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Abst rac t 
This paper explores a newly developing direc­
tion of machine learning called ''socially em-
bedded learning". In this research we have 
been building an office-conversant mobile robot 
which autonomously moves around in an of­
fice environment, actively gathers information 
through close interaction wi th this environment 
including sensing multi-modal data and making 
dialog with people in the office, and acquires 
knowledge about the environment wi th which it 
ultimately becomes conversant. Here our ma­
jor concerns are in how the close interaction 
between the learning system and its social en­
vironment can help or accelerate the systems 
learning process, and what kinds of prepared 
mechanisms are necessary for the emergence of 
such interactions. The office-conversant robot 
is a platform on which we implement our ideas 
and test their feasibility in a real-world setting. 
An overview of the system is given and two ex­
amples of implemented ideas, i.e. dialog-based 
map acquisition and route acquisition by fol-
lowing, are described in detail. 

1 In t roduc t i on - Socially Embedded 
Learning -

"Why can children and young animals learn complicated 
things so efficiently ?" "Why can't machine learning sys­
tems take off and overcome hard coded systems ?" In 
the last th i r ty or forty years the field of machine learning 
has developed many effective representation schemes and 
learning algorithms. Although these algorithms have 
achieved a wide variety of successes and brought about 
the systems which can recognize speech, human faces, 
medical diseases, etc., the learning capability of artif i­
cial systems is sti l l far from that of humans. In many 
explanations which have been proposed to answer the 
questions, one of most likely is that the machine learn­
ing systems lack social relationships wi th the environ­
ment including teachers or other learning systems. 

In the design of tradit ional learning systems, learn­
ing algorithms are implemented only in the learning sys­

tems. No special consideration is given to the teacher or 
the environment surrounding the system. The learning 
systems are fed with training data which is prepared by 
users, and learn simple functional relationships hidden 
in the data. In other words, only very narrow informa­
tion channel is maintained between the systems and the 
teachers. The learning systems are rather isolated from 
the information-rich environment surrounding them. 

On the other hand, human children apparently have 
very dense interaction with their surroundings, espe­
cially with their parents. Recent research in develop­
mental psychology has been revealing that there is a huge 
number of innate mechanisms or tricks implemented not 
only by the learners (babies, children) but also by the 
teachers (parents, adults), which often function uncon­
sciously and support the children's learning process by 
maintaining the close coupling between the learners and 
their environment. 

For example, as for language development of newborn 
babies, Masataka[1992] analyzed the interaction between 
3-and 4-month-old babies and their mothers, and re­
ported that mothers unconsciously respond to babies' 
cooing (the most early stage of speech) by imitat ing these 
sounds. Babies associated this imitat ing response with a 
comfortable, safe feeling, which motivates them to imi­
tate their mothers' sounds. This circle of imitat ing sound 
works as a very good training process for making vocal 
sound. Here the most important stimulus is the mother's 
appropriate response at the appropriate time. 

We often observe that one of the most important in­
formation sources for learning of not only new-born ba­
bies but also elder children is the information given from 
surrounding adults "on the job" . Giving appropriate 
instructions or advices at the appropriate time is the 
most powerful way to teach something. While teaching, 
adults estimate children's focus of attention and choose 
the most effective time for giving information. 

This kind of closely coupled interaction wi th the envi­
ronment significantly supports and accelerates children's 
learning. We call this aspect of the learning process "So-
cial Embeddedness of Learning. Here the most impor­
tant point is that the mechanisms are implemented in 
both learners and teachers. Not only learning systems 
but also the people in the system's environment actively 
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participate in the learning processes and play important 
roles. 

In the field of Art i f icial Intelligence, the importance 
of such close coupling with environment has been em­
phasized recently [Agre and Chapman, 1987; Brooks, 
1991]. Terms such as "reactiveness", "situatedness'\ or 
"embeddedness in the environment" are used to express 
such understanding. Many trials to build situated intel­
ligent systems have been undertaken and reported [Kael-
bling, 1987]. Although the importance of such features 
for learning (one of the most important capabilities of 
intelligent systems) has been advocated recently [Kael-
bling, 1993] it sti l l has not investigated thoroughly. 

Based on these considerations, we have launched a 
research project for fostering a learning system called 
"office-conversant robot Jijo-2 1" which has ample in­
teraction with its environment and plenty of assistance 
from nearby humans [Matsui et a/., 1995]. The office-
conversant robot is a mobile robot which autonomously 
walks around in an office environment, actively gathers 
information through close interaction with this environ­
ment including sensing multi-modal data and making 
dialog with people in the office, and acquires knowledge4 

about the environment wi th which it ultimately becomes 
conversant. 

