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by

Andrea Lockerd Thomaz

Submitted to the Program in Media Arts and Sciences
on May 5, 2006, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Media Arts and Sciences

Abstract

Social interaction will be key to enabling robots and machines in general to learn new
tasks from ordinary people (not experts in robotics or machine learning). Everyday peo-
ple who need to teach their machines new things will find it natural for to rely on their
interpersonal interaction skills. This thesis provides several contributions towards the
understanding of this Socially Guided Machine Learning scenario.

While the topic of human input to machine learning algorithms has been explored to
some extent, prior works have not gone far enough to understand what people will try to
communicate when teaching a machine and how algorithms and learning systems can
be modified to better accommodate a human partner. Interface techniques have been
based on intuition and assumptions rather than grounded in human behavior, and often
techniques are not demonstrated or evaluated with everyday people.

Using a computer game, Sophie’s Kitchen, an experiment with human subjects pro-
vides several insights about how people approach the task of teaching a machine. In par-
ticular, people want to direct and guide an agent’s exploration process, they quickly use
the behavior of the agent to infer a mental model of the learning process, and they utilize
positive and negative feedback in asymmetric ways. Using a robotic platform, Leonardo,
and 200 people in follow-up studies of modified versions of the Sophie’s Kitchen game,
four research themes are developed.

The use of human guidance in a machine learning exploration can be successfully in-
corporated to improve learning performance. Novel learning approaches demonstrate
aspects of goal-oriented learning. The transparency of the machine learner can have sig-
nificant effects on the nature of the instruction received from the human teacher, which
in turn positively impacts the learning process. Utilizing asymmetric interpretations of
positive and negative feedback from a human partner, can result in a more efficient and
robust learning experience.

Thesis Supervisor: Cynthia Breazeal
Title: Associate Professor of Media Arts & Sciences
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Chapter 1

Introduction

The use of robots in everyday human environments has long been a goal of scientists

and a vision of novelists and screenwriters (picture R2D2 of Star Wars, or Rosie of The

Jetsons). This vision alludes to robots that are able to communicate, cooperate, collab-

orate, and coexist with their human partners. Several realms of academia and industry

are actively at work toward this goal. For example, putting robots into homes to assist

the elderly, or into space as cooperative partners for astronauts. However, a key prob-

lem remains unsolved and relatively unexplored: social learning will be crucial to the

successful application of robots in everyday human environments. It will be impossible

to give these machines all of the knowledge and skills a priori that they will need to serve

useful long term roles in our dynamic world. The ability for naïve users, not experts, to

guide them easily will be key to their success. While recognizing the success of current

machine learning techniques over the years, these techniques have not been designed

for learning from non-expert users and are generally not suited for it ‘out of the box’.

The cornerstone of this research is the belief that machines designed to interact with

people to learn new things should utilize behaviors and conventions that are socially

relevant to the humans with which they interact. They should more fully be able to par-

ticipate in the teaching and learning partnership, a two-way collaboration. Moreover,

the ability to utilize and leverage these social skills is more than a good interface for

people, it can positively impact the underlying learning mechanisms to let the system

succeed in a real-time interactive learning session.

This thesis concerns Socially Guided Machine Learning (SG-ML), exploring the ways

in which machine learning can exploit social learning. First, three dimensions of SG-ML

are highlighted in a study with human subjects: Guidance, Transparency, and Asymme-

try. Then each of these dimensions are explored through software and robotic imple-

mentations and experiments. This work demonstrates explicit performance benefits of

incorporating social interaction into the machine learning process.
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1.1 Motivation

This research is motivated by the distinction between human learning and machine

learning. In aiming to build more flexible, efficient, personable and teachable machines,

child development and the human learning process serve as inspiration and direction.

Children naturally interact with adults and peers to learn new things in social situa-

tions. Children are motivated learners that seek out and recognize learning partners and

learning opportunities. Additionally, throughout their development, children’s learning

is aided in crucial ways by the structure and support of their environment and espe-

cially their social environment. A primary hypothesis of this work is that a machine will

learn better from humans if it is given the ability to take advantage of the social structure

provided by interacting with a human partner or teacher.

Situated learning is a field of study that looks at the social world of a child and how

it contributes to their development. One key concept is ‘scaffolding’, where an adult

organizes a new skill into manageable steps and provides support such that a child can

achieve something they would not be able to accomplish independently [L. S. Vygotsky,

1978, Greenfield, 1984].

In a situated learning interaction, a good instructor maintains a mental model of

the learner’s understanding and structures the learning task appropriately with timely

feedback and guidance. The learner contributes to the process by expressing their inter-

nal state via communicative acts (e.g., expressing understanding, confusion, attention,

etc.). This reciprocal and tightly coupled interaction enables the learner to leverage from

instruction to build the appropriate representations and associations.

When a machine learner can assume that learning is taking place in the presence of a

human that is motivated to help, social interaction can be a key element in the success of

the learning process, constraining and assisting the machine. A good teacher will scale

instruction appropriately and create a good environment for learning the task at hand.

In particular the human may be able to help the robot with hard problems like: “what

to learn,” “when to learn,” “what action to try,” and “how to measure success” [Breazeal,

2002].

This situated learning process stands in contrast to typical scenarios of machine

learning which are often not interactive nor intuitive for the human partner. With the

belief that the human can provide more than labeled examples or a reinforcement sig-

nal, this research focuses on three key qualities that distinguish natural learning systems

from machine learning systems: motivation, scaffolding, and expression. This section

highlights evidence from human tutelage and child development around these topics.
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1.1.1 Learning is a part of all activity

In most machine learning examples, learning is an explicit activity. The system is de-

signed to learn a particular thing at a particular time. With humans on the other hand,

there is a motivation for learning, a drive to be a better “system”, and an ability to seek

out the expertise of others. Some characteristics of a motivated learner include:

• The ability to recognize and exploit good sources of information

• The ability to adopt such an information source as a role model, and a desire to

‘be more like’ that role model that underlies all activity.

• The ability to judge ones success at an attempted skill, and to have both success

and failure experiences affect one’s motivation level in an appropriate way.

• A curiosity about new environments and experiences.

• A sense of one’s level of mastery with acquired skills driving motivation to explore

and learn about the world at opportune times.

Learning is not activity, but is part of all activity. This is central to Lave and Wenger’s

theory of ‘Legitimate Peripheral Participation’, highlighting that learning is motivated by

a learner’s desire to form their identity and become a full participant in the world [Lave

and Wenger, 1991].

Children put themselves in a good position to learn new things by being able to rec-

ognize and seek proximity to their caregivers. They assume that the caregiver has their

best interest in mind and even very young infants use this to their advantage when faced

with an unknown situation [Rogoff and Gardner, 1984]. A critical part of learning is gain-

ing the ability to exploit the expertise of others [Pea, 1993].

The ability and desire to engage, communicate, and interact with others is seen from

an early age. By the time infants are two months old, they can actively engage in com-

municative interactions or turn-taking routines with adults. Studies have shown that

infants can start and stop communication with their mother through gesture and gaze,

and that it is the infants that control the pace of the turn taking interaction [Trevarthen,

1979, Kaye, 1977]. This turn taking capability is the foundation of many situated learn-

ing activities, and is a precursor to more sophisticated interactions like imitation and

scaffolding [Zukow-Goldring et al., 2002, Greenfield, 1984].

1.1.2 Teachers scaffold the learning process

An important characteristic of a good learner is the ability to learn both on one’s own

and by interacting with another. Children are capable of exploring and learning on their
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own, but in the presence of a teacher they can take advantage of the social cues and com-

municative acts provided to accomplish more. For instance, the teacher often guides the

child’s search process by providing timely feedback, luring the child to perform desired

behaviors, and controlling the environment so the appropriate cues are easy to attend

to, thereby allowing the child to learn more effectively, appropriately, and flexibly.

Attention direction is one of the essential mechanisms that contributes to the learn-

ing process [Wertsch et al., 1984, Zukow-Goldring et al., 2002]. Analyzing parent-child

tutoring sessions reveals a number of ways that adults provide structure and guide at-

tention to let children succeed: placing important objects close to the child’s face, ar-

ranging the physical environment such that the desired action is within reach, or doing

a demonstration in the infant’s line of sight to introduce object affordances. The adult is

also implicitly directing the child’s attention with their gaze direction.

Dynamic Scaffolding is the notion that adults create a learning situation that is the

right level of complexity for the learner. The adult adjusts dynamically to make sure the

child is working within the Zone of Proximal Development. One way to describe this is

that the teacher creates ‘microworlds’ for the learner to master parts of the task in isola-

tion before moving on, providing safety and intermediate attainable goals [Burton et al.,

1984]. For example, with language parents first treat anything as conversational speech,

but eventually they raise their expectations, scaffolding the child’s conversational abili-

ties [Trevarthen, 1979].

Linking New and Old: An important role that the adult plays in a child’s learning

process is linking new information to old, showing or suggesting to the child similari-

ties between new problems and old ones [Rogoff and Gardner, 1984]. A good teacher

makes the information in a new problem compatible with what is known, guiding the

generalization process, helping the child apply skills across various contexts.

1.1.3 Expression provides feedback to guide a teacher

To be a good instructor, one must maintain a mental model of the learner’s state (e.g.,

what is understood so far, what remains confusing or unknown) in order to appropri-

ately structure the learning task with timely feedback and guidance. The learner helps

the instructor by expressing their internal state via communicative acts (e.g., expres-

sions, gestures, or vocalizations that reveal understanding, confusion, attention, etc.).

Through reciprocal and tightly coupled interaction, the learner and instructor cooper-

ate to help both the instructor to maintain a good mental model of the learner, and the

learner to leverage from instruction to build the appropriate models, representations,

and associations.

This human-style tutelage is a social and fundamentally cooperative activity. There-
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fore theories of human cooperative and collaborative activity help inform the design

of SG-ML systems. These theories argue for the importance of sharing information

through communication.

Cohen et al. analyzed task dialogs, where an expert instructs a novice assembling a

physical device, and found that much of task dialog can be viewed in terms of joint in-

tentions. Their study identified key discourse functions including: organizational mark-

ers that synchronize the start of new joint actions ("now," "next," etc.), elaborations and

clarifications for when the expert believes the apprentice does not understand, and con-

firmations establishing the mutual belief that a step was accomplished [Cohen et al.,

1990].

Bratman defines prerequisites for an activity to be considered shared and cooper-

ative: he stresses the importance of mutual responsiveness, commitment to the joint

activity and commitment to mutual support [Bratman, 1992]. Cohen et al. support

these guidelines and also predict that an efficient and robust collaboration scheme in

a changing environment needs an open channel of communication.

An SG-ML system that people will find collaborative and cooperative, must take into

account nonverbal communication (like gesture [Krauss et al., 1996] and gaze [Argyle

et al., 1973]) to facilitate the interaction and maintain an understandable transparent

interface between the human and the machine.

1.2 Machine Learning Background

Much of Machine Learning (ML) can be characterized as discovering the structure that is

in some data or in the world through sophisticated statistical learning techniques. This

section gives a very brief overview of the areas of ML theory discussed throughout this

thesis.

1.2.1 Supervised Learning

Supervised learning systems typically learn a mapping between input and output through

statistical analysis of hundreds or thousands of training examples chosen by a ‘knowl-

edgeable supervisor’. Each example contains both the input features and the desired

output value or label (for greater detail see [Duda et al., 2002]). These techniques rely on

the availability of labeled data, and are not appropriate in domains with a small num-

ber of examples. They are also not appropriate when the environment is changing so

quickly that earlier examples are no longer relevant.
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1.2.2 Unsupervised Learning

Unsupervised systems learn using only the input set, without output labels (for an in-

troduction see [Duda et al., 2002]). A common approach is clustering, where given some

means of comparing the various features of the data (distance metrics) the system can

find subsets or clusters of the training examples that are similar. Other approaches try to

fit the data set to a model, e.g., a Bayesian approach treats inputs as latent variables and

builds a joint density model for the data set. The success of unsupervised approaches

again relies heavily on the availability of a large amount of training data.

1.2.3 Semi-Supervised Learning

Semi-supervised learning is a relatively recent area of research that combines unsuper-

vised and supervised learning approaches. Generally these approaches use unsuper-

vised learning techniques to learn the structure of the data, making it easier to identify

the ‘most interesting’ examples in a training set. This can then bootstrap a supervised

learning technique gaining better performance with fewer labeled examples. For exam-

ple, active learning is one such approach [Cohn et al., 1995].

1.2.4 Reinforcement Learning

Reinforcement Learning (RL) is commonly used for systems that need to learn from self-

generated experience over time – for an introduction see [Sutton and Barto, 1998]. A

widely known RL algorithm is Q-Learning [Watkins and Dayan, 1992]. In Q-Learning,

it is assumed that the agent can perceive the environment as being in one of a finite

number of states. A state can be thought of as a feature vector from the agent’s sensory

input devices (which can be both internal and external aspects of the environment).

From any state there are a finite number of actions that the agent can execute. It is

assumed that at any time the agent will select only one action which may or may not

transition the agent from the current state into a new state of the environment. The

agent receives rewards from the environment. These are usually a scalar value that can

be positive or negative. For example, a learning environment is usually designed such

that the goal state has the highest reward and states to be avoided have the lowest.

The agent probabilistically explores the outcome of various actions in various states

in order to learn the best way to behave in a given situation (i.e. how to maximize re-

wards). As it explores the environment the agent maintains a representation of the value

of taking a particular action from a given state, this is known as the Q-value for that

state-action pair. These values are initially random or uniform, and through exploring
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the outcome of various actions these Q-values are incrementally updated to more accu-

rately reflect the true value of a particular state-action pair.

1.2.5 The role of the human in standard ML approaches

Standard Machine Learning techniques have had great success in many applications.

People have recognized some of the hard problems of learning in the real world, e.g.,

real-time learning in environments that are partially observable, dynamic, and contin-

uous [Mataric, 1997, Thrun and Mitchell, 1993, Thrun, 2002]. However, learning quickly

from interactions with a human teacher poses additional challenges (e.g., limited hu-

man patience, ambiguous human input,...). Typically machine learning has not been

designed for learning from ordinary human teachers in a real-time social interaction.

Nevertheless, it is always the case that a human is involved in the learning process.

The human designer plays an important role in the success of any machine learning

system. For example, in their survey of reinforcement learning, [Kaelbling et al., 1996]

point out several practical ways that RL algorithms can be biased to improve learning.

To illustrate the distinction between an SG-ML approach and the current role of the

human in ML, it is useful to look at machine learning from a holistic point of view. What

is the role of the machine and what is it that designers have to do to create a successful

learning system? In a number of ways the system designer crafts the learning algorithm

to learn the right thing at the right time.

• Data collection: In the case of pattern recognition systems, collecting the data set

with which training and testing takes place is a significant step. The designer must

choose a set that is highly representative of the data that the system will see in the

future. The size and diversity of the training and testing data set will determine the

speed and accuracy of learning and the quality of the resulting system, including

its generalization characteristics.

• Selecting the feature space and its structure: Deciding what input features and sim-

ilarity metrics are most important for discriminating in the task and environment

at hand is a critical step. For example, in a classification task, the designer must

be careful to include input features that are in fact discriminatory and the algo-

rithm will do better if the redundant or non-discriminatory features are excluded.

The prior knowledge of the designer about the invariances of the environment

plays an important role at this step. Many times input features also need be fil-

tered before being passed to the learning system, designers build these filters to fit

the task at hand. This issue of feature choice is not limited to supervised learning

techniques. In many of the more successful examples of reinforcement learners,
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function approximation techniques are used to learn the value function. In this

case, the designer plays a critical role of defining the features that the system will

need in order to best calculate its appraisals and represent the environment.

• Transfer: Similarly, the underlying representations used in machine learning typi-

cally make it difficult for the systems to transfer knowledge learned in one partic-

ular setting or task to an alternate setting. The ability to do this type of generaliza-

tion is highly dependent on representation and feature space decisions made by

the designer.

• Meta-control of the search: The designer must select the examples and the order

in which the system sees the examples, seeding the search for a solution. In many

cases, algorithms can suffer from over training, thus another important role the

designer plays is that of determining when learning is done.

• Define a reward signal: In a reinforcement learning system, a critical role of the de-

signer is defining the reward signal that the agent will receive. In defining this sig-

nal the designer defines the task goals for the learning agent (since the RL agent’s

goal is to maximize reward).

• Subtasking the problem: This is specifically a technique used in reinforcement

learning, to speed up the learning of a complicated task the designer has the sys-

tem first learn policies for the subtasks.

Thus, the learning process for standard ML techniques is not currently feasible for

non-experts. In Socially Guided Machine Learning, the goal is to understand how to

bridge this gap, enabling machine learning systems to succeed at learning within a social

interaction with everyday people.

1.3 Related Work

1.3.1 Approaches designed for human input

For years researchers working on robotic and software agents have been inspired by the

idea of efficiently transferring knowledge about tasks or skills from a human to a ma-

chine. There are several related works that explicitly incorporate human input to a ma-

chine learning process. For the large majority of prior work, the evaluation and test sce-

narios have not used everyday people with these systems. Nonetheless, a review of these

works characterizes the ways in which machine learning systems have tried to leverage

human input.
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Machine learns by observing human behavior

Several prior works have dealt with the scenario where a machine learns by only ob-

serving human behavior. In some cases the teaching is implicit, in others the human

is explicitly teaching the machine and new skill. In general the SG-ML goal is to have

systems that are more interactive than these approaches, that learn in real-time from

everyday people and the ways that people will naturally provide demonstrations.

• Personalization agents and adaptive user interfaces rely on the human as an im-

plicit teacher to model human preferences or activities through passive observa-

tion of the user’s behavior [Lashkari et al., 1994, Horvitz et al., 1998].

• Programming by Example is a technique to allow a person to explicitly teach a

software agent [Lieberman, 2001]. For example, the Mondrian system records

demonstrated procedures in a graphical user interface and learns a generalized

model that can later be used in a similar context.

• In an approach called learning by watching, a robot is able to observe a human

demonstrating a blocks assembly task [Kuniyoshi et al., 1994]. From this obser-

vation, the system extracts the action sequence and infers a task plan that can

be executed by the robot. A very similar approach lets a human wear a glove to

demonstrate a peg-in-hole task [Voyles and Khosla, 1998]. The system extracts a

high-level state machine of the task that can then be executed on the robot.

• In another approach, a robot uses a human demonstration to learn a reward func-

tion for the task [Atkeson and Schaal, 1997]. A human demonstration of the pen-

dulum swing-up task seeds the search for a reward function. Then the system

uses Reinforcement Learning to learn a model of the task with the learned reward

function.

• A number of works have focused on this notion of skill learning by demonstration

or imitation (reviewed in [Schaal, 1999, Breazeal and Scassellati, 2002]). The few

examples given here are representative of the work and the nature of human in-

teraction in these approaches. There is generally a specific training phase, where

the machine observes the human, then a machine learning technique is used to

abstract or infer a model of the demonstrated skill.

Human explicitly directs action of the machine

In other works the human is able to directly influence the actions of the machine to

provide it with an experience from which to learn. These approaches are much more in-
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teractive than learning by observation approaches and more closely resemble the goals

of an SG-ML system. However, for a large majority of these works the human is required

to learn how to correctly interact with the machine. Additionally the teacher needs to

know precisely how the machine is to perform the task. In some cases the human input

portion of the learning interaction amounts to programming the task for the machine.

• In a recent robot task learning example, the robot learns a navigation task by fol-

lowing a human demonstrator [Nicolescu and Matarić, 2003]. The teacher uses

simple voice cues to frame the learning (“here,” “take,” “drop,” “stop”), and the

robot generalizes a task model over multiple trials with the human.

• Many people have worked on systems for translating natural language commu-

nication into a more formal language that can be used to instruct a machine. In

a robot learning example, the human teacher uses natural language to instruct a

mobile robot in a navigation task [Lauria et al., 2002] (all of the instruction hap-

pens prior to execution). Natural language communication has also been lever-

aged in reinforcement learning systems allowing human teachers to provide do-

main specific advice to the action selection mechanism [Kuhlmann et al., 2004,

Maclin et al., 2005].

• Several works use the notion of supervising a learning agent by directly controlling

the training action sequence. Lin developed a way to specify teaching sequences

or experience for an RL agent, with the recognition that a human teacher can

help the agent efficiently explore the most interesting parts of the state space [Lin,

1992]. Others have achieved similar improvements by letting a human directly

control the actions of a robot agent with teleoperation to supervise a RL process

[Smart and Kaelbling, 2002], or to provide example task demonstrations [Peters

and Campbell, 2003].

