausted. Certainly, this can possibly be solved by

increasing the battery capacity or recharging the batteries from

time to time. However, due to the restrictions of the MDs on

size, weight, location, ergonomics, heat dissipation, and so

on, frequent recharging is hard to be realized in many cases.

Energy harvesting (EH) is seen as a promising and green tech-

nology to resolve these issues, which can enables the MDs to

harvest energy from multiple aspects [7], [8], such as from

environmental energy sources such as wind energy and solar,

from human motion, and from ambient radio signals, e.g., RF
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EH. The harvested energy can be used for locally operation,

task execution, and request offloading. With EH, the battery

time of the MDs can be extended, and self-sustaining can be

achieved [9]–[11].

It can be observed that most of related work mainly focus

on the case where each mobile user is self-interested and

aims to minimize its own cost [2], [12], [13]. However,

recent investigations on social networks show that there is

a strong connection between the user social relations and

its behavior [14]–[19]. Due to the existence of social rela-

tionships, it is natural that the mobile user not only cares

about his own utility, but also pay attention to the utility of

his neighbors with social relations, such as families, friends,

etc. Such a observation motivates us to exploit the social ties

among mobile users to achieve mutually beneficial computa-

tion offloading decision-making and correspondingly, improve

the system-level performance.

B. Contribution

In this paper, we consider the MDs are with EH capabilities

and are interested in offloading the computation task to the fog

node. Considering the aforementioned aspects, in this paper,

we aim to take the social relationships of the mobile users into

the design of computation offloading scheme. With the objec-

tive to minimize the social group execution cost, we advocate

game theoretic approach and propose a dynamic computation

offloading scheme. More specifically, our major contributions

are summarized as follows.

1) In the considered system, with the objective to min-

imize the social group execution cost, we propose a

socially aware dynamic computation offloading algo-

rithm with the consideration of EH devices. Game theory

is employed to model the interactions within the group.

2) In particular, different queue models are applied to

derive the delay performance during the offloading pro-

cess in our model. The requests generated from each

MD are assumed to follow Poisson process. The requests

process queue at the MD is considered as a M/M/1

queue, the one in the fog is considered as a M/G/1

queue, and the one at the central cloud is considered as a

M/G/∞ queue, which is consistent with common sense

and sparely studied in the previous work about MCC.

3) The algorithm to solve the proposed generalized

Nash equilibrium problem (GNEP) is novel. First, we

use exponential penalty function method to penalize

the coupling constraints and transform the original

GNEP into a classical NEP. Second, we formulate

the Karush–Kuhn–Tucker (KKT) conditions for the

smoothing penalized NEPs into a system of nonsmooth

equations, and then apply the semi-smooth Newton

method with Armijo line search to solve the system.

The proposed one can reduce the accumulated error

and improve the calculation accuracy during iteration

process effectively.

4) Extensive simulations are conducted to evaluate the

effectiveness of the presented scheme. It is shown that

our scheme can find the optimal decision strategy at a

certain request arrival rate at each time slot for each MD,

and obtain the minimum value of average social group

execution cost.

C. Organization

The reminder of this paper is organized as follows. We first

briefly overview the related works in Section II. In Section III,

the system model is introduced and the problem is formu-

lated in Section IV. In Section V, we propose a semi-smooth

Newton method to solve the formulated problem. The simu-

lation results are presented and discussed in Section VI, and

finally, we conclude this paper in Section VII.

II. RELATED WORK

Most of the papers in MCC focus on designing different and

effective offloading schemes for the resource-limited MDs to

offload the computation to the central cloud. Zhang et al. [12]

investigated collaborative task execution problem for mobile

applications. The authors aim to minimize the energy con-

sumption on the MD while meeting a time deadline, by

strategically offloading tasks to the cloud. Zhang et al. [13]

proposed a theoretical framework of energy-optimal MCC

under stochastic wireless channel. Deng et al. [2] considered a

mobile computation offloading problem where multiple mobile

services in workflows can be invoked to fulfill their complex

requirements and the decisions can be made on whether the

services of a workflow should be offloaded.

Meanwhile, fog computing is a new concept emerged in

recent years and provides pervasive and agile computation

augmenting services for the MDs with short delay [4]–[6].

Deng et al. [5] studied the multiuser computation offload-

ing problem for fog computing in a multichannel wireless

interference environment. Sardellitti et al. [6] considered

an MIMO multicell fog computing system where multiple

mobile users ask for computation offloading to a fog cloud

server. The authors formulate the offloading problem as the

joint optimization of the radio resources and computational

resources to minimize the overall users’ energy consumption,

while meeting latency constraints.

EH is integrated with communication systems to enable

its ability of obtaining energy efficient communications and

self-sustainable [7]–[11]. Realizing the EH in cloud comput-

ing and cellular network is an emerging technique to enhance

the sustain-ability of battery-powered network elements and

has attracted great attention from the research community.