Our research interest is in investigating and clarify­
ing how the close interaction between learning systems 
and teachers can help and accelerate the learning pro­
cesses. What kind of mechanisms are necessary to make 
the effect emerge ? In particular, our interest is not in 
the learning of lower level functions but in learning at 
higher levels, such as combinatorial symbolic structure 
in the environment, and how human teachers can assist 
the systems to learn. 

In the following sections we give an overview of the 
office-conversant robot system, and present two exam­
ples of socially embedded learning, i.e. dialog-based map 
acquisition and route acquisition by following a person. 

2 Office-Conversant Robot 
We chose indoor autonomous mobile robots as a platform 
of our research for the following reasons: 

• In order to communicate with humans naturally, it 
is desirable to have a physical body. 

• The ability to move around helps data to be col­
lected actively in a real world environment 

• Compared with manipulators, the mechanisms of 
mobile robots are rather simple and easy to control. 

• There are several commercial mobile robot bases 
available even to the novice of robotics. 

The conventional application of machine learning in 
robotics is learning to control complex mechanisms. 
Learning of dexterous manipulation and smooth naviga­
tion are typical research issues. However, in our study, 

learning of controlling is not significant part. In other 
words, the office-conversant robot is a robot which sur­
vives to learn many things, not learns many things to 
survive. There are many interesting targets to be learned 
by office-conversant robots, such as 

• the topological and geometric structure of environ­
mental space (map), 

• the relation between humans/objects/resources and 
locations, 

• the relation between humans and objects or re-
sources, 

• the relation between humans, and 
• the ontological structure of the office environment. 

These targets are combinatorial symbolic structures in 
office environments. Learning combinatorial structures 
is one of the most important challenges for machine 
learning research. 

As the robot becomes conversant with its office envi­
ronment, it can function as an information server in the 
office. The existence of such a walking dictionary wil l 
facilitates smooth communication between members of 
the office and supports efficient group projects. 

2.1 Hardware Architecture 
Almost all hardware components are off-the-shelf (Fig­
ure 1). We use Nomad 200, a three-wheel mobile robot 
base provided by Nomadic Inc. (Stanford, U.S.A.). Our 
Nomad 200 is equipped with 16 ultra sonic sonar ring 
sensors, 16 infrared ring proximity sensors, touch sensors 
in the robot's bumper, odometrie sensors for measuring 
running distance and steering angle, and a compass. The 
on-board computer is an I B M / A T with Intel Pentium 
(180 MHz) controlled by Linux OS and connected to a 
LAN through radio Ethernet. 

We added a small microphone, one CCD color cam­
era, an image capture board, an analog radio trans­
mitter for transmitting the speech signals to the host 
computer, and the Japanese speech synthesizer "Shaber-
imbo" (commercial product by NTT Data Co, Ltd.). 
The host computer is Sparc Station 20 with Super Sparc 
60 MHz x 4 . 

1The name Jijo-2 means "conversance" when pronounced 
in Japanese 
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2.2 Software Architecture 
The control software is organized in a multi-agent based 
reactor-integrator architecture [Matsui et a/., 1997]. Ten 
agent modules are formed in a subsumptive architec­
ture, and concurrently running modules communicate 
with each other in an event-driven manner using UNIX 
sockets (Figure 2). Some of these modules consist of 
sub-modules. In each module, several behavior classes 
are implemented and they are instantiated and invoked 
by request messages from other modules. Wi th this mod­
ular architecture, we can rather easily realize concurrent 
event processing, which can cope with interrupts caused 
by exceptional event notification. 

As is shown in Figure 2, all modules are divided into 
two groups. The lower group is devoted to reactive be­
haviors such as obstacle avoidance, and elemental mo­
tions (go straight along a corridor, turn right at a corner, 
etc.). Image capturing and simple early vision process­
ing (visual tracking wi th correlation matching), interface 
wi th a speech synthesizer, and navigation-related local 
event (such as detecting an open space etc.) monitor are 
also included in the group. These modules are imple­
mented on the on-board PC in C. 

The upper group provides more deliberative goal-
directed behaviors such as scheduling multiple goals, 
goal-directed route planning, and making simple goal-
oriented dialog with humans. These modules are imple­
mented with EusLisp [Matsui and Hara, 1995], which is a 
dialect of object-oriented Lisp on the host machine. The 
speech recognizing module is a Hidden Markov Model-
based, speaker-independent continuous speech recogni­
tion system for Japanese sentences [Itou et a/., 1993]. 
The recognition rate in a previous controlled experiment 
was approximately 84.2 % of the spontaneous speech of 
40 subjects (183 utterances). Because the conditions are 
not as favorable for our robot, we limited the variety 
of acceptable speech. Currently the robot's vocabulary 
is approximately 50 words. The dialog control is very 
simple using templates of dialog patterns. For example, 

Figure 2: Mul t i -agent software archi tecture 

a template for asking location is used to extract loca­
tion names from the speech of humans. Some templates 
for answering to simple questions from humans are also 
prepared. 