• Loosening the burden on the human teacher, other approaches let the human su-

pervise an RL agent by occasionally biasing action selection rather than directly

controlling all of the agent’s actions [Clouse and Utgoff, 1992, Kuhlmann et al.,

2004, Maclin et al., 2005].

Human provides high-level evaluation, feedback, or labels to a machine learner

In other cases the human influences the experience of the machine with higher level

constructs than individual actions, for example, providing feedback to a reinforcement

learner or labels to an active learning system.
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Figure 1-1: SG-ML explicitly acknowledges the human in the loop, in contrast to standard su-

pervised ML techniques.

• Several approaches are inspired by animal training techniques like clicker training

and shaping [Blumberg et al., 2002, Kaplan et al., 2002, Saksida et al., 1998]. The

main principle behind these approaches is that learning involves reinforcing the

connections of base behaviors to a resultant complex behavior, or reinforcing a

perceptual-motor association. A human trainer uses instrumental conditioning

techniques and signals the agent when a goal behavior has been achieved. Related

to this, a common approach for incorporating human input to a reinforcement

learner lets the human directly control the reward signal to the agent [Isbell et al.,

2001,Evans, 2002,Stern et al., 1998]. In these cases the human can provide positive

and negative feedback at any point, rather than only positive feedback according

to an instrumental conditioning reward schedule.

• Active learning or learning with queries is an approach that explicitly acknowl-

edges a human in the loop [Cohn et al., 1995, Schohn and Cohn, 2000]. This is a

semi-supervised learning approach that utilizes a human ‘oracle’ through queries.

An unsupervised learning algorithm identifies the most interesting examples, and

then asks the oracle for labels. Thus, the algorithm is in control of the interac-

tion without regard of what an ordinary human will be able to provide in a real

scenario.

1.3.2 An Interaction perspective of ML

In many of the related works mentioned above, the primary motivation for leveraging

human input is to achieve some learning performance gains for the machine. In Socially
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Guided Machine Learning, we advocate designing for the performance of the complete,

coupled human-machine teaching-learning system. This new perspective reframes the

machine learning problem as an interaction between the human and the machine. This

allows us to take advantage of human teaching behavior to construct a machine learning

process that is more amenable to the human partner.

Figure 1-1(a) is a high level view of a supervised machine learning process. A hu-

man provides input examples to the learning mechanism, which performs its task and

provides some output. Alternatively, an SG-ML view of learning models the complete

human-machine system, characterized in Figure 1-1(b).

This simple diagram highlights the key aspects of a social learning system, an inter-

action approach to machine learning forces the research community to consider many

new questions. We need a principled theory of the content and dynamics of this tightly

coupled teaching-learning process in order to design systems that can learn efficiently

and effectively from ordinary users.

Input Channels: An SG-ML approach begins with the question: “How do humans

want to teach?” In addition to designing the interaction based on what the machine

needs to succeed in learning, we need to also understand what kinds of intentions peo-

ple will try to communicate in their everyday teaching behavior. We can then change the

input portion of the machine learning training process to better accommodate a human

partner.

Output Channels: An SG-ML approach asks: “How can the output provided by the

learning agent improve the performance of the teaching-learning system?" In a tightly

coupled interaction, a ‘black box’ learning process does nothing to improve the qual-

ity and relevance of the instructional guidance. However, transparency of the internal

state of the machine could greatly improve the learning experience. By communicat-

ing its internal state, revealing what is known and what is unclear, the robot can guide

the teaching process. To be most effective, the robot should reveal its internal state in a

manner that is intuitive for the human partner [Breazeal, 2002, Arkin et al., 2003].

Input/Output Dynamics: Combining the previous two topics, this topic recognizes

that these input and output channels interact over time. The dynamics of the interac-

tion can change the nature of the input from the human. In particular, the temporal

structure of teaching versus performing may significantly influence the behavior of the

human. An incremental, on-line learning system creates a very different experience for

the human than a system that must receive a full set of training examples before its per-

formance can be evaluated. Iterative feedback allows for on-line refinement; the human

can provide another example or correct mistakes right away instead of waiting to evalu-

ate the results at the end of the training process. This may provide a significant benefit
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to the human’s level of engagement and motivation. The sense that progress is being

made may keep the human engaged with the training process for a longer period of

time, which in turn benefits the learning system.

1.4 Thesis Overview

Socially Guided Machine Learning proposes an alternate view of the machine learning

problem, viewing the teaching-learning problem as a collaboration between the ma-

chine and the human partner, and using human social skills to constrain and guide the

learning process. More than a good interface technique, the ability to utilize and lever-

age human social structure can positively impact the underlying learning mechanism.

Chapter 2 presents an investigation with a computer game, Sophie’s Kitchen. An ex-

periment with human subjects provides several insights about how people approach the

task of teaching a machine. In particular, people want to direct and guide an agent’s ex-

ploration process, they quickly use the behavior of the agent to infer a mental model

of the learning process, and they utilize positive and negative feedback in asymmetric

ways. Chapters 3, 4, and 5 provide an exploration of each of these themes on a robotic

platform, Leonardo, and with follow-up studies in the Sophie’s Kitchen platform. These

implementations and experiments show several explicit ways that social interaction can

significantly improve the speed, efficiency, and understandability of a machine learn-

ing process, making it more successful in a real-time interaction with everyday human

trainers:1

• An experiment investigates human teaching behavior and yields three general char-

acteristics exhibited across participants – Chapter 2.

• The guidance-exploration spectrum is a novel characterization of human inter-

action with machine learning. Three implementations represent several points

along this spectrum – Chapter 3.

• An implementation and experiment in Sophie’s Kitchen shows that everyday hu-

man trainers are able to use guidance with a Reinforcement Learning agent, re-

sulting in significant performance improvements – Chapter 3.

• Novel approaches and implementations of goal-oriented task learning are demon-

strated on the Leonardo robot – Chapter 3.

1Aspects of these thesis contributions have been published in several conference and journal publi-
cations: [Thomaz and Breazeal, 2006a, Thomaz and Breazeal, 2006b, Lockerd and Breazeal, 2004, Thomaz
et al., 2005b,Breazeal et al., 2004b,Breazeal et al., 2004a,Thomaz et al., 2006,Breazeal et al., 2005b,Thomaz
et al., 2005a, Breazeal et al., 2005c]
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• Implementations of transparency devices to reveal aspects of the internal learning

state are shown with software and robotic agents. Experiments with both Sophie

and Leonardo show that transparency leads to significant improvements in the

quality of instruction received from a human teacher – Chapter 4.

• Implementations with Sophie and Leonardo represent two asymmetric interpre-

tations of feedback from a human teacher. An experiment with human trainers

shows significant positive benefits to the learning mechanism – Chapter 5.

In aiming to enable robots and machines in general to learn new tasks from natu-

ral human instruction with ordinary people (not experts in robotics or machine learn-

ing), it will be important to enable these systems to take advantage of social interac-

tions. Structuring guidance through interpersonal interaction will be natural for every-

day people who need to teach their machines new things — this thesis provides several

contributions towards the understanding of Socially Guided Machine Learning, expli-

cating the fundamental SG-ML principles of Guidance, Transparency, Asymmetry, and

Goal-Oriented Learning.
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Chapter 2

Experiments in Socially Guided Machine

Learning

As reviewed in the previous chapter, several examples exist of machines learning from

human input, but the role of a human teacher is not adequately understood or leveraged

by machine learning systems that are meant to learn from humans. Many of the exam-

ples of agents that learn interactively with a human teacher are Reinforcement Learning

(RL) based approaches. Reinforcement learning has certain desirable qualities for an

SG-ML agent, in particular the general strategy of exploring and learning from expe-

rience, and evaluating the world through a reward function. The reward function de-

fines states in the world that are positive, negative, or neutral and is pre-specified by the

designer of the algorithm. This enables the agent to learn in an unsupervised fashion

through its own experience.

Although the theory of reinforcement learning was originally formulated for systems

to learn on-line, independent of human participation, the algorithm is amenable to in-

corporating real-time human feedback by having a person supply reward and/or pun-

ishment as an additional input to the reward function. This has been a popular tech-

nique for letting humans teach robots and game characters new skills [Blumberg et al.,

2002, Kaplan et al., 2002, Isbell et al., 2001, Evans, 2002, Stern et al., 1998]. This assump-

tion models the human input as indistinguishable from any other feedback coming from

the environment, and assumes that people’s communication will concern only feedback

on past actions. But are these good assumptions?

Reinforcement-based learning approaches need to be reformulated to more effec-

tively incorporate a human teacher (that is not an expert in machine learning). To do

this properly, we must deeply understand the human teacher’s contribution: how does

the human teach, and what are they trying to communicate to the learner? For instance,

how do people actually use a reward signal? Do they only use it as a feedback signal to
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reinforce the last action the agent performed, or do they also use it to guide the agent’s

next action as a sort of anticipatory reward? Furthermore, if the reward channel has a

dual use in practice, then does the agent’s learning algorithm properly distinguish this

information to take advantage of it? In general, the human’s role in teaching as real-time

interaction has been a neglected topic.

This chapter presents a systematic study and analysis of human behavior when teach-

ing a virtual graphical character to perform a novel task within a reinforcement-based

learning framework. The experimental system, Sophie’s Kitchen, is a computer game

that allows an agent to be trained interactively to bake a cake through sending the agent

feedback messages. An experiment with human subjects finds several prominent char-

acteristics for how human players approach the task of explicitly teaching a learning

agent.

• People want the ability to direct the agent’s attention, guiding the exploration.

• Players try to maximize their impact on the learning process as they infer a model

of the learner, suggesting that transparency behaviors that reveal the internal state

of the agent, such as gaze, can be utilized to improve the human’s teaching.

• Positive and negative feedback from a human teacher have asymmetrical inten-

tions or meanings.

2.1 The Sophie’s Kitchen Platform

Sophie’s Kitchen is a Java-based computer game platform, designed to investigate how

human interaction can and should change the machine learning process. Sophie’s Kitchen

is an object-based state-action MDP space for a single agent using a fixed set of actions

on a fixed set of objects.

2.1.1 Sophie’s MDP

The task scenario used is a kitchen world (see Fig. 2-1), where the agent (Sophie) learns

to bake a cake. This system is defined by (L,O,Σ,T, A).

• There are a finite set of k locations L = {l1, . . . , lk }. In the kitchen task scenario

k = 4; L = {❙❤❡❧❢,❚❛❜❧❡,❖✈❡♥,❆❣❡♥t}. As shown in Fig. 2-1, the agent is in the

center surrounded by a shelf, table and oven; and the location Ag ent is available

to objects (i.e., when the agent picks up an object, then it has location Ag ent ).
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Figure 2-1: Sophie’s Kitchen. The agent is in the center, with a shelf on the right, oven on the left,

a table in between, and five cake baking objects. The vertical bar is the interactive reward and is

controlled by the human.

• There is a finite set of n objects O = {o1, . . . ,on}. Each object can be in one of an

object-specific number of mutually exclusive object states. Thus, Ωi is the set of

states for object oi , and O∗ = (Ω1×. . .×Ωn) is the entire object configuration space.

In the kitchen task scenario n = 5: the objects ❋❧♦✉r, ❊❣❣s, and ❙♣♦♦♥ each have

only one object state; the object ❇♦✇❧ has five object states: ❡♠♣t②, ❢❧♦✉r, ❡❣❣s,

❜♦t❤, ♠✐①❡❞; and the object ❚r❛② has three object states: ❡♠♣t②, ❜❛tt❡r, ❜❛❦❡❞.

• Let L A be the possible agent locations: L A = {❙❤❡❧❢,❚❛❜❧❡,❖✈❡♥}; and let LO be

the possible object locations: LO = {❙❤❡❧❢,❚❛❜❧❡,❖✈❡♥,❆❣❡♥t}). Then the legal

set of states is Σ⊂ (L A ×LO ×O∗), and a specific state is defined by (la , lo1 . . . lon ,ω):

the agent’s location, la ∈ L A, and each object’s location, loi ∈ LO , and the object

configuration, ω ∈O∗.

• T is a transition function:Σ× A 7→ Σ. The action space A is expanded from four

atomic actions (●❖❁①❃, P❯❚✲❉❖❲◆❁①❃, P■❈❑✲❯P❁①❃, ❯❙❊❁①❃❁②❃): Assuming the lo-

cations L A are arranged in a ring, the agent can always ●❖ ❧❡❢t or r✐❣❤t to change

location; she can P■❈❑✲❯P any object in her current location; she can P❯❚✲❉❖❲◆

any object in her possession; and she can ❯❙❊ any object in her possession on any

object in her current location. The agent can hold only one object at a time. Thus

the set of actions available at a particular time is dependent on the particular state,

and is a subset of the entire action space, A. Executing an action advances the

world state in a deterministic way defined by T . For example, executing P■❈❑✲❯P

❁❋❧♦✉r❃ advances the state of the world such that the ❋❧♦✉r has location ❆❣❡♥t.

❯❙❊ing an ingredient on the ❇♦✇❧ puts that ingredient in it; using the ❙♣♦♦♥ on the
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Algorithm 1 Q-Learning with Interactive Rewards from a Human Partner

1: s =last state, s′ =current state, a =last action, r =reward
2: while learning do

3: a = random select weighted by Q[s, a] values
4: execute a, and transition to s′

(small delay to allow for human reward)
5: sense reward, r
6: update Q-value:

Q[s, a] ←Q[s, a]+α(r +γ(maxa′Q[s′, a′])−Q[s, a])

7: end while

❜♦t❤✲❇♦✇❧ transitions its state to the ♠✐①❡❞✲❇♦✇❧, etc.

In the initial state, s0, all objects and the agent are at location ❙❤❡❧❢. A successful

completion of the task will include putting flour and eggs in the bowl, stirring the ingre-

dients using the spoon, then transferring the batter into the tray, and finally putting the

tray in the oven. Some end states are so-called disaster states (for example—putting the

eggs in the oven), which result in a negative reward (r =−1), the termination of the cur-

rent trial, and a transition to state s0. In order to encourage short sequences, an inherent

negative reward of r =−.04 is placed in any non-goal state.

Due to the flexibility of the task, there are many action sequences that can lead to

the desired goal. Here is one such sequence:

P■❈❑✲❯P ❇♦✇❧; ●❖ r✐❣❤t; P❯❚✲❉❖❲◆ ❇♦✇❧; ●❖ ❧❡❢t; P■❈❑✲❯P ❋❧♦✉r; ●❖ r✐❣❤t; ❯❙❊

❋❧♦✉r✱❇♦✇❧; P❯❚✲❉❖❲◆ ❋❧♦✉r; ●❖ ❧❡❢t; P■❈❑✲❯P ❊❣❣s; ●❖ r✐❣❤t; ❯❙❊ ❊❣❣s✱❇♦✇❧;

P❯❚✲❉❖❲◆ ❊❣❣s; ●❖ ❧❡❢t; P■❈❑✲❯P ❙♣♦♦♥; ●❖ r✐❣❤t; ❯❙❊ ❙♣♦♦♥✱❇♦✇❧; P❯❚✲❉❖❲◆ ❙♣♦♦♥;

●❖ ❧❡❢t; P■❈❑✲❯P ❚r❛②; ●❖ r✐❣❤t; P❯❚✲❉❖❲◆ ❚r❛②; P■❈❑✲❯P ❇♦✇❧; ❯❙❊ ❇♦✇❧✱❚r❛②;

P❯❚✲❉❖❲◆ ❇♦✇❧; P■❈❑✲❯P ❚r❛②; ●❖ r✐❣❤t; P❯❚✲❉❖❲◆ ❚r❛②.

2.1.2 Learning Algorithm

The algorithm implemented for the experiments presented in this chapter is a standard

Q-Learning algorithm (learning rate α = .3 and discount factor γ = .75) [Watkins and

Dayan, 1992]. This is shown above in Algorithm 1. A slight delay happens in line 4 as the

agent’s action is animated and also to allow the human time to issue interactive rewards.

Q-Learning is used as the instrument for this work because it is a widely understood

RL algorithm, thus affording the transfer of these lessons to other reinforcement-based

approaches.
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2.1.3 Interactive Rewards Interface

A central feature of Sophie’s Kitchen is the interactive reward interface. Using the mouse,

a human trainer can—at any point in the operation of the agent—award a scalar reward

signal r ∈ [−1,1]. The user receives visual feedback enabling them to tune the reward

signal before sending it to the agent. Choosing and sending the reward does not halt the

progress of the agent, which runs asynchronously to the interactive human reward.

The interface also lets the user make a distinction between rewarding the whole state

of the world or the state of a particular object (object specific rewards). An object spe-

cific reward is administered by doing a feedback message on a particular object (objects

are highlighted when the mouse is over them to indicate that any subsequent reward

will be object specific). This distinction exists to test a hypothesis that people will pre-

fer to communicate feedback about particular aspects of a state rather than the entire

state. However, object specific rewards are used only to learn about the human trainer’s

behavior and communicative intent; the learning algorithm treats all rewards in the tra-

ditional sense of pertaining to a whole state and action pair.

2.2 Experimental Design

The purpose of this initial experiment with Sophie’s Kitchen is to understand, when given

a single reward channel (as in prior works), how do people use it to teach the agent? In

the experiment, 18 participants played a computer game, in which their goal was to get

the virtual robot, Sophie, to learn how to bake a cake on her own. Participants were

asked to rate their expertise with machine learning software and systems on a scale of 1

to 7, (1=no experience, 7=very experienced), and we found it was an above average but

reasonably diverse population (mean=3.7; standard deviation=2.3).1

Participants were told they could not tell Sophie what to do, nor could they do ac-

tions directly, but they could send Sophie the following messages via a mouse to help

her learn the task:

• Click and drag the mouse up to make a green box, a positive message; and down

for red/negative (Figure 2-1 shows a positive feedback message).

• By lifting the mouse button, the message is sent to Sohpie, she sees the color and

size of the message.

• Clicking on an object, this tells Sophie your message is about that object. As in,

“Hey Sophie, this is what I’m talking about...” If you click anywhere else, Sophie

assumes your feedback pertains to everything in general.

1We had both male and female participants, but did not keep gender statistics of the population.
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The system maintains an activity log and records time step and real time of each

of the following: state transitions, actions, human rewards, reward aboutness (if object

specific), disasters, and goals. Additionally, there was an informal interview after sub-

jects completed the task.2

2.3 Findings

2.3.1 Guidance Intentions

Even though the instructions clearly stated that communication of both general and ob-

ject specific rewards were feedback messages, many people assumed that object specific

rewards were future directed messages or guidance for the agent. Several people men-

tioned this in the interview, and this is also suggested through behavioral evidence in

the game logs.

An object reward used in a standard RL sense, should pertain to the last object the

agent used. Figure 2-2 has a mark for each player, indicating the percentage of object

specific rewards that were about the last object the agent used: 100% would indicate

that the player always used object rewards in a feedback connotation, and 0% would

mean they never used object rewards as feedback. We can see that several players had

object rewards that were rarely correlated to the last object (i.e., for 8 people less than

50% of their object rewards were about the last object).

Interview responses suggested these people’s rewards actually pertain to the future,

indicating what they want (or do not want) the agent to use next. A single test case is

used to show how many people used object rewards as a guidance mechanism: When

the agent is facing the shelf, a guidance reward could be administered (i.e., what to pick

up). Further, a positive reward given to either the empty bowl or empty tray on the shelf

could only be interpreted as guidance since this state would not be part of any desired

sequence of the task (only the initial state). Thus, rewards to empty bowls and trays in

this configuration serve to measure the prevalence of guidance behavior.

Figure 2-3 indicates how many people tried giving rewards to the bowl or tray when

they were empty on the shelf. Nearly all of the participants, 15 of 18, gave rewards to the

bowl or tray objects sitting empty on the shelf. This leads to the conclusion that many

participants tried using the reward channel to guide the agent’s behavior to particular

objects, giving rewards for actions the agent was about to do in addition to the traditional

rewards for what the agent had just done.

These anticipatory rewards observed from everyday human trainers will require new

2The full protocol, instructions and consent form used in the study can be found in Appendix A.
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Figure 2-2: There is one mark for each player, indicating their percentage of object rewards that

were about the last object of attention. This graph shows that many people had object rewards

that were rarely about the last object, thus rarely used in a feedback orientation.

Figure 2-3: A reward to the empty bowl or tray on the shelf is assumed to be meant as guidance

instead of feedback. This graph shows that 15 of the 18 players gave rewards to the bowl/tray

empty on the shelf.
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Figure 2-4: Ratio of rewards to actions over the first three quarters of the training sessions shows

an increasing trend.

attention in learning systems and algorithms in order for agents to correctly interpret

their human partners. Chapter 3 covers the design, implementation, and evaluation of

various techniques for utilizing social guidance in a machine learning system.