For example, Mao et al. [9] investigated a green mobile

edge cloud computing system with EH devices and develop a

Lyapunov optimization-based dynamic computation offloading

algorithm, which jointly decides the offloading decision, the

CPU-cycle frequencies for mobile execution, and the transmit

power for computation offloading. Yang et al. [11] proposed a

D2D communication heterogeneous cellular network based on

EH, where mobile user equipments harvest energy from the

base station (BS) or the access point and use the harvested

energy for D2D communication. Meanwhile, social networks

and their applications have been explored in the design of wire-

less networks. The concept of the user social pattern has been



Fig. 1. System model.

characterized in long term evolution-advanced heterogeneous

networks to enhance the energy efficiency and network spec-

trum. For mobile networking, exploiting mobile users’ social

relationship turn out to be a new field for network optimization

and design [16], [17]. For example, Zhang et al. [16] studied

a social-aware approach for optimizing throughput of D2D

communication by exploiting the information from both social

network layer and the physical wireless network layer.

III. SYSTEM MODEL

As shown in Fig. 1, the system consists of N MDs with

social relations, fog node, and a control cloud. All the MDs

are equipped with EH capabilities. The harvested energy can

be stored in the battery and used for local execution or data

transmission. Each MD executes an application and generates

a series of homogeneous service requests which are inde-

pendent of each other. Each MD contains one processor, a

single server first-in-first-out (FIFO) queue to store arriving

requests pending for execution, and the wireless interfaces

to connect wireless network. The fog node is deployed to

release the load on central cloud and bring low service latency

to the nearby users. In this paper, we apply queueing the-

ory to model the service latency. Queuing theory has been

widely used in the analysis of resource contention in the

communication and computing systems, and it is a natural

candidate to capture the main features of our systems. In

our system, the process queue at the MD is considered as

a M/M/1 queue, which amounts to assimilate the task arrival

process to a Poisson process. The fog node comprises multiple

servers, and with a dispatcher that can uniformly distribute the

arrival data among the servers. Correspondingly, the queue

model of fog node is considered as a M/G/1 queue [21]. The

central cloud hosts infinite servers in the remote data cen-

ters, with no contention among different users, and we model

the process as a M/G/∞ queue. We assume that the time

is slotted and the length of each time slot is τ . We also

denote the time slot and the time slot index set by t and

T = {0, 1, . . . , t, . . . , T − 1}.
We assume that the requests generated from MD i, i ∈

N ,N = {1, 2, . . . , N} follow a Poisson process with an aver-

age arrival rate of λi,t at each time slot t [20]. The requests

are assume to be delay sensitive, mutually independent.

TABLE I
SUMMARY OF THE KEY NOTATIONS

Each request generating from the MD i contains a data size

of θi. Each computation request can be executed locally at

the MD, or be offloaded to the fog or the central cloud. In

addition, none of the above three computation modes may

happen, e.g., when the MD does not have sufficient energy,

some generated computation requests have to be dropped. The

generated requests can be allocated to the local processor,

the fog and the central cloud, or even dropped out in par-

allel at the beginning of the next time slot. So throughout

this paper, “at time slot t” means the requests are gener-

ated at time slot t but executed at time slot t + 1. The

decision of MD i at time slot t is modeled as a triple

pi,t = (pM
i,t, pF

i,t, pC
i,t, pD

i,t), where pM
i,t + pF

i,t + pC
i,t + pD

i,t = 1,

which represents the proportion that the requests are exe-

cuted locally (pM
i,t), offloaded to the fog (pF

i,t), offloaded to

the central cloud (pC
i,t), or be dropped (pD

i,t) at each time slot

t. The MDs compete for the computing resource in the fog

in order to minimize their execution cost. They are allowed

to make their own strategies without a central authority but

can obtain information from a cloud controller. Game theory

is employed to model this interaction, where the MDs play

with the obtained information from the cloud controller, until

they reach a stable state, i.e., a Nash equilibrium. For ease

of reference, we list all the key notations used in our system

model in Table I.

A. Local Execution Model

Let uM
i denotes the computing capability of MD i, which

is determined by the intrinsic nature of the MD, i.e., CPU



cycle. Different MDs may have different computing capability.

Additionally, we assume that lMi,t denotes the normalized

workload on the MD i at time slot t, which represents the per-

centages of CPU that have been occupied. lMi,t = 0 indicates

that the CPU is totally idle at time slot t. When consider-

ing a M/M/1 queue, the response time of a M/M/1 queue

is R = [(1/u)/(1 − ρ)] [22], where ρ = (λ/u) is the

queue utilization, λ is the arrival rate, u is the service rate.