3 Socially Embedded M a p Learning 
As mentioned above, there are many targets to be 
learned by the office-conversant robot. The most fun­
damental one is map learning for efficient navigation in 
the environment. Although our chief aim is for a variety 
of knowledge about the office environment, we chose this 
as the first target and implemented two mechanisms for 
map learning using intensive human assistances. 

As is well known, many representation schemes of 
maps have already been proposed. They can be roughly 
divided into two categories: "occupancy grids" [Buh-
mann, 1995; Elfes, 1992], and finite automat a-based 
topological maps [Kuipers and Byun, 1988; Mataric, 
1992; Tani, 1995], which represent the space as a state 
transition graph. Each node of this graph usually corre­
sponds to a specific location or landmark, and each edge 
corresponds to an elemental movement of the system. 

We employed the latter one mainly because it does 
not require accurate global coordinates, and it is more 
natural for humans to designate the name of a specific 
place than to designate the x-y coordinate values of the 
place. To cope with the uncertainty of a real-world set­
t ing, we used a partially observable Markov model like 
that of Simmons and Koenig (1995) and Cassandra et 
al (1996). The map is a collection of conditional prob­
abilities 

P(StopLocation, Observations\Start Location, Action). 

Each probability corresponds to an edge of the state 
transition graph of the partially observable Markov 
model. In our tentative system, Action is one of six ele­
mental actions (go straight, turn r ight/ left following free 
space, turn r ight/ left following wall, and turn around) 
Observations are running distance and accumulated 
steering angle during execution of Action. They are mea-
suied by odometric sensors. The distribution of these 
values are approximated by Gaussian. Observation also 
includes information acquired from dialog (e.g. location 
name) when the robot asks a question. 

3 .1 D i a l o g - b a s e d M a p A c q u i s i t i o n 

We implemented dialog-based map acquisition, where 
the system learns a map through making dialog with 
human trainers [Asoh et al., 1996a, 1996b]. In the task 
of probabilistic map building, the robots' localization of 
itself was the most difficult part. Among its sensors, 
Jijo-2 can use ultrasonic sonars, odometric sensors, and 
vision sensor (CCD camera) for locating itself in its envi­
ronmental space. Although the vision sensor is the most 
powerful one, it requires a huge computational cost un­
less we prepare artificial visual landmarks. W i th sonars 
and odometric sensors, only very rough localization can 
be achieved. Accumulating the uncertainty of location 
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seriously prevents the system from efficiently learning 
the map [Dean et a/., 1990]. 

Here is the first point where we introduced the assis­
tance of humans to facilitate the learning process. Hu­
mans in the office can work as very high quality sensors 
which tell the identifiable name of the location to the 
robot. The robot always assesses its certainty about the 
location and if the certainty falls below some threshold, 
the robot asks a question to a nearby human. 

The following is an example of a dialog between a hu­
man and Jijo-2 (actual dialog was in Japanese): 

R: Where am I ? 

H: You are in front of Dr.Nakashima's Office. 

R: Dr.Nakashima's O f f i c e ? 

(Because the accuracy of speech recognition is not 
enough high, the robot always confirms human an­
swer. We are planing to use certainty of the recog­
nition to determine whether confirms or not.) 

H : Yes 

R: Where s h a l l I go ? 

H: Please go to Dr.Hara's Office. 

R: Dr .Hara ' s O f f i c e ? 

H : Yes 

R: So r ry , I d o n ' t know how to go to Dr .Hara 's 
O f f i c e . 

H: Ok. Please go straight. 

R: Go s t r a i g h t ? 

H : Yes 

R : I ' l l g o s t r a i g h t . 

(The robot goes straight t i l l an end-of-action condition 
is satisfied. Normally the end-of-action condition is 
detecting a doorway or crossing.) 

R: Where am I ? 

H: You are in front of Dr.Matsui's Office. 

(The robot goes straight but suddenly stops because of 
detecting a false end-of-action condition) 

R: Where am I ? 

H: You are on your way. 

R: On my way ? 

H: Yes. 
R: Where s h a l l I go ? 

At the beginning of learning, the system knew noth­
ing about the topological structure of the environmental 
space. It can only detect close space (corridor between 
long walls) and open space (doorway and crossing) us­
ing sonar. Repeating the execution of a command such 
as "go straight down the corridor" and asking the ques-
tion "Where am I ?", it gradually acquired its proba­
bilistic map. Even after the learning proceeded to some 

extent, while executing ordered navigation such as "Go 
to Dr. Matsui's office", the system always assessed its 
position and asked question, "Where am I ?", at appro­
priate times. 

In this setting of map learning, the function of the in­
formation coming from dialog is not only to reduce the 
location uncertainty, but also to help the system to de­
cide the time to learn and the time to add a new location 
node to the map. In the above dialog, by the human's 
answer, "You are on your way," the robot could under­
stand that the end-of-action condition was satisfied in­
correctly. In this situation the system did not use the 
data acquired in the previous movement,. 