2.3.2 Inferring a Model of the Learner

In human learning, teachers direct a learner’s attention, structure experiences, support

attempts, and regulate complexity. The learner contributes by revealing their internal

state to help guide the teaching process. Each simplifies the task for each other. This

collaborative aspect of teaching and learning has been stressed in prior work [Breazeal

et al., 2004a], and the findings in this study support this notion of partnership. When

everyday users are asked to train a machine learning agent, they adjust their training

behavior as the interaction proceeds, reacting to the behavior of the learner.

Informed by related work [Isbell et al., 2001], it is reasonable to expect people would

habituate to the activity and that feedback would decrease over the training session.

However, just the opposite was found: the ratio of rewards to actions over the entire

training session had a mean of .77 and standard deviation of .18. Additionally, there is an

increasing trend in the rewards-to-actions ratio over the first three quarters of training.

Fig. 2-4 shows data for the first three quarters for training, each graph has one bar for

each individual indicating the ratio of rewards to actions. A 1:1 ratio in this case means

that the human teacher gives a reward after every action taken by the agent. By the third

graph more bars are approaching or surpassing a ratio of 1.

One explanation for this increasing trend is a shift in mental model; as people realize

the impact of their feedback they adjusted their reward schedule to fit this model of the

learner. This finds anecdotal support in the interview responses. Many users reported

that at some point they came to the conclusion that their feedback was helping the agent
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Figure 2-5: Each bar represents an individual and the height is the percentage of object rewards.

The difference in the first and last training quarters shows a drop off in usage over time.

learn and they subsequently gave more rewards. Many users described the agent as a

“stage” learner, that it would seem to make large improvements all at once. This is pre-

cisely the behavior one sees with a Q-Learning agent: fairly random exploration initially,

and the results of learning are not seen until the agent restarts after a failure. Without

any particular understanding of the algorithm, participants were quickly able to develop

a reasonable mental model of the agent through the interaction. They were encouraged

by the learning progress, and subsequently gave more rewards.

A second expectation was that people would naturally use goal-oriented and inten-

tional communication (measured by allowing people to specify object specific rewards,

explained in Sec. 2.1.3). The difference between the first and last quarters of training

shows that many people tried the object specific rewards at first but stopped using them

over time. In the interview, many users reported that the object rewards “did not seem to

be working.” Thus, many participants tried the object specific rewards initially, but were

able to detect over time that an object specific reward did not have a different effect on

the learning process than a general reward (which is true), and therefore stopped using

the object rewards.

These are concrete examples of the human trainer’s propensity to learn from the

agent how to best impact the process. This presents a huge opportunity for an interac-

tive learning agent to improve its own learning environment by communicating more in-

ternal state to the human teacher, making the learning process more transparent. Chap-

ter 4 details the use of transparent behavior to improve a learning environment.
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Figure 2-6: Histograms of rewards for each individual in the first quarter of their session. The

left column is negative rewards and the right is positive rewards. Most people even in the first

quarter of training have a much higher bar on the right.

2.3.3 An Asymmetric Use of Rewards

For many people, a large majority of rewards given were positive, the mean percentage

of positive rewards for players was 69.8%. This was thought at first to be due to the agent

improving and exhibiting more correct behavior over time (soliciting more positive re-

wards); however, the data from the first quarter of training shows that well before the

agent is behaving correctly, the majority of participants still show a positive bias. Fig.

2-6 shows reward histograms for each participant’s first quarter of training; the num-

ber of negative rewards on the left and positive rewards on the right, most participants

have a much larger bar on the right. A plausible hypothesis is that people are falling

into a natural teaching interaction with the agent, treating it as a social entity that needs

encouragement. Some people specifically mentioned in the interview that they felt pos-

itive feedback would be better for learning. Chapter 5 is devoted to the investigation of

asymmetric interpretations of human feedback for machine learning systems.
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Chapter 3

Utilizing Social Guidance

The aim of SG-ML is to have a system that learns new tasks in partnership with a human,

in a way that is intuitive for the human teacher. The Sophie’s Kitchen experiment in the

last chapter showed people’s desire to guide and direct the agent in the learning task.

This chapter investigates various forms of social guidance for machine learning systems.

An important research theme that this chapter addresses is the spectrum of guidance

and exploration. As seen in prior works (Sec. 1.3.1) most systems that incorporate a

human teacher into the learning process maintain a constant level of involvement of

the human partner. Several are highly dependent on the human teacher’s guidance,

and will learn nothing without their interaction. Others are almost entirely exploration

based, and barely take advantage of the human partner. An important research question

for SG-ML is how to seamlessly incorporate both guidance and exploration, resulting in

a system that can learn on its own, but also take full advantage of a human partner if

they are there to provide guidance.

The systems in this chapter represent three points along this spectrum. The first

learning system presented is ‘Learning within a Social Dialog’ on the Leonardo robot.

This implementation has many desirable SG-ML qualities that allow it to take advantage

of natural human guidance within a tutorial dialog. This guidance-heavy system is fol-

lowed with the presentation of a highly exploration based learner: the Sophie’s Kitchen

game modified to incorporate human guidance. A second experiment with human sub-

jects allows us to quantify the effects of guidance on a standard exploratory learner. Fi-

nally, the lessons from these two systems are incorporated into a third learning mecha-

nism, ‘Guided Exploration’, implemented on the Leonardo robot.

A second important theme of this chapter is goal-oriented learning. In many prior

works in which a machine learns a new task or skill, there is an assumption that the

goal is somehow defined by the designer, or the goal is to learn a complete world model.

Alternatively, both the Social Dialog and the Guided Exploration implementations do
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Figure 3-1: Leo and his workspace with three button toys.

not make this assumption. Instead, these two approaches let the systems learn new

tasks/goals with a human partner. A goal-oriented approach to learning is a fundamen-

tal capability necessary for social learners. Given that their social partners will act and

interpret action in intentional and goal-oriented ways, an SG-ML system will need to

continually work to refine the concept of what the human partner is meaning to com-

municate, and what the activity is about.

3.1 The Leonardo Robot Platform

The second research platfrom used in this thesis, in addition to Sophie’s Kitchen, is Leonardo

(“Leo”), a humanoid robot with 65 degrees of freedom that has been specifically de-

signed for social interaction using a range of facial and body pose expressions (see Fig-

ure 3-1). Leonardo has been under development in the Robotic Life Group of the MIT

Media Lab since 2002, and is a collaboration with Stan Winston Studios. This section

briefly introduces aspects of the Leonardo architecture necessary to understand the so-

cial learning capabilities. For more specific details on the robotic platform refer to the

following: [Breazeal et al., 2004a, Breazeal et al., 2005a, Gray et al., 2005, Hancher, 2003].

3.1.1 Sensory Inputs

Leo has both speech and vision sensory inputs and relies on gestures and facial ex-

pression for social communication. Leo sees the world through two environmentally

mounted stereo-vision cameras. One stereo camera is mounted behind Leo’s head for

detecting humans within the robot’s interpersonal space (within approximately 4 feet of

the robot) and determining their head pose [Morency et al., 2002]. The second stereo
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camera looks down from above, and detects objects in Leo’s space as well as human

hands pointing to these objects [Brooks and Breazeal, 2006]. Leo can use his eye cam-

eras for fine corrections to look directly at objects or faces and to view them at a higher

resolution.

The speech understanding system is based on the Sphinx system [Lamere et al.,

2003]. The system has a limited grammar to facilitate accuracy of the voice recognition,

and it parses recognized phrases into symbols that are sent to the cognitive system.1

3.1.2 Cognitive Architecture

The cognitive system extends the ❈✺▼ architecture, a recent version of the ❈✹ system

described in [Blumberg et al., 2001]. As a foundation of the learning implementations

presented in this chapter, this section presents a technical description of two compo-

nents of Leo’s cognitive architecture: the Perception System and the Belief System.2 The

Perception System is responsible for extracting perceptual features from raw sensory

information, and the Belief System is responsible for integrating this information into

discrete object representations. The Belief System represents our approach to sensor

fusion, object tracking and persistence.

On every time step, the robot receives a set of sensory observations O = {o1,o2, ...,oM }

from its various sensory processes. As an example, imagine that the robot receives infor-

mation about button toys and their locations from an eye-mounted camera, and infor-

mation about the state of a light on the buttons from an overhead camera. On a particu-

lar time step, the robot might receive the observations O = {(red object at (10,0,0)), (but-

ton object at position (10,0,0)), (green object at (0,0,0)), (button object at (0,0,0)), (blue

object at (-10,0,0)), (button object at (-10,0,0)), (light at (10,0,0)), (light at (-10,0,0))}.

Information is extracted from these observations by the Perception System, which

consists of a set of percepts P = {p1, p2, ..., pK }. Each p ∈ P is a classification function

defined such that

p(o) = (m,c,d)

where m,c ∈ [0,1] are match and confidence values and d is an optional derived feature

value. For each observation oi ∈O, the Perception System produces a percept snapshot

ni = {(p,m,c,d)|p ∈ P, p(oi ) = (m,c,d),m ∗ c > k}

where k ∈ [0,1] is a threshold value, typically 0.5. Returning to our example, the robot

might have four percepts relevant to the buttons and their states: a location percept, a

1The full grammar used with Leonardo can be found in Appendix B
2These technical details are reiterated from [Breazeal et al., 2005b] for the reader’s convenience.
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color percept, a button shape recognition percept, and a button light recognition per-

cept. The Perception System would produce eight percept snapshots corresponding to

the eight sensory observations, containing entries for relevant matching percepts.

These snapshots are then clustered into discrete object representations called beliefs

by the Belief System. This clustering is typically based on the spatial relationships be-

tween the various observations, in conjunction with other metrics of similarity. The Be-

lief System maintains a set of beliefs B , where each belief b ∈ B is a set mapping percepts

to history functions: b = {(p1, y1), (p2, y2), ...}. For each (p, y) ∈ b, y is a history function

defined such that

y(t ) = (m′
t ,c ′t ,d ′

t )

represents the “remembered” evaluation for percept p at time t .

The Belief System manages three key processes: creating new beliefs from incoming

percept snapshots, merging sets of beliefs, and culling stale beliefs. For the merging pro-

cess, the Belief System has a number of relevant distance metrics, including a measure

of Euclidean spatial distance along with a number of metrics based on symbolic feature

similarity (e.g., a symbolic metric might judge observations that are hand-shaped as dis-

tant from observations that are button-shaped, thus separating these observations into

distinct beliefs even if they are collocated). Returning again to our example, the merge

process would produce three beliefs from the original eight sensory observations (merg-

ing by spatial location in this case): a red button in the ON state, a green button in the

OFF state, and a blue button in the ON state.

The work in this thesis builds on these existing processing modules, adding higher-

level cognitive capabilities for representing and learning goal-oriented tasks, motivated

exploratory behavior, and expression and gesture capabilities to support a natural col-

laborative dialog with a human teacher.

3.2 A Socially Guided Learning Dialog

The first guided learning mechanism is an implementation on the Leonardo platform

for social learning within a collaborative dialog with a human teacher. Task and goal

representations are initially learned with the help of the human and continue to be re-

fined in subsequent executions of the task. In the learning scenario the human stands

opposite of Leo in his workspace (pictured in Figure 3-1), and they use speech and ges-

tures to help Leonardo build representations of new tasks/skills based on an initial set

of primitive known actions (pointing, pressing, looking).

The Task Learning Module maintains the collection of known tasks and arbitrates be-

tween task learning and execution, the functionality of this module is illustrated in Fig-
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Figure 3-2: An overview of the states and flow of execution in the Task Learning Module, which

allows Leo to learn from a human partner within a social dialog.

ure 3-2. It continually listens for a task-related request from the human partner. Upon

encountering a task-related request from the human partner (e.g., “Leo, do task x” , “Leo,

can you do task x?”, etc.) the Task Learning Module enters either the learning or the ex-

ecution state, and answers the person (using head nods and shakes) if the request was a

question.

The Task Learning Module maintains a collection of known tasks. If Leo is asked to

do a task that he already knows, then the Task Learning Module executes it by expanding

the task’s action and sub-tasks onto a focus stack (in a similar way to [Grosz and Sidner,

1990]). The Task Learning Module proceeds through the actions on the stack popping

them as they are done or, for a sub-task, pushing its constituent actions onto the stack.

Alternatively, when an unknown task is requested, Leo starts the learning process by

indicating that he does not know, shrugging his shoulders and making a confused facial

expression. The human partner can then offer to teach the task (“I can teach you to X...”).

At this point Leo will confirm with a head nod and the learning process has begun. This

exchange is particularly important since it initiates the learning process and establishes

a mutual belief about the roles of teacher and learner.

Once learning begins, the human walks the robot through the components of the

task, requesting it to perform the necessary steps to reach the goal, building a new task
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from its set of known actions and tasks. While in learning mode, the Task Learning Mod-

ule continually pays attention to what actions the robot is being asked to perform, en-

coding the inferred goals with these actions. In order to encode the goal state of a per-

formed action or task, Leo compares the world state before and after its execution. In

the case that this action or task caused a change of state, this change is taken to be the

st❛t❡✲❝❤❛♥❣❡ goal. Otherwise, the goal is assumed to be of the ❥✉st✲❞♦✲✐t type (i.e.,

the goal is to perform the actions rather than achieve a particular world state). This

produces a hierarchical task representation, where a goal is encoded for each individual

part of the task as well as for the overall task. When the human indicates that the task is

done, it is added to the Task Learning Module’s collection of known tasks.

Learning is handled recursively, such that a sub-task can be learned within a larger

task. If the Task Learning Module receives an additional unknown sub-task request,

while learning a task, the current learning process is pushed onto a stack and an ad-

ditional learning thread is started. Once the sub-task learning is complete, it is popped

from the stack and its resulting task is added both to the previous learning process and to

the Task Learning Module’s list of known tasks. The original learning process continues,

with the newly learned sub-task as part of its task representation.

The following sections give technical details of how tasks and goals are represented,

the learning mechanism, the generalization mechanism, and the execution mechanism.

3.2.1 Task Representation

Humans are biased to use an intention-based psychology to interpret another agent’s

actions [Dennett, 1987]. Moreover, it has been shown repeatedly that, even from a very

young age, we interpret intentions and actions based on goals rather than specific ac-

tivities or motion trajectories [Woodward et al., 2001, Gleissner et al., 2000, Baldwin and

Baird, 2001]. A goal-centric view is particularly crucial in a collaborative task setting, in

which goals provide a common ground for communication and interaction. All of this

suggests that goals and a commitment to their successful completion should be central

to task representation.

Goal Types

To support this idea, we have extended the notion of the ❈✺▼ action-tuple data structure.

An action-tuple is a set of preconditions, executables, and until-conditions [Blumberg

et al., 2001]. Tasks and their constituent actions are variations of this action-tuple struc-

ture with the added notion of goals.

As the robot learns a new task, it must learn the goals associated with each action,
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each sub-task, and the overall task. The system currently distinguishes between two

types of goals: (a) st❛t❡✲❝❤❛♥❣❡ goals that represent a change in the world, and (b)

❥✉st✲❞♦✲✐t goals that need to be executed regardless of their impact on the world.

These two types of goals differ in both their evaluation as preconditions and in their

evaluation as until-conditions. As part of a precondition, a st❛t❡✲❝❤❛♥❣❡ goal must be

evaluated before doing the activity to determine if it is needed. As an until-condition,

the robot shows commitment towards the st❛t❡✲❝❤❛♥❣❡ goal in trying to execute the

action, over multiple attempts if necessary, until succeeding to bring about the desired

state. This commitment to the successful completion of goals is an important aspect of

intentional behavior [Bratman, 1992, Cohen and Levesque, 1991]. A ❥✉st✲❞♦✲✐t goal

on the other hand will lead to an action regardless of the world state, and will only be

performed once.

Hierarchical Tasks & Goals

Tasks are represented in a hierarchical structure of actions and sub-tasks (recursively

defined in the same fashion). Since tasks, sub-tasks, and actions are derived from the

same action-tuple data structure, they are easily used in a unified way, naturally afford-

ing a tree representation for tasks.

When learning a task, a goal is associated with the overall task in addition to each of

the constituent actions. Overall task and sub-task goals are distinct from the mere con-

junction of the goals of their actions and sub-tasks, and are learned separately. For ex-

ample, consider a task with two constituent actions, but where the task goal is not merely

the sum of the constituent goals of these actions. The first action causes a change in the

world (the system therefore associates a st❛t❡✲❝❤❛♥❣❡ goal with it), and the second ac-

tion reverses that change (therefore also having a st❛t❡✲❝❤❛♥❣❡ goal). The overall task

goal, however, does not have a net state change and therefore becomes a ❥✉st✲❞♦✲✐t

goal even though its constituent actions both have st❛t❡✲❝❤❛♥❣❡ goals.

When executing a task, goals as preconditions and until-conditions of actions or sub-

tasks manage the flow of decision making throughout the task execution process. Over-

all task goals are evaluated separately from their constituent action goals to determine

whether they need to be executed, as well as checking for completion of a task.

One advantage of this top-level evaluation approach is that it is more efficient than

having to poll each of the constituent action goals explicitly. Moreover, this goal-oriented

implementation supports a more realistic groundwork for intentional understanding—

i.e., to perform the task in a way that accomplishes the overall intent, rather than just

mechanically going through the motions of performing the constituent actions.

The following specifies the task and goal representation of the Task Learning Module:
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• Let A = {a1, ...., ai } be the set of Leo’s primitive actions. Many actions can be ap-

plied to an object in the world (e.g., ♣♦✐♥t✲❛t✱ r❡❢❡r❡♥t ♦❜❥❡❝t). In this case,

let the object be referred to as the ♦❜❥❡❝t ♦❢ ❛tt❡♥t✐♦♥. For example, ♣r❡ss

❜✉tt♦♥ ✶ and ♣r❡ss ❜✉tt♦♥ ✷ have the same primitive action and different ob-

jects of attention.

• Let Tasks = {T1, ....,T j } be the Task Learning Module’s set of known tasks.

• Each T ∈ Tasks is defined by ({h1, ...,hn},k). A set of hypothesis task represen-

tations, {h1, ...,hn}, and a variable, k ∈ [1,n], indicating the index of the current

primary hypothesis.

• Each h ∈ T is a hypothesis representation of the task T and is defined by (E ,G , f ).

These define the executables of the task, E , the overall goal of the task, G , and the

number of examples seen for this task, f , that are consistent with this hypothesis.

• The set of executables E = {(e1,G1), ..., (em ,Gm)}. Each e ∈ E is either a primitive

action a ∈ A or a subtask T ∈ Tasks, and Gi is the goal of executable ei .

• Goals for actions and tasks consist of a set of goal beliefs about what must hold

true in order to consider this action or task achieved. A goal G = {x1, ..., xy } where

each x ∈G is a goal belief.

• If G is not a ❥✉st✲❞♦✲✐t goal, it contains a goal belief for each object that changed

over the action or task. Recall from Section 3.1.2, that the Belief System maintains

one belief for each object in the world. Goal beliefs are derived from this set of be-

liefs about objects in the world. Rather than containing a single set of percept val-

ues, a goal belief represents a desired change to an object during an action or task

by grouping a belief’s percepts into expectation percepts (indicating an expected

object feature value), and criteria percepts (indicating which beliefs are relevant to

apply this expecation to). Thus, ∀x ∈ G , x = {cr i t ,expt }, where cr i t = {p1, ..., pct }

and expt = {p1, ..., pex}. The sets expt and cr i t are mutually exclusive.

3.2.2 Learning Mechanism

This section provides technical detail of how the Task Learning Module first creates a

new task Tnew ∈ Tasks. Let t indicate time; then, t = 0 is the time that the human

initiates the learning process, and t = end is the time the human indicates the task is

finished.
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Let st be the state of the world at time t (i.e. the state of the Belief System at t , thus

st is a set of belief objects each of which contains the values every percept had at the

particular time t )

From time t = 0...end , the Task Learning Module pays attention to the actions a ∈ A

that the human is requesting the robot to do and infers goals for each action in order to

build the initial task hypothesis h1 ∈ Tnew . When a requested action is completed at a

particular time t = j ∈ [0,end ] (let this action be a j ), then let t = i ∈ [0, j ] be the time that

the most recent action prior to a j was completed, or 0 if a j is the first action of Tnew .

The Task Learning Module creates an executable (e,G) about action a j : e = a j , G is

the set of goal beliefs that represent the state change from si → s j . Then (e,G) is added

to E of h1. The procedure for making a goal state, G , given the two states, si and s j is the

following: Create a goal belief, x, for each belief in si that changed over si → s j : ∀bi ∈ si

find the corresponding3 belief, b j ∈ s j . If there are any percepts differences between bi

and b j then make a goal belief x in the following way: ∀p ∈ bi if b j has the same value

for p then add p to x as a criteria percept (i.e. add p to cr i t ∈ x), otherwise add the b j

value of p to x as an expectation percept (i.e. add p to expt ∈ x). When complete add

x to the the set of goal beliefs, G . At the end of this process, G contains a goal belief for

each object that incurred any change over si → s j .