Accordingly, the average response time TM
i,t (p

M
i,t) for locally

processing requests at MD i is expressed as follows:

TM
i,t

(

pM
i,t

)

=
1/uM

i

(

1 − lMi,t
)

1 − λi,tp
M
i,t

uM
i

(

1−lMi,t

)

=
1

uM
i

(

1 − lMi,t
)

− λi,tp
M
i,t

. (1)

Assume that the number of CPU cycles needed for comput-

ing 1-bit of input data locally is xi and the energy consumption

per cycle is κi for MD i. Then the expression xiκi is the per

bit computing energy consumption for MD i. xi and κi are

related to the intrinsic nature of the CPU and the complexity

of the requests for each MD. Then the energy consumption

EM
i,t(p

M
i,t) of local executing the requests for MD i can be given

as follows:

EM
i,t

(

pM
i,t

)

= xiκip
M
i,tλi,tτθi. (2)

B. Fog Execution Model

MD i transmits the data to the fog through a BS at the

beginning of the time slot with rational considerations. The

wireless channel is assumed to be independent and identi-

cally distributed (i.i.d) block fading, i.e., the channel remains

static within each time slot, but varies from one to another.

Considering the mutual interference caused by other MDs

in the system and the nonignorable background interference,

we can obtain the uplink transmission rate for computation

offloading of MD i at time slot t as follows [5]:

Ri,t = Wlog2

(

1 +
qi,tg

BS
i,t

wi,t +
∑

j∈N,j �=i qj,tgBS
j,t

)

(3)

where W is the channel bandwidth, qi,t is the transmis-

sion power of the MD i at time slot t, gBS
i,t is the channel

gain between the MD i and BS at time slot t, ωi,t is the

background noise interference received by MD i at time

slot t.

From (3), we can then obtain the uplink transmission time

TUP
i,t of MD i for offloading the data to BS as follows:

TUP
i,t

(

pF
i,t, pC

i,t

)

=
(

pF
i,t + pC

i,t

)

λi,tτθi

Ri,t

=
(

pF
i,t + pC

i,t

)

λi,tτθi

Wlog2

(

1 +
qi,tgBS

i,t

wi,t+
∑

j∈N,j �=i qj,tgBS
j,t

) . (4)

Then, the energy consumption of uplink transmission

EUP
i,t (pF

i,t, pC
i,t) can be given as follows:

EUP
i,t

(

pF
i,t, pC

i,t

)

= qi,tT
UP
i,t

(

pF
i,t, pC

i,t

)

=
qi,t

(

pF
i,t + pC

i,t

)

λi,tτθi

Wlog2

(

1 +
qi,tgBS

i,t

wi,t+
∑

j∈N,j �=i qj,tgBS
j,t

) . (5)

The fog node is located at the BS and connects to the BS

through fiber with large enough bandwidth, so we just neglect

the transmission time from the BS to fog node. Accordingly,

we assume that there are c homogeneous servers deployed in

the fog, and the service rate of each server is denoted as uF .

The requests from different MDs in the system are pooled

together with a total rate λtotal,t at time slot t which also

follows Poisson process. Therefore, λtotal,t is given as follows:

λtotal,t =
N

∑

i=1

pF
i,tλi,t. (6)

Correspondingly, we assume that the workload of the fog

node is denoted as lFt (0 < lFt < 1), which is the average

occupied percentage of each server at time slot t. As a M/G/1

queue is considered at the fog node, the average response time

at the fog as follows [21], [23]:

TF,t

(

pF
i,t

)

=
2uF

(

1 − lFt
)

−
N
∑

i=1

λi,tp
F
i,t/c

2uF
(

1 − lFt
)

[

uF
(

1 − lFt
)

−
N
∑

i=1

λi,tp
F
i,t/c

]
. (7)

After the execution is done at the fog node, the results will

be delivered to the MDs. And we neglect the time and energy

consumption for the MDs to receive the processed requests

outcome, due to the fact that for many applications, for exam-

ple, the face recognition, the size of the computation output

in general is much smaller than the size of computation input

data [5], [7].

C. Cloud Execution Model

Additionally, we assume that there is a fixed delay TFC for

sending the requests to the central cloud through the fog. As

the central cloud has sufficient computing resources to process

these requests, the queuing time of the requests in the central

cloud can be negligible. The queue model at the central cloud

is considered as M/G/∞ with the service rate uC, which is

usually faster than the fog service rate uF . Then, the response

time TC,t(p
C
i,t) of the requests offloaded to the central cloud

can be presented as follows:

TC,t

(

pC
i,t

)

=
1

uC
. (8)

When the execution at central cloud is done, the results will

be delivered to fog and then delivered to the MDs. Similarly,

the time and energy consumption for receiving the results for

MDs can be neglected.



D. EH Model

A successive energy packet arrival model is used to model

the EH process. We assume that the arrival of energy

packet also follows a Poisson process with an average arrival

rate ei,t, and ei,t ≤ eth
i,t, we assume that eth

i,t is the maximum

energy arrival rate, and it is i.i.d in different time slots. The

arrived energy will be harvested and stored in the battery, and

used for either local execution or computation offloading. Let

Bi,t denotes the battery energy level for MD i at the beginning

of time slot t. Without loss of generality, we assume Bi,t < ∞,

∀t ∈ T . In this paper, we just ignore the energy consumption

for other purposes besides local computation and data trans-

mission. Denote the energy consumed by the MD i in time slot

t as Ei,t, which comprises of two parts: 1) energy consumption

of local service request processing and 2) energy consumption

for sending requests, which depends on the strategy it chooses.