3.2 R o u t e A c q u i s i t i o n b y F o l l o w i n g 

The second point where we introduced human assis­
tances was in teaching a long path to a goal. Although 
the above dialog-based method worked well, a user, who 
was also a teacher, had to command each elemental mo­
tion (go straight, turn right etc.) at the early stage of 
learning because the robot did not know anything about 
its environment. This was rather tedious. A solution is 
to give the robot more powerful dialog capability which 
could accept compound commands like "first go straight, 
then turn right, then....". 

Here we introduced another assistance of humans. In­
stead of commanding a composed path through spoken 
dialog, a teacher simply commands the robot "Follow 
me.". The robot follows the teacher with visual tracking 
capability and learns a path to a goal during the guided 
tour (see Figure 3). 

To acquire the path, that is, a sequence of elemental 
actions, the robot should segment the entire path to the 
goal and recognize each segment as an elemental motion. 

Figure 3: Ji jo-2 fol lowing a person 
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Figure 4: Geographic map of the E T L E-bui lding 

Here the self-motion recognition capability plays an im­
portant role. We employed the Dynamic Programming 
matching method to recognize each motion trajectory 
element [Asoh et a/., 1997]. 

3.3 E x p e r i m e n t a l Resul ts 
We evaluated the effectiveness of the methods in the real 
environment. The site of the experiment was a part of a 
floor of our laboratory building (Figure 4). 

In an experiment the system executed 52 tr ial runs. 
Each run was a tr ip from their current place to an ar­
bitrary selected place (denoted by the character A, B,... 
in Figure 4). The longest run was about 20 m. Ul t i ­
mately the system succeeded in acquiring a topological 
map with 14 state nodes [Asoh et al., 1996a; Asoh et al., 
1997]. Average moving speed was about 30 cm/sec. 

4 Related W o r k 
The book of Leslie Kaelbling [1993] which popularized 
the concept of "learning in embedded systems", is mainly 
concerned with learning state-action pairs using rein­
forcement learning. The interaction channels between 
learning systems and environments are sensing to recog­
nize the current state and reward for the action. 

Several researchers proposed a learning method in 
which a teacher observes learner's performance and pro­
vides appropriate advices [Clouse and Utgoff, 1992; Gor­
don and Subramanian, 1994; Maclin and Shavlik, 1996]. 
Doringo and Colombetti [1994] considered the interde­
pendence between the environment, the learning agent, 
and the trainer, and applied reinforcement learning not 
only to learning agent but also to trainer program. 

Recently in the field of robot learning, "learning from 
observation" and "learning by imitat ion" are being con­
sidered as promising learning schemes [Demiris 1994; 
Ikeuchi and Suehiro, 1994; Kawato et al., 1994; Ku-
niyoshi et ai, 1994]. These are also considered as an 
approach of uti l izing wider communication channels be­
tween the learning systems and human teachers. Here 
the assisting information is mainly visual. Our sec­
ond experiment of route acquisition by following can be 
viewed as a kind of learning by imitat ion. 

One of the pioneering works of introducing dialog 
as a communication channel with learning systems was 
the well-known intelligent robot "SHAKEY" developed 
by Nilsson [1965]. A natural language understanding 
system "SHRDLU" by Winograd [1972] also had some 
learning capability. Recently, Mark Torrance [1994] has 
developed a mobile robot which learns a map through 
natural language dialog typed in from a keyboard. 

The office-conversant robot presented in this paper, 
which was deeply inspired by these earlier projects, tries 
to integrate these ideas into a platform to evaluate their 
effectiveness in acquiring a higher level structural knowl­
edge about the environment. 

5 Conclusion and Future W o r k 
We have described the architecture and functions of an 
office-conversant robot Jijo-2, a platform for the research 
toward socially embedded learning. The results have 
convinced us that introducing close interaction wi th the 
environment, especially human assistance into learning 
processes, is very effective in enlarging the scope and 
applicability of machine learning. We would like to con­
tinue our explorations in this direction and achieve learn­
ing of more functionalities. 

Tentative status is far from satisfiable one. We should 
explore more variety of interaction between robot and 
its environment. The most urgent problems we currently 
face are in visual processing and making dialog. For vi­
sual processing, we plan to give the robot the capability 
of detecting humans in the environment and recognizing 
these humans using an active vision system. This capa­
bil i ty is necessary to enlarge the communication channel 
between the robot and humans. In order to widen the 
content of dialog, we must implement semantic analysis 
of spoken sentences and reason with semantic represen­
tat ion. We also plan to utilize the framework of socially 
embedded learning for realizing these capabilities them­
selves. Scaling up the experiment is also important in 
evaluating the system's performance. 
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