At time t = end , this same process works to infer the overall goal, G , for Tnew , making

the goal inference from the changes over s0 → send . Now the initial hypothesis h1 con-

tains the set of executables, E , and the goal G for Tnew . The goal inference mechanism

notes all specific changes that occurred over the task; however, there may still be ambi-

guity around which aspects of the state change are the goal (the change to an object, a

class of objects, the whole world state, etc.). To deal with this ambiguity the system ex-

pands a hypothesis space of task representations that are consistent with the seen task.

Then hypothesis testing coupled with human interaction disambiguates the overall task

goal over a few examples.

3.2.3 Hypothesis Expansion and Generalization

Continuing with the example of creating a new task, Tnew , once the human indicates

that the current task is done, then Tnew contains one hypothesis of the seen example

(h1 = (E ,G , f ), where f = 1). The Task Learning Module uses h1 to expand other hy-

potheses about the desired goal state to yield a hypotheses space of all goal representa-

tions consistent with the current demonstration.

3“Corresponding” here refers to the fact that bi and b j are actually snapshots from the same belief
objects in the Belief System. Recall that beliefs are collections of percept histories, thus bi and b j are
different timeslices of the same collections of percept histories.

55



X_CGB

expt: {Y,Z}

crit: {A,B,C,D}

expt: {Y,Z}

crit: {A,B,C}

expt: {Y,Z}

crit: {A,B}

expt: {Y,Z}

crit: {A,B, D}

expt: {Y,Z}

crit: {B,C,D}

expt: {Y,Z}

crit: {A,C}

expt: {Y,Z}

crit: {A,D}

expt: {Y,Z}

crit: {B,C}

expt: {Y,Z}

crit: {B,D}

expt: {Y,Z}

crit: {C,D}

expt: {Y,Z}

crit: {A}

expt: {Y,Z}

crit: {B}

expt: {Y,Z}

crit: {C}

expt: {Y,Z}

crit: {D}

Figure 3-3: The hypothesis space of goal beliefs expanded from the common goal belief xCGB

with two expectation features {Y , Z }, and four criteria features {A,B ,C ,D}.

This is similar to a version space of the goal concepts consistent with the demon-

stration [Buchanan and Mitchell, 1978]. In a version space approach, there is a lattice

of hypotheses consistent with the positive examples ordered from most specific to most

general. Learning happens through a hypothesis elimination process as more examples

of the concept are seen. A primary difference between version spaces learning and the

learning presented here is that Leo does not eliminate a hypothesis from the hypothesis

space until it is used for execution and fails to achieve the task.

To expand the hypothesis space after a demonstration completes, first the system

checks for similarity in the actions performed for this task–i.e. all of the actions e ∈

E are of the same primitive type a ∈ A but just have different objects of attention. If

this is the case, the primitive action a is noted as the generalized task action. Next the

system looks at each of the goal beliefs x ∈ G of Tnew (each of the objects that incurred

some change) and collapses these into a single common goal belief, xCGB , containing

the features common to all. Thus, xCGB = {cr i tCGB ,exptCGB } such that each p ∈ cr i tCGB

is contained in the cr i t of every x ∈G and each p ∈ exptCGB is contained in the expt of

every x ∈G .

If the sets cr i tCGB and exptCGB are not empty, then a number of task hypotheses

are made. In each hypothesis, h, the action is taken to be the generalized task action, a,

and the goal is a generalization of xCGB . The number of hypotheses expanded is depen-

dent on the size of cr i tCGB . Each expanded hypothesis has a single goal belief x, where

expt = exptCGB , and cr i t is some combination of the features in cr i tCGB . For exam-

ple, if cr i tCGB has four features, one hypothesis will be the generalized task action and

a goal belief with all four features (the most specific hypothesis). Another hypothesis

will be the generalized task action and a goal belief with three of the four features, and

so on. This expansion results in a hypothesis space of all task representations that are
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consistent with the current example of the task. This is illustrated in Fig. 3-3.

The current best representation (the primary hypothesis) is chosen with a Bayesian

likelihood method: P (h|D) ∝ P (D|h)P (h). The data, D, is the set of all examples seen

for this task. P (D|h) is the percentage of the examples in which the state change seen in

the example is consistent with the goal representation in h. For priors, P (h), the system

prefers a more specific hypothesis over a more general one (as determined by the num-

ber of goal beliefs, and number of criteria and expectation features in those beliefs).

Thus, when a task is first learned, every hypothesis is equally represented in the data,

and the system chooses the most specific hypothesis for the next execution.

3.2.4 Execution of a Known Task

If Leo is asked to do a task that he already knows, Tknown , he first checks to see if the

goal, G , is complete: ∀x ∈ G , if any belief b ∈ B (of the Belief System) matches all of the

cr i t ∈ x, then b must also match all of the expt ∈ x.

If this does not hold true for any b ∈ B , then the Task Learning Module uses the

primary hypothesis of Tknown to achieve the task. Each of the executables (e,G) ∈ E

is put on a stack. The system executes each ei to achieve the associated Gi . If ei is

a task then its executables are pushed onto the stack. If ei is a generalized task then its

executable is the name of the primitive action, a to be applied to any beliefs not meeting

the goal. For every belief b ∈ B that matches the cr i t ∈ x ∈ G but not the expt ∈ x ∈ G ,

the system puts an action, a with object of attention b, onto the stack.

Leo is persistent about the goals of executables. Occasionally, an action will fail to

have the desired effect and in this case Leo will repeat the executable ei to bring about

Gi before moving on.

The primary hypothesis used for execution has a likelihood (between 0 and 1) rela-

tive to the other hypotheses available. If this likelihood is low ( < .5), Leo expresses tenta-

tiveness (frequently looking between the instructor and an action’s object of attention).

Upon finishing the task, Leo leans forward with his ears perked waiting for feedback.

The teacher can give positive verbal feedback (e.g., “Good”, “Good job”, “Well done”, ...)

and Leo considers the task complete. When the task completes the hypothesis space

is updated: ∀h ∈ Tknown (including the h used for execution) if the actions and state

changes of this most recent demonstration are consistent with h then f = f +1. Thus,

P (D|h) for these hypotheses increases in our Bayesian likelihood calculation, relative to

the hypotheses not consistent with this example. The primary hypothesis remains the

same as it will still be the most specific.

After completing the demonstration, if Leo has not yet achieved the goal, the hu-

man can give negative verbal feedback (e.g., “No”, “Not quite”, ...) and Leo goes back

57



On

On & Off

Press1 Press2

On

On & Off

Press1 Press2

Off

Press1 Press2

On

Press1

"Can you do Buttons On&Off?"

          Leo shakes head no, ready to learn

"First, do Buttons On"

          Looks confused, 

          needs to learn this too

"Press Button 1"

          Presses, sees the state change

          (see Task rep: A)

...same is done for Button 2

"Now, Buttons On is done"

          Confirming nod, sees state change

          Saves subtask to task set

          Continues original task

          (see Task rep: B)

....same is done for Buttons Off subtask

"Leo, Buttons On&Off is done!"

          Gives confirming head nod

          Notices no state change for task

          Goal = just-do-it

          (see Task rep: C)

          

Action: Press Button 1

Goal: expt{On}

          crit{Obj,Button,

          name=1,loc...}

Learning Dialog Progressive Task Representation

Task: ButtonsOn

Actions: Press B1, 

              Press B2

Goal: for B1 and B2

         expt{On}

          crit{Obj,Button,

          name=,loc=...}

Task: ButtonsOn&Off

Actions: ButtonsOn, 

               ButtonsOff

Goal: just-do-it

A

B

C

Figure 3-4: Learning to turn two buttons ON and OFF, and the progressive task and goal repre-

sentation. Initially there are two buttons in front of Leo, Button1 and Button2, and they are both

in the OFF state.

into learning mode and expects the teacher to lead him through the completion of the

task. In this refinement stage, a new hypothesis hnew is created. This hnew contains

the executables of the primary hypothesis which Leo completed on his own, and addi-

tional executables that are added as the human requests refinement actions. The goal of

hnew is inferred once the human indicates the task is complete. A space of hypotheses

consistent with this refined example is expanded, as described in the previous section.

For each of these, if it already exists in Tknown then it’s f is incremented, otherwise it is

added (with f = 1). Again, the primary hypothesis of Tknown is chosen with the Bayesian

likelihood method.

3.2.5 Example Learning Results

In the test scenario, there are various buttons of different colors in front of Leonardo.

The buttons can be pressed ON or OFF (switching an LED on or off). The robot is able

to learn several tasks in this scenario of both simple and complex hierarchies, and has

tasks with both st❛t❡✲❝❤❛♥❣❡ and ❥✉st✲❞♦✲✐t goals (e.g. turning a set of buttons ON

or OFF, and turning a button ON and OFF as a separate task or as a sub-task of a larger

sequence). The robot is able to recall tasks learned as sub-tasks of larger tasks as well as

correctly associate st❛t❡✲❝❤❛♥❣❡ goals and ❥✉st✲❞♦✲✐t goals.
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Figure 3-5: Four trials of an interaction in which a human (H) teaches Leo (L) to “Turn the but-

tons ON.” From left to right the buttons are red, green, and blue. An ON button is indicated with

a star, OFF does not have the star.

As one example, Figure 3-4 shows how the task and goal representation develops

throughout an interaction with the human partner as they teach Leo to turn two buttons

ON and then OFF. This task has both st❛t❡✲❝❤❛♥❣❡ and ❥✉st✲❞♦✲✐t goals, and the

subtasks are learned within the larger task. Initially the human in is front of Leonardo

and there are two buttons (labeled Button 1 and Button 2), both are in the OFF state.

The human asks Leo to “Do Buttons On & Off,” to which Leo shrugs to indicate he does

not know and they do the “I can teach you” exchange. Then Leo is in learning mode, and

the human asks him to “Do Buttons On.” Again Leo does not know, shrugs, and begins

to learn this subtask. The human asks Leo to “Press Button 1.” Doing so, Leo infers the

st❛t❡✲❝❤❛♥❣❡ goal for this action. The same happens for “Press Button 2,” and then

the human says “Now Buttons On is done.” This causes Leo to: 1) infer a goal (with two

goal beliefs) of the entire Buttons On task; 2) add Buttons On to Tasks; and 3) return

to learning Buttons On&Off adding Buttons On as an executable. The Buttons Off sub-

task is learned in a similar fashion, and finally the human says, “Leo, Buttons On&Off is

done!” When Leo infers a goal for the entire task, he sees that there is no state change

and considers it a ❥✉st✲❞♦✲✐t goal.

As a second example, Figure 3-5 shows a transcript from a session in which a human
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teaches Leo to “Turn the buttons ON.” The initial trial starts with two buttons visible

and the green button already on. The human asks Leo to press the red button to make

both buttons ON. This produced four hypotheses about the actual task representation,

and the most specific is chosen for the next execution of “Turn the buttons ON.” In the

second trial, the teacher structures the task (starting with both buttons OFF) to resolve

an ambiguity from the previous example, giving Leo another key example of “Turn the

buttons ON.” Following this example, three hypotheses explain the two examples seen

thus far, and the most specific is to “press any button.” Therefore, Leo exhibits the cor-

rect behavior in trial 3. In trial 4 the teacher tests Leo’s understanding of the overall goal,

and Leo shows commitment to the “any button ON” goal. This is an example in a low

dimensional feature space with relatively few ambiguities to resolve, but nevertheless

demonstrates the advantage of the social dialog paradigm. The human and the robot

participate in a tightly coupled interaction in which the human teacher structures the

learning process, based on feedback from the robot, such that the robot quickly acquires

the examples needed to generalize to the correct goal-oriented task representation.

3.3 Using Guidance in Sophie’s Kitchen

Having explored the guidance end of the spectrum, Sophie’s Kitchen allows for the inves-

tigation of the exploration side of the spectrum. The original version of Sophie’s Kitchen,

used in Chapter 2, is the extreme of the exploration dimension, allowing for only a lim-

ited interaction with a human teacher. The second mechanism of this chapter is a mod-

ification of the Sophie’s Kitchen game to incorporate more explicit guidance from a hu-

man partner.

3.3.1 Modifications to Leverage Human Guidance

The findings in Chapter 2 suggest that people want to speak directly to the action selec-

tion part of the algorithm to influence and guide the exploration strategy. To distinguish

this intention from feedback, a guidance channel of communication was added. Click-

ing the right mouse button draws an outline of a yellow square. When the yellow square

is administered on top of an object, this communicates a guidance message to the learn-

ing agent and the content of the message is the object. Figure 3-6(b) shows the player

guiding Sophie to pay attention to the bowl. Note, the left mouse button still allows

the player to give feedback as described in Section 2.1.3, but there are no longer object

rewards.

Conceptually, the modifications to incorporate guidance give the algorithm a pre-
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(a) (b)

Figure 3-6: The embellished communication channel includes the feedback messages as well as

guidance messages. In 3-6(a), feedback is given by left-clicking and dragging the mouse up to

make a green box (positive) and down for red (negative). In 3-6(b), guidance is given by right-

clicking on an object of attention, selecting it with the yellow square.

Algorithm 2 Interactive Q-Learning modified to incorporate interactive human guid-
ance in addition to feedback.

1: while learning do

2: while waiting for guidance do

3: if receive human guidance message then

4: g = g ui de-ob j ect
5: end if

6: end while

7: if received guidance then

8: a = random selection of actions containing g
9: else

10: a = random selection weighted by Q[s, a] values
11: end if

12: execute a, and transition to s′

(small delay to allow for human reward)
13: sense reward, r
14: update Q-value:

Q[s, a] ←Q[s, a]+α(r +γ(maxa′Q[s′, a′])−Q[s, a])

15: end while
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action and post-action phase. In the pre-action phase the agent registers guidance com-

munication to bias action selection, and in the post-action phase the agent uses the re-

ward channel in the standard way to evaluate that action and update the Q-value. The

modified learning process is shown in Algorithm 2.

The agent begins each iteration of the learning loop by pausing to allow the teacher

time to administer guidance (1.5 seconds). The agent saves the object of the human’s

guidance messages as g . During the action selection step, the default behavior chooses

randomly between the set of actions with the highest Q-values, within a bound β. How-

ever, if any guidance messages were received, the agent will instead choose randomly

between the set of actions that have to do with the object g . In this way the human’s

guidance messages bias the action selection mechanism, narrowing the set of actions

the agent considers.

3.3.2 Evaluation

Expert Data

To evaluate the potential effects of guidance, a single expert4 completed a series of train-

ing sessions, in two conditions:

1. ◆♦ ❣✉✐❞❛♥❝❡: has feedback only and the trainer gives one positive or negative

reward after every action.

2. ●✉✐❞❛♥❝❡: has both guidance and feedback available; the trainer uses the same

feedback behavior and also guides to the desired object at every opportunity.

One user followed the above expert protocol for 10 training sessions in each condition

(results in Table 3.1). For the user’s benefit, the task was limited for this testing (e.g.,

taking out the spoon/stirring step, among other things).

The ❣✉✐❞❛♥❝❡ condition is faster: The number of training trials needed to learn the

task was significantly less, 30%; as was the number actions needed to learn the task, 39%

less. In the ❣✉✐❞❛♥❝❡ condition the number of unique states visited was significantly

less, 40%; thus the task was learned more efficiently. And finally the ❣✉✐❞❛♥❝❡ condition

provided a more successful training experience. The number of trials ending in failure

was 48% less, and the number of failed trials before the first successful trial was 45% less.

Non-Expert Data

Prior works have pointed out how supervision or guidance might benefit a machine

learner [Clouse and Utgoff, 1992, Smart and Kaelbling, 2002], and the expert experi-

4the author

62



Table 3.1: An expert user trained 20 agents, with and without guidance, following a strict best-

case protocol in each condition; this yields theoretical best-case effects of guidance on learning

performance. (F = failed trials, G = first success). The following are the results of 1-tailed t-tests.

Measure Mean Mean chg t(18) p

no guide guide

# trials 6.4 4.5 30% 2.48 .01

# actions 151.5 92.6 39% 4.9 <.01

# F 4.4 2.3 48% 2.65 <.01

# F before G 4.2 2.3 45% 2.37 .01

# states 43.5 25.9 40% 6.27 <.01

ment verifies that guidance has the potential to drastically improve several metrics of

the agent’s learning performance. However, the primary interest and contribution of

this work is the focus on ordinary human teachers. Thus, the final evaluation looks at

how the agent performs when ordinary human trainers are able to provide guidance and

attention direction.

Additional people were solicited to play the Sophie’s Kitchen game using both feed-

back and guidance messages. The following instructions about the guidance messages

were added to the instructions from the previous experiment (and mentions of object

specific rewards were removed):56

You can direct Sophie’s attention to particular objects with guidance mes-

sages. Click the right mouse button to make a yellow square, and use it to

help guide Sophie to objects, as in “Pay attention to this!”

The game logs of these players (the ❣✉✐❞❛♥❝❡ condition) are compared to a second

group who played with feedback only, without the guidance signal (the ♥♦ ❣✉✐❞❛♥❝❡

condition). This comparison is summarized in Table 3.2.

●✉✐❞❛♥❝❡ players were faster than ♥♦ ❣✉✐❞❛♥❝❡ players. The number of training

trials needed to learn the task was 48.8% less, and the number actions needed was 54.9%

less. Thus, the human teachers were able to guide the agent’s attention to appropriate

objects at appropriate times to create a significantly faster learning interaction.

The ❣✉✐❞❛♥❝❡ condition provided a significantly more successful training experi-

ence. The number of trials ending in failure was 37.5% less, and the number of failed

trials before the first successful trial was 41.2% less. A more successful training experi-

ence is particularly desirable when the learning agent is a robot that may not be able

5The full protocol, instructions and consent form used in the study can be found in Appendix A.
6We had both male and female participants, but did not keep gender statistics of the population.
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Table 3.2: Non-expert human players trained Sophie with and without guidance communica-

tion available and also show positive effects of guidance on the learning performance. (F = failed

trials, G = first success). The following are the results of 1-tailed t-tests.

Measure Mean Mean chg t(26) p

no guide guide

# trials 28.52 14.6 49% 2.68 <.01

# actions 816.44 368 55% 2.91 <.01

# F 18.89 11.8 38% 2.61 <.01

# F before G 18.7 11 41% 2.82 <.01

# states 124.44 62.7 50% 5.64 <.001

% good states 60.3 72.4 -5.02 <.001

to withstand very many failure conditions. Additionally, a successful interaction, espe-

cially reaching the first successful attempt sooner, may help the human teacher feel that

progress is being made and prolong their engagement in the process.

Finally, agents in the ❣✉✐❞❛♥❝❡ condition learned the task by visiting a significantly

smaller number of unique states, 49.6% less than the ♥♦ ❣✉✐❞❛♥❝❡ condition. Moreover,

we analyze the percentage of time spent in a good portion of the state space, defined as

Good = {every unique state in X }, where X = {all non-cyclic state sequences, {s0, ..., sn},

such that n ≤ 1.25(mi n_sequence_leng th), and sn = a goal state}. The average per-

centage of time that ❣✉✐❞❛♥❝❡ players spent in Good was 72.4%, and is significantly

higher than the 60.3% average of ♥♦ ❣✉✐❞❛♥❝❡ players. Thus, attention direction helps

the human teacher keep the exploration of the agent within a smaller and more positive

(useful) portion of the state space. This is a particularly important result since that the

ability to deal with large state spaces has long been a criticism of RL. A human partner

may help the algorithm overcome this challenge.

3.4 Socially Guided Exploration

Leonardo’s ability to learn within a social dialog exhibits several qualities that are desir-

able for a SG-ML system.

• Learning happens within a tightly coupled interaction, where the robot’s demon-

strations of the hypothesized task representations are able to help the instructor

pick the seminal examples still needed.

• Nonverbal social cues frame the interaction, establishing mutual beliefs about the

state of the task and the state of the robot’s attention.
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• Learning is goal-oriented and assumes that the human partner is communicating

in goal-oriented ways.

• Leonardo incorporates feedback from the human partner to quickly refine the rep-

resentation of a task goal.

The Social Dialog system is positioned on the guidance end of the guidance-exploration

spectrum. On the opposite end of the spectrum, Sophie’s self-exploration also exhibits

several desirable qualities for a SG-ML system.