We can express Ei,t as follows:

Ei,t = EM
i,t

(

pM
i,t

)

+ EUP
i,t

(

pF
i,t, pC

i,t

)

= xiκip
M
i,tλi,tτθi +

qi,t

(

pF
i,t + pC

i,t

)

λi,tτθi

Wlog2

(

1 +
qi,tgBS

i,t

wi,t+
∑

j∈N,j �=i qj,tgBS
j,t

) . (9)

Ei,t should be smaller than the battery level, i.e.,

Ei,t ≤ Bi,t ∀t ∈ T. (10)

Thus, the battery energy level of MD i evolves according

to the following equation:

Bi,t+1 = Bi,t − Ei,t + ei,t ∀t ∈ T. (11)

It is much more complicated to design the computation

offloading policies for the fog computing system with the

MDs equipped with EH function, compared to the conven-

tional MCC systems with battery-powered MDs. Moreover,

the system decisions are coupled among different time slots

because of the temporally evolved battery energy level.

Consequently, it is very challenge to determine the optimal

computation offloading strategies, which would balance the

computation performances of the current and future computa-

tion requests as better as possible.

E. Social Network Model

In this section, we use a social graph (N , εs) to denote the

social tie structure among the MDs. The vertex set is the N

MD members and the edge set is denoted as εs = {(i, j) : es
i,j =

1,∀i, j ∈ N}, where es
i,j = 1 denotes that MD i and j have

social relationship between each other, and verse vice. The

strength of social relationship between MD i and MD j is

denoted as sij, which is normalized to be sij ∈ [0, 1]. And the

larger the value of sij, the stronger the social tie between the

two MDs. The MD i’s social tie to itself is sii = 1. NS
i is

defined as the MD i’s social group, which is the set of MDs

that have social ties with MD i, i.e., NS
i � {j ∈ N|es

ij ∈ εs}.
It is worth noting that the social relationships among MDs

can be obtained by locally putting forward the recognition

process through the proximity communications technology, for

example, the WiFi-direct and so on, prior to the computation

offloading process.

IV. PROBLEM FORMULATION

In this section, the execution cost is defined as the weighted

sum of the execution delay and the task dropping punishment

cost, which will be described specifically as follows. The aver-

age execution delay for MD i at time slot t can be denoted as

follows:

Ti,t

(

pi,t, p−

vi,t

)

= pM
i,tT

M
i,t

(

pM
i,t

)

+
(

pF
i,t + pC

i,t

)

TUP
i,t

(

pF
i,t + pC

i,t

)

+ pF
i,tTF,t

(

pi,t, p−

i,t

)

+ pC
i,tTC,t

(

pC
i,t

)

= pM
i,tT

M
i,t

(

pM
i,t

)

+ pF
i,t

[

TUP
i,t

(

pF
i,t + pC

i,t

)

+ TF,t

(

pi,t, p−

i,t

)

]

+ pC
i,t

[

TUP
i,t

(

pF
i,t + pC

i,t

)

+ TC,t

(

pC
i,t

)]

(12)

where pi,t = (pM
i,t, pF

i,t, pC
i,t, pD

i,t) is the strategy vec-

tor of MD i at time slot t; p−

i,t is the vector formed

by the strategies of all MDs except the ith one

at time slot t, which can be denoted as p−

i,t =
{. . . , pM

i−1,t, pF
i−1,t, pC

i−1,t, pD
i−1,t, pM

i+1,t, pF
i+1,t, pC

i+1,t, pD
i+1,t . . .}.

Nevertheless, some of the requests may not be executed

but have to be dropped, e.g., due to energy shortage for local

computing or offloading to the cloud, meanwhile when the

wireless channel from MDs to the fog node is in deep fading,

the data of the requests cannot be successfully delivered. To

take this aspect into consideration, we penalize per dropped

task by cost µi, thus the punishment cost for MD i at time

slot t can be expressed as follows:

Ci,t = µip
D
i,tλi,tτ. (13)

Consequently, the execution cost for MD i at time slot t,

can be formulated as follows:

ECi,t

(

pi,t, p−

i,t

)

= Ti,t

(

pi,t, p−

i,t

)

+ ᾱCi,t

(

pD
i,t

)

=
pM

i,t

uM
i

(

1 − lMi,t
)

− λi,tp
M
i,t

+
(

pF
i,t + pC

i,t

)2
λi,tτθi

Wlog2

(

1 +
qi,tgBS

i,t

wi,t+
∑

j∈N,j�=i qj,tgBS
j,t

)

+ pF
i,t

2uF
(

1 − lFt
)

−
N
∑

i=1

λi,tp
F
i,t/c

2uF
(

1 − lFt
)

[

uF
(

1 − lFt
)

−
N
∑

i=1

λi,tp
F
i,t/c

]

+ pC
i,t

(

TFC +
1

uC

)

+ ᾱµip
D
i,tλi,tτ (14)

where ᾱ is the weight of task dropping cost.