• Often a teacher gives a learner general guidance while the learner explores the

space of a task. (e.g., Imagine teaching someone to ride a bicycle, it is easier to

give high level feedback rather than precise instructions about the movement.)

One benefit of an exploratory learner is that the teacher need not know exactly

what the learner needs to do to complete the task.

• Any realistic learning scenario for an SG-ML system will require that it be able

to learn and explore on its own when a human teacher is not available. Thus a

second benefit of self-exploration is that it does not require the human’s presence

or undivided attention in order for learning to take place.

Having experimented at both ends of the guidance-exploration spectrum, it becomes

clear that a social learner cannot simply occupy a single point on this scale, they must

have both capabilities. An ideal SG-ML system is able to learn on its own through ex-

ploration, but also seamlessly incorporate the guidance of a human partner. The final

learning mechanism implemented on the Leonardo platform, Guided Exploration, is

motivated to learn and explore the environment but also has the ability to take advan-

tage of social structure provided by a human teacher.

3.4.1 Foundations for Self-Motivated Exploration

In creating a Guided Exploration learning mechanism for Leonardo, the first step is self-

motivated behavior and exploration. Note that previous versions of the Leonardo be-

havior system have not been proactive. For instance, in the Social Dialog learning sce-

nario, the robot continually awaits instruction from the human partner.

Recently there have been a few related works in the realm of internal motivations

for a reinforcement learner. Intelligent adaptive curiosity is an approach that uses a

progress drive, where learning progress is defined as the error in the prediction model,

P (st+1|st , a) [Oudeyer and Kaplan, 2004]. In essence, the agent is ‘motivated’ to learn
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the world completely as the reward signal is defined by the agent’s world knowledge. In-

trinsically motivated reinforcement learning uses intrinsic motivation in combination

with extrinsic environmental rewards. In this case, intrinsic reward is proportional to

the novelty of a state transition: (1−P (st+1|st )) [Singh et al., 2005]. New ‘skills’ or op-

tions are learned via Q-learning whereby the reward is the combination of the intrinsic

reward and any extrinsic reward from the environment. Thus, a novel state change ini-

tially increases the reward received after that state change and this diminishes over time

until the reward is only the extrinsic reward from the environment. [Ahn and Picard,

2006] have some recent initial work on using emotional models as intrinsic drives for

a reinforcement learner. In their implementation, one emotion circuit for ‘wanting’ is

used as intrinsic reward in addition to extrinsic environmental rewards.

The primary difference in the approach here is that Leonardo’s motivational drives

are not directly influencing the reward signal or value function. In prior works, the in-

ternal motivation (particularly some measure of certainty) contributes to the reward

signal and thus influences the value function. Thus an action that leads to novelty is

positively reinforced to encourage more focus on that portion of the state-action space.

In Leonardo, on the other hand, the motivational drives trigger different learning be-

haviors, but do not contribute to the reward signal used to learn a particular task. For

instance, a similar measure of novelty is used as a motivational drive, but rather than

directly influencing the value of the state action pair that caused it, the drive triggers the

creation of an option to learn more about that state change and how to bring it about.

This section describes several aspects of the internal motivations implemented to

create Leo’s self-motivated exploration behavior, and Section 3.4.3 explains how these

influence Leo’s behavior to create learning opportunities. Sections 3.4.4, 3.4.5 and 3.4.6

detail how the system takes advantage of these in an options learning framework.

Short Term Memory

The system maintains an event history of actions and states. Recall from Section 3.2.2

that, st is a set of belief objects that contain the values that every percept had at the

particular time t . Leo saves the past 100 events a ∈ A and st . A new st is added to the

event list at times when something about the state has changed. The Short Term Mem-

ory structure also builds a transition model, P (s2|a, s1), keeping track of the probability

that action, a, in state s1, will lead to state s2.
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Figure 3-7: Each of Leo’s movitational drives has an initial value and a specified range. Within

this range it has a set point (the value that it drifts towards).

Motivation System

In living systems, there are certain critical features that must be kept within a bounded

range (e.g., amount of food, water, temperature, ...). The process of behavioral responses

to maintain acceptable values of these critical parameters is known as homeostatic reg-

ulation or behavioral homeostasis [Plutchik, 1984]. If the parameter falls out of the de-

sired range, the animal will become motivated to behave in a way that brings the pa-

rameter back into the desired range. In a simplified view these critical parameters can

be thought to encode the innate needs of the system.

Leonardo’s Motivation System defines its needs and how it will act to satisfy those

needs (this is based on the Motivation System of the Kismet robot [Breazeal, 2002]). In

this case, Leonardo’s motivations are designed to guide behavior in a learning mecha-

nism. Inspired by natural learning systems that are driven to learn new things, Leonardo’s

Motivation System implements three motivational drives meant to produce a learning

behavior that a human partner may find natural and understandable.

Drives are implemented as variables which have an initial value and a specified range.

Within this range they have a set point (the value that they drift towards), and a drift

magnitude (the maximum value they can drift in one clock cycle). All of the motiva-

tional drives have a range [0,1], initial value of 0.5, set point of 0.0, and a drift magnitude

of 0.001 (Fig. 3-7). Each clock cycle the Motivation System updates the following drives

based on perceptions of internal and external state: Mastery, Novelty, and Activity.

The Activity Drive is meant to reflect the current level of activity. Each cycle that Leo

is performing any action, the activity drive drifts toward its maximum value, 1.0; at any

other time the drive drifts back toward its set point, 0.

The Novelty Drive is meant to reflect a measure of how novel recent events have

been. Each cycle the Motivation System gets the time of the last state change and the

degree of the last change, dchg , from Short Term Memory. The degree of a state change

is related to the number of times this state change has been seen by the system:

dchg (s1, s2) =
1

2× f r equenc y(s1, s2)
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Figure 3-8: Leonardo’s Action System has several Actions and Action Groups that compete for

control of the behavior at any given time. For the purpose of this thesis the primary focus is the

Task Learning Action Group. This group becomes relevant (triggers) in several learning contexts

and utilizes various specific actions in these contexts, described in Sec. 3.4.3

Each state change causes the novelty drive to drift towards its maximum value, 1.0, for a

period of time, tnov ; the maximum effect on novelty, tmax , is 30 seconds.

tnov = dchg (s1, s2)tmax

The Mastery Drive is a measure of the level of confidence the system has in the cur-

rent state. Each cycle this is calculated based on the task set in the Learning Action

Group. Mastery is taken as the average confidence of the T ∈ Tasks relevant in the cur-

rent state, s. Thus if no tasks are relevant the current level of mastery is 0. A particular

task, T , is relevant if it can be initiated from s. Each task representation has a confidence

measure: a ratio of the number of successful attempts to the total number of attempts

made at this task.

3.4.2 Action System Overview

Leonardo’s Action System has several Actions and Action Groups that compete for the

control of behavior at any given time. For more implementation details and perspective

of the overall behavior system architecture see [Blumberg et al., 2002]. The implementa-

tion details of Leo’s Guided Exploration concern mainly the Action System, represented

in Figure 3-8. For the purpose of this thesis the primary focus is the Task Learning Action

Group. This section describes the constructs necessary to understand these details.
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In the ❈✺▼ architecture, a creature has a single Action System that has a set of all the

Actions available to the creature. Each ❛❝t✐♦♥ in the Action System is represented in

the form [tr i g , act ,unti l ]: act =the action itself, tr i g =the triggering environmental

context for this action, unti l =the context in which the action should terminate once it

is running. The representation is hierarchical such that an action, act , can be a single

behavior or it can be a group of actions. An Action Group triggers in the same way as

a primitive action, and upon activation it has some means of determining which of its

sub-actions should become active. Thus, the Action System continually activates and

deactivates its various Actions (which may be Action Groups). In a particular time step,

if the active action has completed, the system chooses probabilistically between all of

the actions for which their triggering context is true in the current state.

Most of the SG-ML learning behavior is brought about in the Main Action Group.

This is a group in which the sub-actions are mutually exclusive, and each cycle of exe-

cution, the current action to run is selected probabilistically weighted by their relative

values. The Main group has two sub-actions (both of which are Action Groups), the Task

Learning Action Group and the Self Motivated Action Group. In this implementation,

learning is given an order of magnitude more value than random self-motivated action.

There are two Action Groups in addition to the Main Action Group. The Commu-

nicative Acts Action Group contains action tuples related to human-directed action. For

each primitive action Leo is able to do, ∀a ∈ A, the Communicative Acts group contains

a tuple whose trigger is the speech parse requesting the action, possibly with an object of

attention indicated as well, and whose action is a. For example, the speech “Leo, Press

Button 1”, triggers the action a = pr ess[But ton1]. This Communicative Acts group is

implemented as a separate Action Group to ensure that the human partner’s requests

will be dealt with promptly, rather than arbitrated alongside self-directed action. Thus,

when a human is present Leo is very responsive and attentive to their direct commands

(e.g., “Leo, do X”). As described below, the Task Learning Action Group also allows for a

more subtle action suggestion from the human partner which does not cause an inter-

rupt in the same way as a commanded action. The Perceptual Routines Action Group

contains actions related to low-level maintenance of perception. For instance, it has

actions that activate to track the human partner and their pointing gestures.

3.4.3 Task Learning Action Group

The focus of this section is on the Task Learning Action Group box of Figure 3-8. Socially

guided exploratory learning is implemented as a behavior group that responds to vari-

ous contexts of Leo’s internal (motivational) and external (social) world with a series of

learning behaviors.
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For continuity, the notation from Section 3.2 will be used here where possible: A is

Leo’s primitive actions, G = {x1, ..., xy } is a goal representation where each x ∈G is a goal

belief, and st is a set of belief objects that contain the values that every percept had at the

particular time t . Let Tasks = {T1...T j } continue to be the set of known tasks; however,

the representation of each T ∈ Tasks for Guided Exploration is significantly different

and will be detailed in Section 3.4.4.

Learning Contexts

Learning actions become active for various reasons, the following nine contexts will trig-

ger the Task Learning Action Group. Many of the triggering contexts are threshold values

of one of the motivational drives, in these cases the exact choice of the threshold value

was determined empirically as a value that works well in practice to represent “Low” or

“High” for the drive.

1. Novelty High: The Novelty drive is ≥ 0.95.

2. Novelty Low: The Novelty drive is ≤ 0.1.

3. Novelty Positive Change: This context is active any time the Novelty drive makes

a positive change with at least a 0.1 magnitude, it remains active until there is a

negative change.

4. Novelty Negative Change: Similar to the above context, this is active any time the

Novelty drive makes a negative change with at least 0.25 magnitude and is active

until there is positive change.

5. Activity Low: The Activity drive is ≤ 0.2.

6. Mastery High: The Mastery drive is ≥ 0.5.

7. Learn Now: This context is active when the speech recognition system parses one

of several utterances that corresponds to the human labeling a state change. For

example, “Look Leo, it’s ❚❛s❦◆❛♠❡✲❳.”

8. Suggest Action: This context is active when the speech recognition system parses

one of several utterances that corresponds to the human making a suggestion for

an action Leo should do. For example, “Leo, try to ❆❝t✐♦♥✲❳ the ❖❜❥❡❝t✲❨.”

9. Task Relevant: The final learning context is when a T ∈ Tasks is relevant in the

current state. The Task Learning Group continually keeps track of how long each

of the tasks T ∈ Tasks has been relevant using a set C : ∀c ∈ C ,ci = the number

of time steps Ti has been relevant; ci is reset to 0 in the time step that Ti is no

longer relevant. The overall relevance measure, R, for any particular time step is

the maximum ci in C . The Task Relevant context becomes active when R ≥ .75,

thus when any task has been relevant for a few seconds.
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Figure 3-9: The Task Learning Action Group has three competing actions, this figure shows the

nine learning contexts in which each action is available.

Learning Actions

The Task Learning Action Group can become active due to any of the nine contexts.

Upon activation, the group activates a specific sub-action based on the triggering con-

text. Note that the learning contexts are not mutually exclusive, several are often relevant

at once. In this case, the Task Learning Action Group chooses probabilistically between

the learning actions that it could activate, this choice is weighted by each action’s in-

herent value. Figure 3-9 illustrates the actions and their associated trigger contexts; and

Figure 3-10 illustrates the logic of each learning action.

Novelty action — If the triggering context is Novelty High, Novelty Positive Change,

or Learn Now, the Novelty action may be activated. This action has the highest inherent

value. This action first gets the most recent state transition (s1, a, s2) from the Short Term

Memory. Then it makes a goal representation of the change s1 → s2. If this goal is not

currently represented by any T ∈ Tasks then a Tnew is created for this goal. If a human

partner named the task, it is labeled with that name. Then Tnew is incorporated into

Tasks. Details of the goal representation, task creation, generalization, and expansion

processes are found in Sections 3.4.4 and 3.4.5.

Relevance action — If the triggering context is Task Relevant, the Relevance action

may be activated. This action has the lowest inherent value. This action selects ran-

domly from the set of tasks that are currently relevant, and activates this task. Once

active, the task takes over execution and selects actions to reach the goal, this process is

detailed in Section 3.4.4. Once the task finishes, control is passed back to this Relevance

action. It registers whether or not the task was successful, notes this in the task repre-

sentation, and requests a happy or sad facial expression to correspond to the success or

failure of this attempt.

Explore action — If the triggering context is Novelty Low, Novelty Negative Change,

Activity Low, Mastery High, or Suggest Action, the Explore action may be activated. This
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Figure 3-10: The logic executed when each of the three learning actions is triggered.

action has the second highest inherent value. When the explore action is activated, it

first checks to see if there was any human-suggested action. If there was, and it is able

to do this action, it will. Otherwise, the Explore action will select from the actions it can

do in the current state, with a minimum frequency requirement of two. Once the action

is completed, if this was a human-suggested action the robot’s attention is influenced to

try to look up to the human. This acknowledges the suggested action and provides an

opportunity for feedback. Whether or not the action was suggested, if after the action

the human gave negative feedback, the robot will try to reverse the action. This strategy

is discussed further in Chapter 5.

3.4.4 Task Representation

In the same spirit of the Social Dialog learning implementation, this work aims to have

a system learn the goal or concept of an object-oriented activity. A goal is a particular

state or state change, where a state is a particular time slice of the Belief System. The

task or activity representation for Guided Exploration is significantly different than that

described in Section 3.2.1 and includes a representation of the goal as well as multiple

(context-dependent) ways to achieve this goal.

Csibra’s theory of human action serves as inspiration for Leonardo’s activity repre-

sentation, and is consistent with the existing action constructs of the ❈✺▼ architecture.

In the theory, activity has the representation [context ][acti on][g oal ], and a series of

experiments with infants finds that they have efficiency expectations with respect to

each of these three [Csibra, 2003]. For instance, given a goal and a context infants expect

the most efficient action to be used (and are surprised when it is not); the experiments

show the ability to infer goal and context in a similar fashion. In one experiment, 9-12

month old infants were repeatedly shown animations of a ball jumping over an obstacle
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to reach and contact a second ball. In this case the jumping action is instrumental to

the goal (contacting the second ball). After habituating to this animation the infants are

shown the test configuration where the obstacle is gone. In one test condition infants are

shown an animation where the approaching ball does the same jumping action to reach

the other ball, and in the second test condition the approaching ball makes the more ef-

ficient straight-line approach to the other ball. Using looking time as a measure of bro-

ken expectations, Csibra found that infants were using a goal-oriented interpretation.

Despite habituating to the jumping action, in the test configuration infants preferred

the new instrumental straight-line action to the now unnecessary jumping action.

This type of representation is desirable for an SG-ML system because it leads to a

reasonable generalization of activity across contexts. For instance, if the system is always

trying to build a better model of the context component of an activity representation,

this will lead to the ability to say, “this looks like the ki nd−o f −si tuati on where I do X ”

or abstracted even further “I feel like doing X .” Additionally, this representation implies

the flexibility to learn multiple ways to accomplish the same goal.

Leonardo’s task representation described in Section 3.2.1 already fulfills several as-

pects of this activity representation. The contexts, actions, and goals of hierarchical

tasks are learned and refined over a few examples. However, the system can only repre-

sent one way of achieving each task-goal, and learning was a particular activity rather

than a part of all activity. The Guided Exploration version of learning changes a few key

aspects of task representation to accommodate the scenario of ‘learning all the time’.

• The human partner is no longer providing distinct start and stop points for the

representation task, the robot decides that a particular state change is interesting

and creates a task representation to learn how to bring this state about (Sec. 3.4.5).

• Once a task representation is created, all of the robot’s actions can be learning

opportunities. Even when a particular task is not actively being explored any ex-

perience can update the policy of this task as if it were the current goal (Sec. 3.4.5).

• The action representation portion of the task is a policy of action, which assumes

there may be multiple ways to achieve a goal depending on the state of the world.

The system uses Task Option Policies for this more flexible task representation. This

name is chosen to reflect the similarities to the Options framework in the Reinforcement

Learning literature [Sutton et al., 1999]. Options are made up of three constructs (I ,π,β),

where S is the state space and A is the action space:

• π : S × A → [0,1]; A policy estimating a value for (s, a) pairs.

• β : S+ → [0,1], where S+ ⊂ S; is all the states in which this option terminates.

• I ⊆ S; is all the states in which this option can initiate.
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An option can be taken from any state in I , then actions are selected according to π untill

the option terminates stochastically according to β.

A Task Option Policy, T ∈ Tasks, is defined by very similar constructs (I ′,π′,β′). Let

St ask ⊂ S be the subset of states in which the task is relevant but not yet achieved, and

Sg oal ⊂ S be the subset of states in which the task goal is achieved.

• π′ : St ask × A → [0,1]; estimates a value for (s, a) pairs for achieving the task goal.

• β′ : Sg oal ; represents all of the states in which this task terminates because the task

goal, G , is true.

• I ′ = St ask . The task can be initiated in all of the states relevant to the task, for which

the task has a policy of action.

Thus, a task, T , can be taken (i.e., the Task Relevant learning context is true) when the

current state is one of the states St ask , then actions are chosen according to π′ until the

current state is one in Sg oal in which G ∈ T is true (with some probability of terminating

before G is true. i.e., giving up). Recall from Sect. 3.2.4 that goal completion is tested by

the following: ∀x ∈G , if any belief b ∈ B (of the Belief System) matches all of the cr i t ∈ x,

then b must also match all of the expt ∈ x.

Having defined the Task Option Policy representation, the following two sections de-

tail how Leonardo learns a new Task Option Policy by creating a new goal G and expand-

ing and generalizing the set St ask , goal G , and policy π′ over time.

3.4.5 Learning Task Option Policies

When the Novelty Action is activated, a potential goal state G is made from the most

recent state change, (s1, a, s2). The procedure for making a goal state, G , given two states,

s1 and s2 is the same as described in Section 3.2.2. If there is not currently a T ∈ Tasks

with the goal G then a new Task Option Policy, Tnew , is created with the goal state G .

The set St ask of Tnew is initialized with the single initiation state s1, and the action

policy π′ is initialized with default values q = .1 for all actions from s1. Then the system

takes into account the experience of (s1, a, s2), and the pair (s1, a) is given a higher value

since s2 represents the goal state. The experience and update process is described below.

Having created Tnew , the system adds it to Tasks. When it is incorporated into the set it

is linked or connected to other related tasks:

• If there is a task Ti ∈ Tasks that has s2 in its initiation set St asks then expand the

policy of Tnew by adding the St ask and π′ of Ti to the St ask and π′ of Tnew .

• Additionally if there is a task Ti ∈ Tasks for which its goal Gi is true for s1, then

add the state action pair (s1, a) of Tnew to the policy of Ti .
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Algorithm 3 With each experience (s1, a → s2), every task has the opportunity to learn,
with the possibility of both extending and updating its policy.

1: for each T in Tasks do

2: G = the goal of T
3: St ask = the initiation set of T
4: if (s1 not in St ask ) AND (G not true in s1) AND

((G true in s2) OR (s2 is in St ask )) then

5: Extend: add s1 to St ask

6: end if

7: if (s1 is in St ask ) then

8: Update the value of [s1, a] in π′:
9: r=0

10: if (G is true in s2) then

11: r=1
12: end if

13: Q[s1, a] ←Q[s1, a]+α(r +γ(maxa′Q[s2, a′])−Q[s1, a])
14: end if

15: end for

Each T ∈ Tasks has the opportunity to learn and expand from every experience (this

is also referred to as off-policy or intra-option learning [Sutton et al., 1998]). Each action

the robot takes is an experience, (s1, a, s2). In the case where an action does not have an

effect, s1 = s2. Each T ∈ Tasks is given the opportunity to extend its set St ask and update

its policy π′ based on this experience (also shown in Algorithm 3):

• Extend: ∀Ti ∈ Tasks, if s1 ∋ St ask of Ti and Gi is not true for s1, then include s1 in

the St ask of Ti if and only if Gi is true for s2 or s2 ∈ St ask of Ti .