Due to the existence of social relationships, it is natural

that users would take into account the effect of its neighbors’

decision. So users are coupled in the social domain due to

the social ties among them, and MD i aims to choose the

strategy pi,t = (pM
i,t, pF

i,t, pC
i,t, pD

i,t) to minimize its social group

execution cost, defined as

SECi,t

(

pi,t, p−

i,t

)

� ECi,t

(

pi,t, p−

i,t

)

+
∑

j∈NS
i

sijECj,t

(

pj,t

)

. (15)



So the average social group execution cost of MD i during

a period of time can be denoted as follows:

MSECi

(

pi, p−

i

)

=
1

T

T−1
∑

t=0

SECi,t

(

pi,t, p−

i,t

)

(16)

where pi = [pi,0, pi,1, . . . , pi,t, . . . ] is the strategies

vector of MD i of all the time slots; p−

i
is the

strategies vector of all MDs other than MD i of

all the time slots, which can be denoted as p−

i
=

{. . . , pi−1,0, pi−1,1, . . . , pi−1,T, pi+1,0, pi+1,1, . . . , pi+1,T, . . .}.
We next consider the distributed decision making problem

among the MDs for making their average social group execu-

tion cost minimize. We formulate the problem as follows:

min
pi

MSECi

(

pi, p−

i

)

. (17)

Subject to

N
∑

i=1

pF
i,tλi,t − cuF

(

1 − lFt
)

< 0 (18a)

λi,tp
M
i,t − uM

i

(

1 − lMi,t
)

< 0 (18b)

pM
i,t + pF

i,t + pC
i,t + pD

i,t = 1 (18c)

0 ≤ pM
i,t, pF

i,t, pC
i,t, pD

i,t ≤ 1 (18d)

xiκip
M
i,tλi,tτθi +

qi,t

(

pF
i,t + pC

i,t

)

λi,tτθi

vi,t

≤ Bi,t (18e)

Bi,t+1 = Bi,t − Ei,t + ei,t (18f)

∀i ∈ N , t ∈ T (18g)

where vi,t = Wlog2(1 + [(qi,tg
BS
i,t

)/(wi,t +
∑

j∈N,j �=i qj,tg
BS
j,t

)]).

Constraint (18a) is derived from (7). It shows that the request

arrival rate at each server should not exceed the service rate to

ensure a stable queue. Nevertheless, due to the energy causality

constraints (18d) and (18e), the MDs’ decisions are coupled

among different time slots, which makes the problem diffi-

cult to be tackled. From [13], we can find that by introducing

a nonzero lower bound, Emin
i,t , and a reasonable upper bound

Emax
i,t , on the battery at each time slot, such coupling effect

can be eliminated and the system operation can be optimized

by ignoring energy constraints (18d) and (18e). Thus, we

introduce a modified version of the above problem as follows:

min
pi

MSECi

(

pi, p−

i

)

Subject to

(18a) − (18c), (18g) (19a)

Ei,t ∈ {0} ∪
[

Emin
i,t , Emax

i,t

]

. (19b)

In the following, we propose a game theoretic approach

in order to achieve efficient computation offloading decision

makings among the MDs. Game theory is a powerful tool

to analyze the interactions among multiple users who focus

on their own interests. A Nash equilibrium has the nice self-

stability property that all the users can achieve a mutually

satisfactory solution and no user has the incentive to devi-

ate unilaterally. Moreover, by using the intelligence of each

individual MD user, game theory is a useful framework for

devising decentralized mechanisms with low complexity, such

that users can self-organize into a mutually satisfactory solu-

tion. It can ease the heavy burden of complex centralized

management and reduce the communicating overhead between

the fog and MDs.

In this setting, the decisions of all MDs are mutually depen-

dent and the proposed model is a GNEP. The GNEP differs

from classical Nash equilibrium problem (NEP) in that, while

in a NEP, only the players’ objective functions depend on the

other players’ strategies, but in a GNEP both the objective

functions and the strategy sets depend on the other players’

strategies. In our problem, the dependence of each player

strategy set on the other players’ strategies is represented by

the constraint (18a), which includes all the MDs’ decision

variables. Then we will introduce a lemma to illustrate the

proposed problem is a jointly convex GNEP so that we can use

exponential penalty function and semi-smooth Newton method

proposed in the following section to address it effectively.

Lemma 1: The derived GNEP is a jointly convex GNEP.

Proof: See the Appendix.

V. PROPOSED SOLUTION

In this section, as we have proved that the derived GNEP

is a jointly convex problem, we can use exponential penalty

function method to solve the GNEP above. We reformulate the

GNEP as a sequence of smoothing penalized NEPs by means

of a partial penalization of the coupling constraints where the

exponential penalty functions are used. Furthermore, we for-

mulate the KKT conditions for smoothing penalized NEPs into

a system of nonsmooth equations, and then apply the semi-

smooth Newton method with Armijo line search to solve the

system. The specific algorithm is shown below.