• Update: ∀Ti ∈ Tasks, if s1 ∈ St ask then update the value of (s1, a) in the π′ of Ti :

Q[s1, a] =Q[s1, a]+α(r +γmaxa(Q[s2, a])−Q[s1, a]), where r = 1 if and only if goal

Gi of Ti is true in s2, otherwise r = 0.

Any Task Option Policy, T , is considered relevant if the current state s is in the St ask

of T . Relevance is the only precondition for activating a task. When T is activated it se-

lects actions based on its policy, π′, selecting the action a that has the highest value from

state s. When the goal state is reached, T deactivates, and there is a 10% probability of

deactivating after each action that does not end in the goal state. It is important to have

some probability of ending the task before it completes, to insure that the agent does not

forever attempt a task goal that is perhaps no longer able to be achieved. This 10% prob-

ability of “giving up” is arbitrarily chosen and remains constant. In future work it would

be interesting to have this probability be dynamic and based on internal motivational

states.
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Upon deactivation, T updates its confidence measure based on whether or not the

attempt was successful. Confidence is simply how many times this task has been suc-

cessfully completed proportional to how many times it has been attempted.

The primary difference between this approach and others is the goal-oriented nature

of the learning. In this case, the novelty drive triggers the creation of a new goal. This

trigger can be influenced by the human partner (if they label the goal state for example

with a statement such as “Look Leo, it’s X”), but the human is not required to provide

the goals. In defining its own goals the system is framing its own learning problem.

Similarly, as these Task Option Policies are developed, the human partner is not required

to define a reward signal. The system frames its own learning problem, by assuming that

being in the goal state has the highest reward for that particular Task Option Policy and

a standard reinforcement learning process works to build a value function for the state

action pairs in the vicinity of the goal state.

Often a reinforcement learning agent is meant to learn a model of the world, and

learn how to maximize the rewards from the environment. In this approach however, the

agent defines goal states for itself, and uses reinforcement learning to build an option

representation of how best to achieve that goal from related states. This goal-oriented

approach of having a reinforcement learner define what options are good to know, fram-

ing its own learning problems, is a novel and important quality of an SG-ML system.

3.4.6 Task Generalization

In this learning mechanism, like the Social Dialog mechanism, generalization is partic-

ularly important. The Social Dialog learning mechanism actively expanded and refined

a hypothesis space of representations of the examples of a task. The Guided Explo-

ration mechanism has a different strategy. Once a Task Option Policy is created, rather

than expand a space of hypotheses, the most specific state representations are used and

throughout activity the system uses two specific mechanisms to generalize the applica-

tion of the task: between-policy generalization and within-policy generalization.

Both of these generalization mechanisms work to generalize the state representa-

tions in St ask and the goal representation G for all T ∈ Tasks. In doing so these pro-

cesses expand the portion of the state space in which tasks can be initiated or considered

achieved. Referring back to the discussion in Section 3.4.4, this is analogous to refining

the context and the goal aspects of the activity representation.
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Between-policy generalization

Given two tasks T1 ∈ Tasks and T2 ∈ Tasks (T1 6= T2), the between-policy generalization

mechanism determines if it is appropriate to combine them into a more general task

Tg en . For example, if T1 has the goal of turning ON a red button in location (1,2,3), and

T2 has the goal of turning ON a red button in location (4,5,6), then a between-policy

generalization would create a Tg en with the goal of turning ON a red button without any

location specification. When a feature is generalized from the goal representation we

also try to generalize all of the state representations in St ask , thus Tg en no longer pays

attention to that feature. Therefore, Tg en is now able to initiate in any location, and any

state that has a red button ON achieves the goal of Tg en .

This between-policy generalization is attempted each time a Tnew is added to Tasks.

If there exist two tasks T1 and T2 with similar goal states, then the system makes a general

version of this task. Similarity is determined in the following way:

• Let G1 = the goal of T1; G2 = the goal of T2.

• G1 and G2 must have the same number of goal beliefs.

• For each goal belief, x1 ∈G1 there must be a goal belief, x2 ∈G2 such that

(expt ∈ x1) = (expt ∈ x2) and cr i t ∈ x1 differs from cr i t ∈ x2 by no more than four

percepts.7

• Let D be a set containing all cr i t percept values that differ between G1 and G2.

Once T1 and T2 are determined to have similar goals, a new task Tg en is created that

removes any features different between the two. The goal Gg en is made for Tg en , where

(expt ∈Gg en) = (expt ∈G1)

(cr i t ∈Gg en) = (cr i t ∈G1)∩D

Now Tg en has a generalized goal, in a similar fashion the system tries to generalize

the St ask and π′ of T1 and T2.

• Let Sg en = (St ask ∈ T1)∩D

• Let each of the St ask sets in T1 and T2 be temporarily changed to Sg en

• If (π′ ∈ T1) = (π′ ∈ T2) then Tg en uses the generalized set Sg en and (π′ ∈ T1).

• If (π′ ∈ T1) 6= (π′ ∈ T2) then Sg en is not possible for Tg en , instead it is made to use

the conjunction of the original policies of T1 and T2, thus using both specific ways

of achieving this more general version of the task goal:

(St ask ∈ Tg en) = (St ask ∈ T1)∪ (St ask ∈ T2) and (π′ ∈ Tg en) = (π′ ∈ T1)∪ (π′ ∈ T2).

7Four is somewhat arbitrary, chosen empirically as a good balance between over and under utilization
of the generalization mechanism.
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Returning to the red button example, the two tasks are considered similar since their

expectations are the same, expt = {ON }, and their criteria differ only by the location fea-

ture, D = {loc = (1,2,3), loc = (4,5,6)}. Thus a new task is made with a goal that does not

include location: Gg en = {expt ,cr i t }, expt = {ON } and cr i t = {ob j ect ,r ed ,but ton, ...}.

If the policies of the two tasks are similar, for example to do the press action in the state

s = {b1 = {ob j ect ,r ed ,but ton, loc = (x, y, z), ...}}, then the new task will have a gener-

alized policy that does not include location. On the other hand, if T1 has the policy

of doing the press action in state s = {b1 = {ob j ect ,r ed ,but ton, loc = (1,2,3), ...}}, and

T2 has the policy of doing the flip action in state s = {b1 = {ob j ect ,r ed ,but ton, loc =

(4,5,6), ...}}, then the generalized task will maintain that in loc(1,2,3) a red button should

be pressed to make it ON and in loc(4,5,6) a red button should be flipped to make it on.

These simplified examples are illustrated in Figures 3-11(a) and 3-11(b).

Within-policy generalization

In addition to generalizing between two T ∈ Tasks, it is also possible to occasionally

generalize within a task. Within-policy generalization is attempted each time a change

is made to the task. For example, recall that every experience tuple (s1, a, s2) has the

possibility of extending the set St ask , each time the set changes the system tries within-

policy generalization.

The system tries to find state action pairs in the policy that are similar enough to

generalize (i.e., two different states, s ∈ St ask : si and s j , such that the values in π′ for

si and s j are the same). Thus, since the action policy is the same, the system tries to

replace si and s j in St ask with a general state sg en that contains all the features they have

in common: sg en = si ∩ s j .

In practice within-policy generalization has the important purpose of allowing for

refinement of an over specific between-policy generalization. Consider the example

seen in Fig. 3-11(b), where the two tasks were seen to have different action values and

thus the generalized policy contains both specific initiation states. Perhaps through later

experience and adjustments to the value function, the robot finds that the press action is

actually the most valuable action from both of these initiation states. Then this within-

policy generalization will work to produce the representation seen in Fig. 3-11(a).

In generalizing the states in St ask and the goal representation G for all T ∈ Tasks,

these generalization mechanisms expand the portion of the state space in which tasks

can be initiated or considered achieved. This makes for a more efficient representation,

as the system continually makes the state space representations more compact. Addi-

tionally, this works to afford a goal-oriented approach to domain transfer, as the system

is continually refining the context and the goal aspects of the activity representation.
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(a) Task T1 and T2 have similar goals, to turn the red button ON. So a
general task Tg en is made with the generalized G , St ask , and π′, that
no longer include the location feature.
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(b) Task T1 and T2 have similar goals, to turn the red button ON. So a general task
Tg en is made with the generalized G . But they have different ways of achieving this
goal, so the St ask and π′ are not generalized, but include the St ask and π′ from both
T1 and T2.

Figure 3-11: Between-policy generalization example: Fig. 3-11(a) shows the generalization for

the example where the two tasks have similar goals and action policies. Fig. 3-11(b) shows the

example where they have similar goals but different action policies.

79



3.4.7 Scaffolded Learning

Given the foundation of motivated behavior and mechanisms for goal-oriented learn-

ing, the final piece of Guided Exploration involves the mechanisms of social scaffolding

that an SG-ML system should be able to leverage. Learning in a social environment is

characterized by socially guided discovery, it is the balance between learning on one’s

own and benefiting from the social environment. To succeed the system needs to be

able to explore on its own and take advantage of social interaction if it is there. The fol-

lowing are the specific social scaffolding mechanisms at work on the Leonardo platform

to enable socially guided exploration and discovery:

• Social attention: The attention of the robot is directed in ways that are intuitive

for the human. Attention responds to socially salient stimuli and stimuli that are

particularly relevant to the current goals of the system. Additionally, the robot

tracks pointing gestures and head pose of a human partner which contributes to

the saliency of objects and their likelihood of attention direction. For an overview

of the robot’s social attention abilities see [Thomaz et al., 2005a].

• Guidance: Throughout the learning interaction, the human can suggest actions

for Leo to try. This is very similar to the Social Dialog version where the human

had to instruct Leo about every action. The subtle difference in this Guided Ex-

ploration case is that the human’s request is treated by the system as a suggestion

rather than an interrupt. The suggestion increases the likelihood that the Explore

learning context will trigger, but there is still a non-zero probability that Leo will

decide to practice a relevant known task or learn about a novel state change.

• Metrics of success: The system uses the human partner to help recognize success

and failure during learning. The speech recognition grammar contains several

phrases that the human partner can use to indicate positive or negative feedback

to the robot. If at any point positive or negative feedback is received it is incorpo-

rated into the action policy of the current task being executed. Additionally, Leo

will occasionally look up to solicit feedback from the human partner when confi-

dence is low or when he has just performed a suggested action.

• Recognizing goal states: In the Social Dialog version of learning, the robot was

completely dependent on the human to provide the start and end points of task

examples. This Guided Exploration version significantly loosens those constraints

such that Leo is able to explore on his own and form task representations about

novelties in the environment. Additionally, the human can point out goal states

with a variety of speech utterances (e.g., “Look Leo, it’s X”). This serves to increase
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the likelihood that the Novelty learning context will trigger (creating a task rep-

resentation of this change). The created task is given the label “X” allowing the

human refer to it in the future.

• Environmental structure: A key component of social interaction is the actual phys-

ical structuring of the environment and the task. The human helps the system pro-

ceed at a reasonable learning pace and helps the system notice the big landmarks

or important parts of the task. Drawing the system into new generalizations is a

large contribution of the human partner, helping to link old information to new

situations, pointing out when a learned task is relevant in the current situation.

3.4.8 Example learning results

Leo’s Guided Exploration has been developed and tested with a playroom scenario. Given

the limited dexterity and perceptual capabilities of the robot, more complex tasks and

activities can be learned in simulation with virtual Leo. In simulation, the playroom has

several different toy boxes and toy blocks, offering a rich and complex state space. In

the real world, Leo’s playroom has toy boxes, designed specifically for Leonardo’s ma-

nipulation capabilities, that can open and close and change color in reaction to various

actions. Figure 3.4.8 shows Leo’s real and virtual playroom scenarios. All of the learn-

ing mechanisms and processes described in the previous sections run in real-time on

a dual G5 Macintosh computer.8 This section provides some insight into the nature of

the tasks both virtual and real Leo are able to learn, and the process of the learning and

generalization that occurs.

Leo has several primitive arm actions in his repertoire: a pressing down motion, a

lifting motion, a sliding motion to the left or right, a hand flip motion, a grasping mo-

tion, and a pointing motion. These actions can be directed toward any object in the

environment. Leo has no initial knowledge about the objects in the environment, but is

able to fully perceive their features. Through self-exploration or guided exploration he

is able to build a task set with various goals he is able to bring about in the world.

The objects in the playroom make up a complex state space as a learning environ-

ment. This section presents various characterizations of the Guided Exploration learn-

ing mechanism. To illustrate its functionality data was collected in several experimental

8Additional computers are used when Leo is running in the real world: Two Linux machines run pro-
cesses to grab video from the stereo cameras. Two PCs run computer vision processes to analyze these
video streams to recognize people, their headpose, their pointing gestures, and toy objects in the envi-
ronment. One PC runs the Sphinx speech recognition, and a Mac server runs the motor control interface
process. These processes communicate over an internal gigabit network with the IRCP communication
protocol described in [Hancher, 2003].
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(a) These are two of the five toy boxes
Leo has in the virtual world. On the
left is a box where pushing the lever
flips the lid open. On the right is a dif-
ferent box with a lid that slides open
and closed. Both can change colors.
Though not graphically pictured, both
have a dial that can be turned right or
left, and a switch that can be on or off.

(b) There are also various colored blocks
from which tasks can be created

(c) In the real world leo has toy boxes that he can change with a gestu-
ral interface. The boxes change color, the lid opens, and a physical switch
changes state.

Figure 3-12: Leo’s playroom, experimental scenarios for Guided Exploration in both the virtual

and physical world.
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learning session in the virtual playroom. The objects used in the experiment were two

toy boxes that have some similarities and some differences in their functionality:

• The Slide-Box: The lid opens with a slide-out action, with the precondition that

the switch is ON. The lid closes with the slide-in action, with the precondition that

the switch is OFF. The switch turns on and off with the flip action. A dial on the

box turns left and right with the squeeze action.

• The Push-Box: The lid opens with a press action, with the precondition that the

switch is ON. The lid closes with the press action, with the precondition that the

switch is OFF. The switch turns on and off with the flip action. A dial on the box

turns left and right with the squeeze action.

Each of the learning sessions for the data presented in this section were run in the

following fashion: Leo was first given the slide-box to explore on his own. After approx-

imately 10 minutes, the slide-box is moved to a different location. After approximately

5 more minutes the slide-box is taken away and Leo is presented with the push-box to

explore on his own. After approximately 5 minutes, the push-box is moved to a different

location and Leo is able to explore it for a final 10 minutes before the experiment ends.

The following is an example of the learning results in the playroom experiment de-

scribed above. The progression of leo’s actions and the creation and generalization of

T ∈ Tasks is depicted in Figure 3-13. Leo is presented with a box, the slide-box. When

the system first comes online, the Explore Action is triggered (due to novelty low and

activity low) and Leo tries various actions on the box. When he does the flip action, the

switch on the box flips from OFF to ON. This state change causes an increase in the nov-

elty drive, and after a few seconds this triggers the Novelty Action and a task is created

about this state (T1 in Fig. 3-13). As the state of the world remains constant the novelty

drive decreases and after a few seconds exploration continues. Now that the switch is

ON, the slide-box is able to open, and when Leo does a sliding motion to the right the lid

on the box opens. Leo creates a task about this state change and when it is incorporated

into the task set the action policy is extended to include the previous step in the opening

task (T2 in Fig. 3-13).

Again once novelty decreases exploration continues and Leo performs various ac-

tions with the box in the open state. Doing the flip action again, he makes the switch

turn OFF. Later another flip action makes the switch turn ON again. This is a novel state

change because the box lid is now open, and it causes a task to be created. When this

task is being incorporated into the task set, it meets the criteria for between-policy gen-

eralization. Thus, the general task is created (T4 in Fig. 3-13) and the two specific tasks

(T1 and T3 in Fig. 3-13) are removed from the task set.

83



T
im

e

Leo's

Actions

a1

a2

a3

a4: 

FLIP

a5

a6

a7:

SLIDE-

RT

a8

a9

a10: 

FLIP

a11

a12

a13:

FLIP

a14

a15

a16

a17: 

FLIP

a18

a19

a21: 

PRESS

Presented with the Slide-Box

Presented with the Push-Box

T1 created 

about Box 

OFF to ON

T1: Goal T1: Policy

Expt:

Crit:

ON

Toy, Box

Slide-box

loc x,y,z

lid closed

State: OFF

Toy, Box

Slide-box

loc x,y,z

lid closed

Acts: - press

- slide rt

- slide lft

+ flip

T2 created 

about Box 

OPEN

T2: Goal T2: Policy

Expt:

Crit:

lid Open

Toy, Box

Slide-box

loc x,y,z

ON

State: ON

Toy, Box

Slide-box

loc x,y,z

lid closed

Acts: - press

+ slide rt

- slide lft

- flip

State: OFF

Toy, Box

Slide-box

loc x,y,z

lid closed

Acts: - press

- slide rt

- slide lft

+ flip

T3 created 

about Box ON

when lid open, 

generalization

creates T4

T4: Goal T4: Policy

Expt:

Crit:

ON

Toy, Box

Slide-box

loc x,y,z

State: OFF

Toy, Box

Slide-box

loc x,y,z

Acts: - press

- slide rt

- slide lft

+ flip

T5 created 

for Push-Box 

ON; task

generalization

creates T6

T7 created 

for Push-Box 

Open; task

generalization

creates T8

T6: Goal T6: Policy

Expt:

Crit:

ON

Toy, Box

State: OFF

Toy, Box

Acts: - press

- slide rt

- slide lft

+ flip

T8: Goal T8: Policy

Expt:

Crit:

lid Open

Toy, Box

ON

State: ON

Toy, Box

Slide-box

loc x,y,z

lid closed

Acts: - press

+ slide rt

- slide lft

- flip

State: ON

Toy, Box

Push-box

loc x,y,z

lid closed

Acts: + press

- slide rt

- slide lft

- flip

State: OFF

Toy, Box

Acts: - press

- slide rt

- slide lft

+ flip

a20

Figure 3-13: Guided Exploration learning example: Leo learns about opening two different kinds

of boxes. He is able to generalize about flipping a switch ON (T1, T3, T4, T5, and T6), he learns to

open each one (T1, T7) and between-policy generalization makes a general task about opening

with the specific policies, within-policy generalization simplifies it further (T8). Due to space,

some of the intermediate tasks are not pictured.
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After some time, the human partner brings out the push-box toy. Recall, it has a

similar switch mechanism, but this toy has a pressing mechanism rather than a sliding

mechanism for opening and closing. After some exploration Leo learns to make the

switch on this box turn ON and OFF, causing further generalized representations (T6

in Fig. 3-13). And finally, when Leo makes the box lid open with a pressing motion, a

task is created for this novel state, and it does meet the criteria for generalization with

the previous opening task. However, the action policies for the two tasks are not able to

generalize since one uses a sliding motion and the other uses a pressing motion. Thus,

the goal is generalized and both specific policies are added to the policy of the new task

(T8 in Fig. 3-13).

A human can influence and guide this learning process. They can help define which

states are good landmarks, for which a task should be created, by labeling the task (e.g.,

“Leo, it’s Open!”). They can guide the exploration process by suggesting actions for leo

to try (e.g., “Leo, try to Flip the Box”). And throughout the process the human partner

can structure the environment and the experience to allow for generalization. Thus,

intrinsic measures along with extrinsic support define goals for the machine, and action

policies are learned in a standard way for reaching these goals.

The drives are essentially creating a good learning environment for a relatively stan-

dard reinforcement learning process. Figure 3.4.8 shows a snapshot of approximately 10

minutes of a learning session. The top graph shows the dynamics of the motivational

drives and the bottom graph shows the resulting dynamics of the three learning behav-

iors. The segment starts with a period where more relevance actions are being triggered,

and mastery starts to rise. Then the system is driven to explore, and gets into an area

of the world where its mastery is low. This period of exploration is interspersed with

learning about novel states, and then more practicing is seen.