By careful observation, we can find that (18a) is a coupled

constraint, which includes other participants’ decision vari-

ables. Other constraints, such as (18b), (19b) only depend on

the MD i itself. As we all know, solving a classic NEP is

much easier than solving a GNEP. In this section, through

partial punishing the difficult coupling constraints in GNEP,

which helps us to solve a classical NEP instead of solving a

more difficult GNEP.

With punishing the coupling constraints with exponential

penalty function, the original problem is changed as follows:

min
pi

MSECi

(

pi, p−

i

)

+
1

ρ

T−1
∑

t=0

exp
[

ρgi,t

(

pi,t, p−

i,t

)]

(20)

s.t.

λi,tp
M
i,t − uM

i

(

1 − lMi,t
)

< 0 (21a)

xiκip
M
i,tλi,tτθi +

qi,t

(

pF
i,t + pC

i,t

)

λi,tτθi

vi,t

− Emax
i,t ≤ 0 (21b)

Emin
i,t − xiκip

M
i,tλi,tτθi −

qi,t

(

pF
i,t + pC

i,t

)

λi,tτθi

vi,t

≤ 0 (21c)

pM
i,t + pF

i,t + pC
i,t + pD

i,t = 1 ∀t ∈ T (21d)

where gi,t(pi,t, p−

i,t
) is the short description of

∑N
i=1 pF

i,tλi,t −
cuF(1−lFt ). Here, we relax the constraints as we neglect such a



constraint denoted by 0 ≤ pM
i,t, pF

i,t, pC
i,t, pD

i,t ≤ 1. Nevertheless,

the relaxation has no effect on the optimal strategy vector as

we can autonomously select the optimal ones ranged on [0, 1]

at last.

Then the convergence theorem of the exponential penalty

function method is given in the following theorem.

Theorem 1: Let {ρk} be a positive sequence that tends to

be infinite. For each k, pk
i is the solution of the NEP when

ρ = ρk. Set p̄i is a cluster point of the sequence {pk
i }, and

satisfies the inequality constraints, thus p̄i is the solution of

the GNEP.

Proof: See [24, Th. 1].

So the original GNEPs are evolved to a list of classical

NEPs. From Theorem 1, we can find that solving a list of

NEPs can obtain the solution of GNEP. For the sake of sim-

plicity, we use h
(k)
i,t (pi,t) ≤ 0 (k = 1, 2, 3, 4) to replace the

constraint (21a)–(21d), respectively. So the derived classical

NEP denoted in a simple form is expressed as follows:

min
pi

MSECi

(

pi, p−

i

)

+
1

ρ

T−1
∑

t=0

exp
[

ρgi,t

(

pi,t, p−

i,t

)]

s.t. h
(k)
i,t

(

pi,t

)

≤ 0, k = 1, 2, 3, 4; t = 0, . . . , T − 1. (22)

The KKT condition for the NEP displayed in (22) can be

denoted as follows:

∇pi
MSECi

(

pi, p−

i

)

+
T−1
∑

t=0

exp
[

ρgi,t(pi)
]

∇pi
gi,t

(

pi, p−

i

)

+
T−1
∑

t=0

4
∑

k=1

β
(k)
i,t ∇pi

(

h
(k)
i,t

)

= 0. (23)

Obviously, assemble all of the systems for i = 1, 2, . . . , N,

we can obtain the following equivalent system:

L(p,β) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∇pi
MSECi

(

pi, p−

i

)

+
T−1
∑

t=0

exp
[

ρgi,t(pi)
]

∇pi
gi,t(pi) +

T−1
∑

t=0

4
∑

k=1

β
(k)
i,t ∇pi

(

h
(k)
i,t

)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

N

i=1

= 0

(24)

where p = [p1, p2, . . . , pi . . . , pN] is all the MDs’ strategy

vector, and β = (β
(k)
i,t )

T
, k = 1, 2, 3, 4; i = 1, 2, . . . N; t =

1, 2, . . . T is the coefficients of KKT condition for all the

MDs during the time slots. We can see that L(p,β) is a zero

vector of large dimension. To solve p and β, we introduce

Fischer–Burmeister function ϕ(a, b) :=
√

a2 + b2 − (a + b),

and construct the following form:

�(ω) = �(p,β) =
(

L(p,β)

φ(H(p),β)

)

= 0 (25)

where φ(H(p),β) := (. . . , ϕ(−h
(k)
i,t , β

(k)
i,t ), . . .)

T
.

We use the semi-smooth Newton method to solve the system

�(ω) = 0, which is equal to solving problem (20). First,

we define the value function �(ω) := (1/2)�T(ω)�(ω), then

semi-smooth Newton method is described as Algorithm 1. At

last, we choose the optimal solution on interval (0, 1) from

the obtained solutions from Algorithm 1.