The motivational drives create multiple learning opportunities. Additionally the gen-

eralization mechanism allows the system to better refine when these tasks can be ap-

plied. Figure 3.4.8 shows how the size and content of the set Tasks grows and changes

over the experimental learning session. The ‘OrigTasks’ series of data shows the number

of T ∈ Tasks that exist in their original form as created by the novelty action (i.e., these

are very specific representations, often including a specification of location and other

features not relevant to the goal). In the ‘GenTasks’ series we see the number of T ∈

Tasks over time that are a generalized version (i.e., they are a result of either between-

policy or within-policy generalization). Initially, the OrigTasks number increases as new

tasks are learned about the slide-box. Over time generalization begins to happen, shown

as GenTasks increases and the OrigTasks number decreases. Then halfway through the

training session, when the push-box is introduced, a number of new tasks are created
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Figure 3-14: A snapshot of approximately 10 minutes of a learning session. The top graph shows

the dynamics of the motivational drives and the bottom graph shows the resulting dynamics of

the learning behaviors. This segment starts with a period where more Relevance actions are be-

ing triggered, and mastery starts to rise. This is followed by a period of exploration interspersed

with learning about novel states, and then more practicing is seen.
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Figure 3-15: An experimental learning session in the virtual playroom. The graph shows how

the size of the set Tasks grows and changes over time. In ‘OrigTasks’ series of data shows the

number of T ∈ Tasks that exist in their original form as created by the novelty action. In the

‘GenTasks’ series we see the number of T ∈ Tasks over time that are a generalized version. Ini-

tially, the OrigTasks number increases as new tasks are learned, and as generalization begins to

happen, GenTasks increases and OrigTasks number decreases. Then halfway through the train-

ing session, when a new object is introduced, a number of new tasks are created so OrigTasks

increases again, but then decreases as these also become generalized with experience. After a

25 minute training session, very few T ∈ Tasks are in their original formulation, they have been

refined and generalized through experience and practice.
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and OrigTasks increases again. It decreases as these also become generalized with ex-

perience. By the end of the 30 minute training session, very few T ∈ Tasks are in their

original formulation, they have been refined and generalized through experience and

practice.

3.5 Human Guidance for Machine Learning Systems

Robotic and software agents that operate in human environments will need the ability to

learn new skills and tasks ‘on the job’ from everyday people. It is important for designers

of learning systems to recognize that while the average consumer is not familiar with

machine learning techniques, they are intimately familiar with various forms of social

learning (e.g., tutelage, imitation, etc.).

The initial experiment in Chapter 2 with Sophie’s Kitchen found people’s desire to

guide the character to an object of attention, even when explicitly told that only feed-

back messages were supported. This raises an important research question for the ma-

chine learning community. How do we design machines that learn effectively from hu-

man guidance? What is the right level of human interaction at a given time?

It is useful to characterize the level of human interaction as a spectrum from guid-

ance to exploration. On the guidance end of the spectrum is a system that is completely

dependent on a human instruction and guidance, and on the exploration end is a sys-

tem that learns through self exploration with little input from a human partner. In prior

works that introduce a human to a machine learning process, the level of human in-

teraction generally remains constant throughout the learning task, remaining at a static

point on the guidance-exploration spectrum. This chapter has investigated three points

on the guidance-exploration spectrum. Exploring ways in which machines can be de-

signed to more fully take advantage of social guidance in a human teaching interaction.

First, on the guidance end of the spectrum, is Leo’s learning within a Social Dialog.

The system builds goal-oriented task representations based on known actions and tasks.

It uses social cues that are relevant and understandable to the human partner to frame

the learning task. A hypothesis space of goal representations is expanded for a learned

task, and through a tightly coupled dialog with a human partner, the best hypothesis is

found over a few examples.

Second, on the opposite end of the spectrum, the incorporation of guidance into the

interactive Q-Learning agent. In their guidance communication, in the initial experi-

ment with Sophie’s Kitchen, people meant to bias the action selection mechanism of the

RL algorithm. Introducing a separate interaction channel for attention direction and

modifying the action selection mechanism of the algorithm produces a significant im-
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provement in the agent’s learning performance. Guidance allows the agent to learn tasks

using fewer executed actions over fewer trials. Our modifications also lead to a more ef-

ficient exploration strategy that spent more time in relevant states. A learning process,

as such, that is seen as less random and more sensible will lead to more understandable

and believable agents. Guidance also led to fewer failed trials and less time to the first

successful trial. This is a particularly important improvement for interactive agents in

that it implies a less frustrating experience, creating a more engaging interaction for the

human partner.

Finally, recognizing that both guidance and exploration have their benefits, the Guided

Exploration learning with Leonardo brings these together in one learning system. The

system has motivations to explore its environment and is able to create goal-oriented

task representations of novel events. Additionally this exploration process can be influ-

enced by a human partner in a number of ways: attention direction, action suggestions,

labeling of goal states, and positive and negative feedback.

The Guided Exploration version of Leonardo offers many benefits over the Social Di-

alog version of Leo. The interaction is more flexible, not depending on particular utter-

ances from the human partner. The system is able to learn on its own, and learning is a

part of all activity rather than a specific activity triggered by “Leo, let’s learn to X.” Since

the human is not marking the start and stop points of a task, the Guided Exploration

learner creates tasks for end states and expands the policy back from the goal. Thus the

system has to frame its own learning problems.

Many prior works that have a machine learn a new task or skill assume that a goal is

known (defined by the designer), is implicit in the reward function given to the learner,

or the goal is to learn a complete world model. Alternatively, both the Social Dialog and

the Guided Exploration implementations do not make this assumption; instead we ask

how a learner can be motivated to learn new tasks/goals with a human partner. A goal-

oriented approach to learning is a fundamental capability necessary for social learners,

due to the fact that their social partners will act and interpret action in intentional and

goal-oriented ways. An SG-ML system will need to continually work to refine the con-

cept of what the human partner has meant to communicate, what the activity is about.
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Chapter 4

Transparency to Guide a Human Teacher

In a situated learning interaction, the teaching and learning processes are intimately

coupled. A good instructor maintains a mental model of the learner’s state (e.g., what

is understood so far, what remains confusing or unknown, etc.) in order to provide ap-

propriate scaffolding to support the learner’s current needs. In particular, attention di-

rection is one of the essential mechanisms that contribute to structuring the learning

process [Wertsch et al., 1984]. Other scaffolding acts include providing feedback, struc-

turing successive experiences, regulating the complexity of information, and otherwise

guiding the learner’s exploration. In general, this is a complex process where the teacher

dynamically adjusts their support based on the learner’s demonstrated skill level and

success.

The learner, in turn, helps the instructor by making their learning process trans-

parent to the teacher through communicative acts (such as facial expressions, gestures,

gaze, or vocalizations that reveal understanding, confusion, attention), and by demon-

strating their current knowledge and mastery of the task [Krauss et al., 1996,Argyle et al.,

1973]. Through this reciprocal and tightly coupled interaction, the learner and instruc-

tor cooperate to simplify the task for the other — making each a more effective partner.

This chapter investigates several ways in which the transparency of learning and the

dynamics of the teacher-learner interaction can positively impact the performance of a

machine learning agent. First, the benefit of using gaze to reveal uncertainty is shown

with the Sophie’s Kitchen platform. Then various nonverbal behaviors on Leonardo,

used in the implementations described in Chapter 3, are detailed. Finally, a human

subject experiment with Leonardo shows that the use of transparency behaviors sig-

nificantly improves a real-time interactive learning session.
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(a) (b)

Figure 4-1: Two figures illustrating Sophie’s gazing transparency behavior. In Fig. 4-1(a) Sophie

is facing the shelf, gazing at the tray prior to selecting a next action; in Fig. 4-1(a) at the bowl.

4.1 Effects of Transparency in Sophie’s Kitchen

In Chapter 3, we saw that the ability for the human teacher to direct the Sophie agent’s

attention has significant positive effects on several learning performance metrics (less

actions and trials required to complete the task, less failures encountered overall, and

a more efficient exploration of the state space). This section reports a related result –

that the ability of the agent to use gaze as a transparency behavior results in measurably

better human guidance instruction.

4.1.1 Sophie’s Gazing Behavior

Gaze requires that the learning agent have a physical/graphical embodiment that

can be understood by the human as having a forward heading. In general, gaze pre-

cedes an action and communicates something about the action that is going to follow.

In this way gaze serves as a transparency device, allowing an onlooker to make infer-

ences about what the agent is likely to do next, their level of confidence and certainty

about the environment, and perhaps whether or not guidance is necessary. A gaze be-

havior was added to the Sophie’s Kitchen game. The modified game was deployed on the

World Wide Web, and data was collected from over 75 people playing the game, allowing

for a concrete analysis of the effects Sophie’s gaze had on a human teacher’s behavior.

Recall the interactive Q-Learning algorithm modified for guidance (Algorithm 2 in-

troduced in Chapter 3). The gaze behavior modification makes one alteration to the

stage as which the agent is waiting for guidance, shown in Algorithm 4. When the agent

is waiting for guidance, it finds the set of actions, A∗, with the highest Q-values, within a

bound β. ∀a ∈ A∗, the learning agent gazes for 1 second at the ♦❜❥❡❝t✲♦❢✲❛tt❡♥t✐♦♥

of a (if it has one). For an example of how the Sophie agent orients towards an ob-
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Algorithm 4 Interactive Q-Learning with guidance and a gazing transparency behavior.

1: while learning do

2: A∗ = [a1...an], the n actions from s with the highest Q values within a bound β

3: for i = 1...n do

4: o = the object of attention of ai

5: if o 6= null then

6: set gaze of the agent to be o for 1 sec.
7: end if

8: end for

9: if receive human guidance message then

10: g = g ui de-ob j ect
11: a = random selection of actions containing g
12: else

13: a = random selection weighted by Q[s, a] values
14: end if

15: execute a, and transition to s′

(small delay to allow for human reward)
16: sense reward, r
17: update policy:

Q[s, a] ←Q[s, a]+α(r +γ(maxa′Q[s′, a′])−Q[s, a])

18: end while

ject to communicate gazing, see Fig. 4-1. This gazing behavior during the pre-action

phase communicates a level of uncertainty through the amount of gazing that precedes

an action. It introduces an additional delay (proportional to uncertainty) prior to the

action selection step, both soliciting and providing the opportunity for guidance mes-

sages from the human. This also communicates overall task certainty or confidence as

the agent will speed up when every set, A∗, has a single action. The hypothesis is that

this transparency will improve the teacher’s model of the learner, creating a more under-

standable interaction for the human and a better learning environment for the agent.

4.1.2 Experimental Design

The Sophie’s Kitchen game was deployed on the World Wide Web, and participants were

solicited to play a computer game, in which their goal was to get the virtual robot to learn

how to bake a cake on her own. Participants were told they could not tell Sophie what

actions to do, nor could they do any actions directly. They were only able to send Sophie

various messages with the mouse to help her learn the task. Depending on their test
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Table 4.1: 1-tailed t-test showing the effect of gaze on guidance. Compared to the guidance

distribution without gaze, the gaze condition caused a decrease when uncertainty was low and

an increase when uncertainty was high. (uncertainty low = number of action choices ≤ 3, high =

number of choices ≥ 3).

Measure Gaze-Guide Guidance t(51) p

% Guidance when 79 85 -2.22 <.05
uncertainty low

% Guidance when 48 36 1.96 <.05
uncertainty high

condition, subjects were given instructions on administering feedback and guidance.12

Each of the participants, played the game once in one of the following conditions:

• ●✉✐❞❛♥❝❡: Players were able to use both the feedback and the guidance channels

of communication.

• ●❛③❡✲❣✉✐❞❡: Players had the feedback and guidance channels. Additionally, the

agent used the gaze transparency behavior.

The system maintained an activity log and recorded time step and real time of each

of the following: state transitions, actions, human rewards, guidance messages and ob-

jects, gaze actions, disasters, and goals. These logs were analyzed to test the following

hypothesis:

• Transparency Hypothesis: Learners can help shape their learning environment

by communicating aspects of the internal process. In particular, the gaze behavior

will improve a teacher’s guidance instruction.

4.1.3 Result: Gaze Improves Guidance

This hypothesis is evaluated through the comparison of players that had the ❣✉✐❞❛♥❝❡

condition versus those that had the ❣❛③❡✲❣✉✐❞❡ condition. These results are summa-

rized in Table 4.1. Note that the players that did not have the gaze behavior still had

ample opportunity to administer guidance; however, the time that the agent waits is

uniform throughout.

Looking at the timing of each player’s guidance instruction, their communication

can be separated into two segments: the percentage of guidance that was given when the

1Full protocol, instructions and consent forms for the study can be found in Appendix A.
2Participation over the web was anonymous and we did not collect gender statistics of the population.
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number of action choices was ≥ 3 (high uncertainty), and when choices were ≤ 3 (low

uncertainty), note that these are overlapping classes. Three is chosen as the midpoint

because the number of action choices available to the agent at any time in the web-

based version of Sophie’s Kitchen is at most 5. Thus we describe a situation where the

number of equally valued action choices is ≥ 3 as high uncertainty, and ≤ 3 as low

uncertainty.

Players in the ❣❛③❡✲❣✉✐❞❡ condition had a significantly lower percentage of guid-

ance when the agent had low uncertainty compared to the players in the ❣✉✐❞❛♥❝❡ con-

dition, t (51) = −2.22, p = .015. And conversely the percentage of guidance when the

agent had high uncertainty increased from the ❣✉✐❞❛♥❝❡ to the ❣❛③❡✲❣✉✐❞❡ condition,

t (51) = 1.96, p = .027. Thus, when the agent uses the gaze behavior to indicate which ac-

tions it is considering, the human trainers do a better job matching their instruction to

the needs of the agent throughout the training session. They give more guidance when

it is needed and less when it is not.

4.2 Nonverbal Transparency Devices on Leonardo

The experiments with the Sophie’s Kitchen game show that even with an agent that is

not designed to be very human-like, people use a social model to make sense of the

interaction. The Leonardo platform, on the other hand, was specifically designed for

expressive nonverbal communication to participate in natural social interactions with

a human partner. The face alone has over 20 actuators (degrees of freedom). For the

purpose of Socially Guided Machine Learning, this gives Leo a richer set of behaviors to

cooperate in the teaching-learning collaboration. This expressive behavior allows the

robot to maintain a mutual belief with the teacher about the task state, expressing con-

fusion, understanding, attention, etc. This section describes the transparency devices

Leonardo uses to facilitate the social learning mechanisms described in Chapter 3, and

provides an evaluation showing the positive effects such devices have on a learning in-

teraction with human subjects.

4.2.1 Social cues for Scaffolding

A number of expressive skills contribute to Leo’s effectiveness in the version of Leonardo

that learns in a Social Dialog. Many of these cues are designed around speech act the-

ories and theories of how humans use language to communicate within a joint activ-

ity [Clark, 1996]. In particular, principles of grounding. In all activity, humans look for

evidence that their action has succeeded, and this extends to joint activity as well. Thus,
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Table 4.2: Social Cues for Scaffolding

Context Leo’s Expression Intention

Human points to object Looks at Object Shows Object of Attention

Human present in workspace Gaze follows human Shows social engagement

Executing an Action Looks at Object Shows Object of Attention

Human: "Let’s learn task X" Subtle Head Nod Confirms start of task X

Human: "Task X is done" Subtle Head Nod Confirms end of task X

Any speech Perks ears Conveys that Leo is listening

Speech did not parse Confusion gesture Communicates problem

Unconfident task execution Glances to human more Conveys uncertainty

Completion of demonstration Perks ears, lean forward Soliciting feedback from teacher

Human: "Can you...?" Perform or Nod/Shake Communicates task knowledge

Human: "Do task X" Performs X Demonstrates representation of X

Task done; Human: "Not quite" Subtle nod Confirms, and expects refinement

Task done; Human: "Good!" Nods head Confirms task hypothesis

Human asks yes/no question Nod/Shake Communicates knowledge/ability

Request is made for an Confusion gesture Communicates problem
unknown object

Label command has no Confusion gesture Communicates problem
pointing gesture

Between requested actions Idle body motion Creates aliveness

Intermittent Eye blinks Creates aliveness

Intermittent Shifts in gaze Conveys awareness

the ability to establish joint closure–the mutual belief that a joint activity has succeeded–

is fundamental to the success of a collaborative activity. Table 4.2 highlights a number

of the social cues that Leonardo uses to facilitate the collaborative activity of learning.

Eye gaze establishes joint attention, reassuring the teacher that the robot is paying

attention to the right object at the right time. Subtle nods acknowledge task stages, con-

firming a mutual understanding of moving on to the next stage when, for instance, the

teacher labels a goal state or says a task is complete.

In a realistic robot interaction, the speech recognition system is not perfect and will

occasionally not be able to parse the human’s utterance. To naturally overcome this

roadblock Leo perks his ears as soon as the human begins speaking to indicate that he is

paying attention. If unable to parse this speech, Leo will gesture (leaning forward with

hand to ear) to indicate that speech recognition failed and the human needs to repeat

their last phrase.

The robot uses expressions to indicate to the human tutor when he is ready to learn
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Figure 4-2: The extreme poses representing the extent of Leo’s emotional facial expression used

for transparency in motivated learning with guided exploration.

something new, and demonstration of taught actions provides immediate feedback about

task comprehension. When performing a recently taught task, ear and body position as

well as eye gaze are used to solicit feedback from the human when uncertainty is high.

By frequently looking back at the human during the performance, Leo signals to the

teacher that confidence is low, soliciting feedback and further examples.

4.2.2 Facial Expressions to Reveal Internal Learning State

In the Guided Exploration version of Leonardo, there are additional elements of trans-

parency used in the learning process. Emotional expression is used as subtle and natural

expression of the state of the learning process. Fig. 4-2 shows the extreme characteristic

poses of Leo’s facial expression, organized roughly in a two-dimensional space of arousal

and valence. The system can blend between these characteristic poses, creating a rich

space of facial expression.
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Table 4.3: This table is a summary of a table from [Smith and Scott, 1997], showing the various

proposed meanings (pleasantness, goal obstacle/discrepancy, anticipated effort, attentional ac-

tivity, certainty, novelty, personal agency/control) of several individual facial action units. (+)

indicates that the facial action is hypothesized to increase with increasing levels of the meaning;

(-) indicates that the facial action is hypothesized to increase with decreasing levels of the mean-

ing. These meanings inspire the facial expressions chosen to act as transparency devices in Leo’s

Guided Exploration.

Facial Action Proposed Meaning (from Smith and Scott 1997)

Eyebrow frown -pleasantness, +goal obstacle, +anticipated effort
Raise eyebrows +attentional activity, +novelty, -certainty, -personal agency/control
Raise upper eyelid +attentional activity, +novelty, -personal agency/control
Raise lower eyelid +certainty
Lip corners +pleasantness
Open mouth +pleasantness, +attentional activity, -personal agency/control
Tighten mouth -pleasantness

One approach is to make a calculation of the overall system arousal and valence and

have the face continually express these variables. However, in practice, doing so led

to a general dulling of emotional expression such that the facial pose remained fairly

average all the time. An alternative approach was devised, in which a full characteristic

pose is executed but for fleeting moments (2-3 seconds), indicating an internal state and

quickly blending back to the neutral pose. The poses are chosen to communicate infor-

mation to the human partner in a natural way, and this is inspired by research indicating

that different facial action units communicate specific meanings [Smith and Scott, 1997]

(summarized in Table 4.3). For example, that raised eyebrows and wide eyes indicate

heightened attention; and, this is the information we want to communicate with Leo’s

surprised expression. This approach results in a dynamic, expressive, and informative

facial behavior.

Recall the Task Learning Action Group from Chapter 3. There are a number of con-

texts in which the learning group will trigger action. Leonardo attempts to subtly com-

municate these trigger contexts to the human partner through facial expression. Table

4.4 lists the learning contexts that trigger fleeting facial expressions. When triggered by

a novel event, there is a fleeting surprised expression to let the human know that a task

is being formed about this state. When mastery is the trigger, a particular known task

is relevant and will be practiced. In this case, Leonardo makes a concentrated facial ex-

pression and later makes a happy or sad expression upon the success or failure of this

attempt. Throughout the learning process, if the human gives good or bad feedback,
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Table 4.4: Leonardo’s Facial Expressions to Reveal Learning State in the Guided Exploration im-

plementation.

Context Facial Expression Intention

Novel event Surprised (raised brows/lids Task being formed
and ears, open mouth) about this state.

Mastery triggers execution Concentration A known task is being tried.
(brows/ears down)

Successful task attempt Happy Expectation was met
(open mouth, raised ears)

Failed task attempt Sad Expectation was broken
(closed mouth, ears down)

Good/Bad feedback Happy/Sad Acknowledges feedback
Human labels goal state Happy with head nod Acknowledges task label

Leonardo makes a happy or sad expression to let the human know they were heard.

When the human labels a goal state Leonardo will make a happy expression and also

give a head nod to acknowledge the labeling.

4.3 Effects of Leonardo’s Nonverbal Communication

The impact of Leo’s nonverbal social cues is explored in an experiment where human

subjects guide the robot to perform a physical task using speech and gesture. In the task

scenario, the human stands across the workspace facing the robot. The robot platform

is as described Sec. 3.1. A room-facing stereo-vision system segments the person from

the background and locates her face. A downward facing stereo-vision system locates

three colored buttons (red, green and blue) in the workspace. It is also used to recognize

the human’s pointing gestures. A spatial reasoning system is used to determine to which

button the human is pointing. The speech understanding system, using Sphinx [Lamere

et al., 2003], has a limited grammar to parse incoming phrases. These include simple

greetings, labeling the buttons in the workspace, requesting or commanding the robot

to press or point to the labeled buttons, and acknowledging that the task is complete.