TABLE II
SIMULATION PARAMETERS

Algorithm 1 Proposed Semi-Smooth Newton Algorithm

1: Step 0: Initialization

Setting initial point: ω0 =
(

p0, β0
)

, ρ > 2, σ ∈
(

0, 1
2

)

, α ∈
(0, 1), ε ≥ 0, k1 ∈ (0, 1), p1 > 2,let k = 0.

2: Step 1: Termination determination

3: if

∥

∥

∥
�

(

ωk
)∥

∥

∥
≤ ε then

4: Return ωk =
(

pk, βk
)

;

5: else
6: Go to step 2;
7: end if
8: Step 2: Direction generation

Choosing Hk ∈ ∂�
(

ωk
)

, solving the value of dk the system

Hkdk = −�

(

ωk
)

9: if dk can’t be obtained or does not satisfy the following condition:

∇�

(

ωk
)T

dk ≤ −k1

∥

∥

∥
dk

∥

∥

∥

p1
then

10: Setting dk = −∇�

(

ωk
)

;

11: end if
12: Step 3: Armijo linear search

13: Searching the smallest nonnegative integer mk which satis-

fies the following inequality: �

(

ωk + αmk dk
)

≤ �

(

ωk
)

+

σαmk∇�

(

ωk
)T

dk.

14: Step 4: Rectification

Setting ωk+1 = ωk + αmk dk, k = k + 1, return to Step 1.

We also show the convergence of the semi-smooth Newton

algorithm in the following proposition.

Proposition 1: The semi-smooth Newton algorithm, with

strong system computing power, inherits many excellent fea-

tures from the classic Newton algorithm. Through determining

the step size of the Newton direction with the linear search

strategy, it avoids the sensitivity of the algorithm to initial val-

ues. Thus the local convergence becomes global convergence.

Proof: See [25, Sec. 5].

VI. PERFORMANCE EVALUATIONS

In this section, extensive simulations are conducted to illus-

trate the effectiveness of the proposed algorithm for the GNEP.

The parameters of the MDs are given as follows in Table II.

For simplify, we assume the fog node consists of ten servers

and the service rate of each server is 4 (MIPS), and the work-

load of each server is lFt = 0.5. The transmission time from

the fog to the central cloud is TFC = 0.5 (Second), and the

service rate of the central cloud is uC = 10 (MIPS).



Fig. 2. Optimal execution proportion under different request arrival rates.

The social ties among the three MDs are denoted as a

matrix, which is

⎡

⎣

1 0.25 0.80

0.50 1 0.65

0.55 0.90 1

⎤

⎦. For this matrix, as

we have emphasized in Section III-E, the social tie to each

MD itself is sii = 1. So we can see that the diagonal elements

of the matrix are all 1. Other elements denote the strength of

social tie between MD i and MD j, whose values are in interval

(0, 1). We can also find that it is a nonsymmetric matrix, in

other words, the closeness between two MDs is not identi-

cal, which is consistent with the relationship between people

in our life. For example, the strength of social tie for MD 1

to MD 2 is 0.25, but the strength of social tie for MD 2 to

MD 1 is 0.50.

First, we consider the case that there is only one time slot.

In this case, we investigate the optimal decision strategy for

locally, fog, central cloud execution and dropped out with

request arrival rate increasing for MD 2 in Fig. 2. We can find

that with arrival rate increasing, the proportion of local execu-

tion first increases slowly at interval [0, 1], and then increases

more faster at interval [1, 2]. On the contrary, the proportion

of fog execution and central cloud execution decrease slowly

at interval [0, 1], and decrease quickly at interval [1, 2]. This

is because that the MD prefers to offload some requests to the

fog when the fog have extra capacity to execute the requests.

With all MDs’ requests pooling to the fog node with limited

resource, each MD has to reduce the proportion of offloading

to fog. With the interference from other MDs in the uplink

transmission, it would cost quite a lot of time and energy to

transmit the requests, so the proportion of central cloud execu-

tion is also reduced. With the requests arrival rate increasing,

the dropped proportion is also reduced.

In Fig. 3, we also investigate the impact of request arrival

rate on execution delay and energy consumption for local exe-

cution, uplink transmission, fog execution, and also the total

process. It needs to be emphasized that we neglect the energy

consumption of the MD when the requests are executed in the

fog, so we can find a straight line in subplot 3. Generally,

Fig. 3. Execution delay and energy consumption under different request
arrival rates.

Fig. 4. Effect of ρ on offloading decision.

a larger request arrival rate can result in a larger execution

delay and energy consumption, which can be easily found in

any curve in Fig. 3. Additionally, with the request arrival rate

increasing, the consumed energy is also increasing, so we must

carefully design the offloading strategy to make the execution

cost minimize while meeting the energy supply.

Additionally, we also compare the decision strategy for

MD 2 under a certain request arrival rate for differ-

ent values of ρ. When ρ = 10, [pM
2,t, pF

2,t, pC
2,t, pD

2,t] =
[0.1859, 0.5586, 0.1135, 0.1420]; when ρ = 100, the values

are [pM
2,t, pF

2,t, pC
2,t, pD

2,t] = [0.2164, 0.5378, 0.1100, 0.1358];

when ρ = 1000, the values are [pM
2,t, pF

2,t, pC
2,t, pD

2,t] =
[0.2170, 0.5375, 0.1098, 0.1357]; when ρ = 10000, the values

are [pM
2,t, pF

2,t, pC
2,t, pD

2,t] = [0.2171, 0.5375, 0.1098, 0.1356].

The numerical results are displayed in Fig. 4. We can see that

a larger value of ρ can get a better solution, and the solution

would slowly converge to the optimal one with the value of ρ

increasing.



Fig. 5. Execution cost among different time slots under different request
arrival rates.

Fig. 6. Average execution cost under different request arrival rates.

Then we focus on a complex situation where the system

consists of different time slots. First, we investigate the exe-

cution cost among time slots under different request arrival

rate, while we assume that in each time slot the harvested

energy is identical. It is natural that at the end of each time

slot, the remaining energy becomes less, so the MD has to exe-

cute more requests locally which would resulting in a larger

delay, which means a larger execution cost. We can find this

rule from Fig. 5. Typically, a larger request arrival rate cause

a larger execution cost, which can be observed by comparing

the three curves in Fig. 5.

Next, we also study the execution cost with the number of

MDs under different request arrival rates, which is displayed

in Fig. 6. We can see that the execution costs are also increas-

ing when the number of MDs increases, which means that

the execution delay or the punishment cost become larger. As

more and more users compete for resources in the fog with

each other, thus intensified the channel interference, reducing

the channel transmission rate. So the MD has to execute the

Fig. 7. Performance comparison.

request locally or drop them, which leads to a larger execution

cost.

In Fig. 7, we compare our algorithm with the other exist-

ing schemes such as the “successive convex approximation

method” proposed in [6] and the “Lyapunov optimization-

based dynamic computation offloading Algorithm” proposed

in [9]. By varying the arrival rates, we can find that our

proposed algorithm has a better system performance. This is

due to the fact that with the proposed scheme, the GNE point

can be achieves, which is a mutually satisfactory solution and

no one has the incentive to deviate.

VII. CONCLUSION

In this paper, a computation offloading problem in a fog

computing system has been investigated. We derive the ana-

lytic results of energy consumption, delay performance, and

cost with assumption of three different queue models at mobile

devices, fog, and central cloud. By leveraging the obtained

results, we take the social relationships of the EH MDs into the

design of offloading scheme. With the objective to minimize

the social group execution cost, we advocate game theo-

retic approach and propose a dynamic computation offloading

scheme. Specifically, we formulate a GNEP with various con-

straints and addressed it by using exponential penalty function

method and semi-smooth Newton method with Armijo line

search. Extensive performance evaluations are presented to

illustrate the effectiveness of the proposed scheme.

APPENDIX

Proof: First, we will prove that the payoff functions are

concave. By derivation, we can obtain the expressions as

follows:

∂MESCi

∂pM
i,t

=
∂

[

pM
i,t

uM
i

(

1−lMi,t

)

−λi,tp
M
i,t

]

∂pM
i,t

=
uM

i

(

1 − lMi,t
)

[

uM
i

(

1 − lMi,t
)

− λi,tp
M
i,t

]2
. (26)



So we have

∂2MESCi

∂
(

pM
i,t

)2
=

2λi,tu
M
i

(

1 − lMi,t
)

[

uM
i

(

1 − lMi,t
)

− λi,tp
M
i,t

]3
> 0. (27)

Simplify the expression by approximation, we can obtain

the first-order derivative about variable pM
i,t as follows:

∂MESCi

∂pF
i,t

≈
2
(

pF
i,t + pC

i,t

)

Wvi,t

+ 1. (28)

So we have

∂2MESCi

∂
(

pF
i,t

)2
=

2

Wvi,t

> 0. (29)

Here vi,t denotes log2(1 + [(qi,tg
BS
i,t )/(ωi,t +

∑

j∈N,j �=i qj,tg
BS
j,t )]).

Similarly, we have

∂MESCi

∂pC
i,t

= TFC +
1

uC
(30)

∂2MESCi

∂
(

pC
i,t

)2
= 0 (31)

∂MESCi

∂pD
i,t

= ᾱµiλi,tτ (32)

∂2MESCi

∂
(

pD
i,t

)2
= 0. (33)

Combining (27), (29), (31), and (33), we have proved that

the payoff functions are concave in its own variable. By

observing, we can find (21a)–(21d) are only linear, so the set

of constraints are convex apparently. So the derived GNEP is

that it satisfies the convexity assumption. Refer to [26], we

can draw that the objective formulated problem is a jointly

convex GNEP.
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