4.3.1 Experiment

To test the effects of Leo’s nonverbal expressions in cooperative interactions with naïve

human subjects, each subject was asked to guide the robot through a simple button

task where the subjects first taught the robot the names of the buttons, and then had
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Figure 4-3: Leo and his workspace with three buttons and a human partner.

the robot turn them all on. Although simple, this scenario does provide opportunities

for errors to occur: 1) The gesture recognition system occasionally fails to recognize a

pointing gesture. 2) The speech understanding system occasionally misclassifies an ut-

terance. Furthermore, errors that occur in the first part of the task (the labeling phase)

will cause problems in the second part of the task (the button activation phase) if al-

lowed to go undetected or uncorrected.

Two cases are considered in this experiment. In the tr❛♥s♣❛r❡♥t case, the robot

pro-actively communicates internal states through nonverbal behavior and expressive

social cues. In the ✐♥str✉♠❡♥t❛❧ case, the robot only does actions instrumental to the

task and only communicates internal state when explicitly asked by the human. For in-

stance, in the tr❛♥s♣❛r❡♥t case, nonverbal cues communicate the robot’s attentional

state to the buttons and to the human through changes in gaze direction in response

to pointing gestures, tracking the human’s head, or looking to a particular button be-

fore pressing or pointing to it. In addition, the robot conveys liveliness and general

awareness through eye blinks, shifts in gaze, and shifts in body posture between spe-

cific actions. Its shrugging gestures and questioning facial expression conveys confu-

sion (i.e., when a label command does not co-occur with a pointing gesture, when a

request is made for an unknown object, or when speech is unrecognized). Finally, the

robot replies with head nods or shakes in response to direct yes/no questions, followed

by demonstration if appropriate.

The ✐♥str✉♠❡♥t❛❧ case removes the implicit cues that reveal the robot’s internal

state. Eye gaze does not convey the robot’s ongoing attentional focus. Instead, the robot

looks straight ahead, but will still look at a specific button preceding a press or point

action. There are no behaviors that convey liveliness. The robot does not pro-actively

express confusion, and only uses head nods/shakes in response to direct questions.
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4.3.2 Procedure

The experiment had 21 subjects from the local campus population (10 males, 11 fe-

males), ranging in age from approximately 20 to 40 years. None of the participants had

interacted with the Leonardo robot before.

Subjects were first introduced to Leo by the experimenter who pointed out some

of the capabilities of the robot and indicated a list of example phrases that the robot

understands. These phrases were listed on a series of signs mounted behind the robot.

The subject was instructed to complete the following button task with the robot.

1. Teach Leo the names and locations of the buttons.

2. Check to see that the robot knows them.

3. Have Leo turn on all of the buttons. And,

4. Tell Leo that the "all the buttons on task" is done.

Each session was video recorded and the following measures were coded: the total

number of errors during the interaction; the time from when an error occurred to being

detected by the human; the length of the interaction as measured by time and by the

number of utterances required to complete the task. This behavioral analysis tests the

following hypotheses:

H1: The total length of the interaction will be shorter in the tr❛♥s♣❛r❡♥t case.

H2: Errors will be more quickly detected in the tr❛♥s♣❛r❡♥t case.

H3: The occurrence of errors will be better mitigated in the tr❛♥s♣❛r❡♥t case.

4.3.3 Results

The analysis offers support for Hypotheses 1 through 3. Of the 21 subjects, video of 3

subjects was discarded. In two of these discarded cases, the robot was malfunctioning

to the point where the subjects could not complete the task. In the remaining case, the

subject lost track of the task and spent an unusually long time playing with the robot

before she resumed the task. Therefore, the video was analyzed for a total of 18 subjects,

9 for the tr❛♥s♣❛r❡♥t case and 9 for the ✐♥str✉♠❡♥t❛❧ case. Table 4.5 summarizes the

timing and error results of the video coding.

On average, the total time to complete the button task was shorter in the tr❛♥s♣❛r❡♥t

case, offering support for Hypothesis 1. The average time for the subjects to complete

the task in the tr❛♥s♣❛r❡♥t case is 105 seconds with a standard deviation of 38.0, versus

176 seconds with a standard deviation of 140.9 in the ✐♥str✉♠❡♥t❛❧ case. This overall

difference is nearly significant (p = 0.082).
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Table 4.5: Time to complete the overall task as a function of the number of errors (e).

Condition Category Errors Avg Task Time (sec)

tr❛♥s♣❛r❡♥t all samples avg=2.4 105

e ≤ 1 max=1 90

e > 1 max=6 112

✐♥str✉♠❡♥t❛❧ all samples avg=3.3 176

e ≤ 1 max=1 82

e > 1 max=11 293

By breaking each condition into two categories, the low-error trials where one or

zero errors occurred and the high-error trials where at least two errors occurred during

the interaction, we see that the effect of the tr❛♥s♣❛r❡♥t case becomes much clearer as

the number of errors increases. Analyzing only those trials where at least two errors oc-

curred, the average task time for the tr❛♥s♣❛r❡♥t case was 112 seconds with a standard

deviation of 45.4. In contrast, the average task time for the ✐♥str✉♠❡♥t❛❧ case where at

least two errors occurred was 293 seconds (over twice as long), with a standard deviation

of 138.4. This difference is highly significant (p = 0.008).

One reason for the improved overall task time in the tr❛♥s♣❛r❡♥t condition is the

improved robustness during the labeling phase of the task. In the tr❛♥s♣❛r❡♥t condi-

tion, people use the robot’s joint attention ability as an implicit confirmation that the

robot learned to associate the correct button with the desired label. Consequently, they

can quickly detect a possible labeling error and successfully repair it. Without this visual

cue, people spend more time explicitly asking the robot to demonstrate its knowledge

of the buttons with “Can you point to button X” questions (as shown in Table 4.6). In

the tr❛♥s♣❛r❡♥t condition, subjects generated 1.4 such pointing requests on average,

while in the ✐♥str✉♠❡♥t❛❧ condition, subjects generated 6.9 requests on average. This

difference is significant (p = 0.015), supporting Hypothesis 2.

Without the use of gaze as a turn-taking cue, subjects are often much faster in point-

ing towards and labeling the buttons (at normal adult human speed which is too fast

for the robot). Thus in the ✐♥str✉♠❡♥t❛❧ condition, provided the gesture recognition

system is working well, the time to label all the buttons is quite fast. However, if the

gesture system cannot perceive the gesture fast enough or correctly, then the error goes

undetected by the human and causes problems in completing the task. As a result, the

overall time to label all the buttons is slower in the ✐♥str✉♠❡♥t❛❧ condition (see Table

4.6), though this difference is only nearly significant (p = 0.086). If we again focus on the

trials where at least two errors occurred, the effect becomes much more pronounced:
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Table 4.6: Time to complete the labeling portion of the task for each case as a function of the

number of errors (e).

Condition Error Avg. Point Requests Avg. Label Time (sec)

tr❛♥s♣❛r❡♥t all samples 1.4 57

e ≤ 1 0.67 41

e > 1 1.8 65

✐♥str✉♠❡♥t❛❧ all samples 6.9 125

e ≤ 1 4.9 25

e > 1 9.5 249.8

an average labeling time of 65 seconds in the tr❛♥s♣❛r❡♥t condition versus an average

time of 249.8 seconds in the ✐♥str✉♠❡♥t❛❧ condition. This difference is highly signifi-

cant (p = 0.003), further support of Hypothesis 2.

Finally, the occurrence of errors appears to be better mitigated in the tr❛♥s♣❛r❡♥t

case, supporting Hypothesis 3. On average, it took less time to complete the task and

fewer errors occurred in the tr❛♥s♣❛r❡♥t case. For the ✐♥str✉♠❡♥t❛❧ case, the stan-

dard deviation over the number of errors (excluding the error-free trials) is over twice

that of the tr❛♥s♣❛r❡♥t case, showing less ability to mitigate them in the ✐♥str✉♠❡♥t❛❧

case. As seen in Table 4.5, more errors occurred in the ✐♥str✉♠❡♥t❛❧ case than in

the tr❛♥s♣❛r❡♥t case. Video analysis of behavior suggests that the primary reason for

this difference is that the subjects had a much better mental model of the robot in the

tr❛♥s♣❛r❡♥t case due to the nonverbal cues used to communicate the robot’s atten-

tional state and when a communication error was likely to occur. The subjects could see

when a potential error was about to occur and they quickly acted to address it.

For instance, in the tr❛♥s♣❛r❡♥t case, if the subject wanted to label the blue button

and saw the robot fix its gaze on the red button and not shift it over to the blue one, the

subject would quickly point to and label the red button instead. This made it much more

likely for the robot to assign the correct label to each button if the perception system was

not immediately responsive. In addition, in the tr❛♥s♣❛r❡♥t case, the subjects tightly

coordinated their pointing gesture with the robot’s visual gaze behavior. They would

tend to hold their gesture until the robot looked at the desired button, and then would

drop the gesture when the robot re-established eye contact with them, signaling that it

read the gesture, acquired the label, and was relinquishing its turn.

In summary, when the robot’s nonverbal behaviors allowed the human to maintain

an accurate mental model of the robot, the quality of teamwork was improved. This

transparency allowed the human to better coordinate her activities with those of the

robot, either to foster efficiency or to mitigate errors. As a result, the tr❛♥s♣❛r❡♥t case
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demonstrated better task efficiency and robustness to errors. For instance, in viewing

the experimental data, the subjects tend to start off making similar mistakes in either

condition. In the tr❛♥s♣❛r❡♥t condition, there is immediate feedback from the robot,

which allows the user to quickly modify their behavior, much as people rapidly adapt to

one another in interaction. In the ✐♥str✉♠❡♥t❛❧ case, however, subjects only receive

feedback from the robot when attempting to have it perform an action. If there was

an error earlier in the interaction that becomes manifest at this point, it is cognitively

more difficult to determine what the error is. In this case, the visual behavior cues in the

tr❛♥s♣❛r❡♥t condition supports rapid error correction in training the robot.

4.4 Transparent Learning Machines

The Socially Guided Machine Learning viewpoint emphasizes the interactive elements

in teaching. There are inherently two sides to an interaction, and this approach aims to

enhance standard machine learning algorithms from both interaction perspectives.

Chapter 3 described several benefits of utilizing social guidance. Recall that, allowing

the human teacher to administer guidance in addition to feedback in Sophie’s Kitchen

improves learning performance across a number of dimensions. The agent is able to

learn tasks using fewer actions over fewer trials. It has a more efficient exploration strat-

egy that wasted less time in irrelevant states, producing a less random and more sen-

sible exploration which will lead to more understandable and teachable agents. Guid-

ance also led to fewer failed trials and less time to the first successful trial. Additionally

social guidance was utilized in various forms with the Leonoardo robot. In one imple-

mentation the robot participates in a social dialog, allowing a human partner to guide

the robot through the completion of a new task and refines its representation over sub-

sequent attempts with the partner. In a second implementation, Leonardo is an ex-

ploratory learner and the human partner is able to provide suggestions, feedback, and

labels for desired new tasks.

While Chapter 3 dealt mainly with changing the ways that the human is able to in-

teract with the machine learning system, this chapter has detailed the other side of the

coin. This chapter has provided concrete examples of how the learning agent can use

transparency to communicate internal state about the learning process to the human

partner. Moreover, when the learning agent does so it improves its learning environ-

ment, helping the human partner provide better instruction and guidance.

When the Sophie agent uses gazing behaviors to reveal its uncertainties and poten-

tial next actions, people are significantly better at providing more guidance when it is

needed and less when it is not. Additionally these transparency behaviors serve to boost
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the overall believability of the agent. The issue of believability has been addressed in the

animation, video game, and autonomous agent literature for the purpose of creating

emotionally engaging characters [Thomas and Johnson, 1981, Bates, 1997]. One contri-

bution of this work is to show how believability relates to teachability of characters to

improve the experience of the human and the learning performance of the agent.

The Leonardo platform allows for a richer and more extensive repertoire of social

cues. This chapter has described the implementation of several nonverbal behaviors for

Leonardo specifically designed to reveal internal state in the Social Dialog and Guided

Exploration learning mechanisms. Additionally, significant results of such transparency

devices are found in a study with human subjects. When these cues allowed the human

to maintain a good mental model of the robot, the quality of teamwork was improved.

Transparency allowed the human to better coordinate her activities with those of the

robot, either to foster efficiency or to mitigate errors. As a result, the experimental case

that utilized transparency devices demonstrated better task efficiency and robustness to

errors.

Numerous prior works have explored learning agents (virtual or robotic) that can be

interactively trained by people. Many of these works are inspired by animal or human

learning. For instance, game characters that the human player can shape through in-

teraction have been successfully incorporated into a few computer games [Evans, 2002,

Stanley et al., 2005,Stern et al., 1998]. Animal training techniques have been explored in

several robotic agents [Kaplan et al., 2002, Saksida et al., 1998, Steels and Kaplan, 2001].

As a software agent example, Blumberg’s virtual dog character can be taught via clicker

training, and behavior can be shaped by a human teacher [Blumberg et al., 2002].

Many of these prior works agree with our situated learning paradigm for machines,

and have emphasized that an artificial agent should use social techniques to create a

better interface for a human partner. This work goes beyond gleaning inspiration from

natural forms of social learning and teaching to formalize this inspiration and empir-

ically ground it in observed human teaching behavior through extensive user studies.

Thus, another contribution of this work is empirical evidence that social guidance and

transparency create a good interface for a human partner, and can create a better learn-

ing environment that significantly benefits learning performance.

Finally, the scenario of human input has received attention in the machine learn-

ing community. There has been work on computational models of teacher-learner pairs

[Goldman and Mathias, 1996]. Active learning and algorithms that learn with queries

begin to address interactive aspects of a teacher-learner pair [Cohn et al., 1995]. Queries

can be viewed as a type of transparency into the learning process, but in these ap-

proaches this does not steer subsequent input from a teacher. Instead, through its queries,
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the algorithm is in control of the interaction. Cohn et al. present a semi-supervised clus-

tering algorithm that utilizes a human teaching interaction, but the balance of control

falls to the human (i.e., to iteratively provide feedback and examples to a clustering al-

gorithm which presents revised clusters) [Cohn et al., 2003].

Thus, prior works have addressed how human input can theoretically impact a learn-

ing algorithm. In contrast, this work addresses the nature of real people as teachers; the

ground truth evaluation is the performance of the machine learner with non-expert hu-

man teachers. Whereas prior works typically lend control either to the machine or the

human, the contribution of this work is the focus on how a machine learner can use

transparency behaviors to steer the instruction it receives from a human, creating more

reciprocal control of the interaction.
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Chapter 5

The Asymmetry of Human Feedback

In the initial experiments with Sophie’s Ktichen, one of the main findings concerned the

biased nature of positive and negative feedback from a human partner (Section 2.3.3).

Clearly, people have asymmetric intentions they are communicating with their positive

and negative feedback messages.

This chapter addresses the asymmetric meaning of positive and negative feedback.

The intuition is that positive feedback tells a learner undeniably, “what you did was

good.” However, negative feedback has multiple meanings: 1) that the last action was

bad, and 2) that the current state is bad and future actions should correct that. Thus,

negative feedback is about both the past and about future intentions for action.

The two implementations in this chapter present two interpretations of negative

feedback. Both assume that negative feedback from a human partner is feedback about

the action or task performed and at the same time communicates something about what

should follow. In the first example, Leonoardo assumes that negative feedback will lead

to refinement of the performed task example. In the second example, Sophie assumes

that a negatively reinforced action should be reversed if possible. This ❯◆❉❖ interpreta-

tion of negative feedback shows significant improvements in several metrics of learning

performance.

5.1 Negative Feedback Leading to Refinement

Chapter 3 described an implementation that allows the Leonardo robot to learn new

tasks within a social dialog. One particular aspect of that implementation, just-in-time

error correction, utilizes an asymmetric meaning of positive and negative feedback from

a human partner. During the learning dialog, when Leonardo demonstrates a learned

task, positive feedback reinforces a task hypothesis, but negative feedback leads directly

to refinement of the hypothesis.
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This approach is drawn from speech act theory, in particular the concept that speak-

ers intend their larger purposes to be inferred from their utterances [Clark, 1996]. In

the case of Leonardo, by gesturing in a way to solicit feedback after a demonstration the

robot is asking: “Was that the right thing to do?” It is assumed that if the human answers

this question they will infer the larger purpose of the joint activity, which implies some

commitment to a more than a yes/no response. If the human were to simply answer

“no,” this does not represent a commitment to the larger joint activity of helping Leo

correctly learn the task.

5.1.1 Task Execution and Refinement

Recall from Chapter 3, when Leo is asked to do a known task, and the goal is incomplete,

Leo uses the current best task hypothesis for execution, which has a likelihood (between

0 and 1) relative to the other hypotheses available. If this confidence is low ( < .5), Leo ex-

presses tentativeness (frequently looking between the instructor and an action’s object

of attention). Upon finishing the task, Leo leans forward with his ears perked waiting for

feedback. The teacher can give positive verbal feedback (e.g., “Good,” “Good job,” “Well

done,” ...) and Leo considers the task complete and the executed hypothesis gains value

(i.e., the number of seen examples consistent with this hypothesis is incremented; thus,

P (D|h) increases for this hypothesis in the Bayesian likelihood calculation).

After completing the demonstration, if Leo has not yet achieved the goal the hu-

man can give negative verbal feedback (e.g., “No,” “Not quite,” ...) and Leo will expect

the teacher to lead him through the completion of the task. A new example is created

through this refinement stage, as described in Section 3.2.2. Leo makes a representation

of the change over the task and the actions that were necessary to complete it (the ac-

tions he did himself, plus the actions the human requested during refinement). Then a

space of hypotheses consistent with this refined example is expanded, as described in

Section 3.2.3. For each hypothesis, if it already exists in the task hypothesis space then

the number of seen consistent examples is incremented, otherwise it is added to the

space. Again, with the Bayesian likelihood method, the best hypothesis is chosen for the

next execution of this task.

5.1.2 Just-in-Time Correction

The turn-taking dialog framework lets the teacher know right away what problems or

issues remain unclear, enabling just-in-time error correction with refinement to failed

attempts. Through gesture and eye gaze, the robot lets the teacher know when the cur-

rent task representation has a low confidence, soliciting feedback and further examples.
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Algorithm 5 Interactive Q-Learning with the addition of the ❯◆❉❖ behavior

1: while learning do

2: if (reward last cycle <−.25) and (can undo last action, al ast ) then

3: a = undo(al ast )
4: else

5: a = random select weighted by Q[s, a] values
6: end if

7: execute a, and transition to s′

(small delay to allow for human reward)
8: sense reward, r
9: update policy:

Q[s, a] ←Q[s, a]+α(r +γ(maxa′Q[s′, a′])−Q[s, a])

10: end while

A similar goal concept learning could be achieved with a supervised learning ap-

proach that uses batches of positive and negative examples to learn the concept. How-

ever, this does not take advantage of the tightly coupled interactive component of learn-

ing from a human teacher. Leonardo’s on-line interactive learning session lets the hu-

man partner provide examples incrementally. They see through demonstration the cur-

rent state of Leo’s goal concept, and are able to interactively make additions to a negative

example to change it into a positive example of the goal concept.

5.2 Negative Feedback Leading to Action Reversal

The Sophie’s Kitchen platform is used to explore another aspect of reward asymmetry.

In this approach, negative feedback communicates information both to the learning

mechanism updating the policy (in the same way as positive rewards), and also to the

action selection mechanism. This implementation shows significant improvements in

multiple aspects of learning performance with a human partner, allowing the agent to

have a more efficient and robust exploration strategy.

Positive reward for an action just performed gives a clear message to the agent - that

the probability of performing that action in that state should be increased. A symmetric

approach would have the opposite reaction to a negative reward - the probability of

performing that action in that state should be decreased. While learning will occur in the

symmetric case (the success of several renditions of Reinforcement Learning algorithms

are proof), this neglects part of the information communicated by a negative reward.

In addition to communicating that the decision to make that action was wrong, neg-
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ative feedback communicates that this line of behavior or reasoning is bad. Thus a reac-

tion that more closely resembles intuition about natural learning, is to adopt the goal of

being back in the state that one was in before the negative feedback occurred. In many

cases, of course not all, actions performed by an agent in the world are reversible. Thus

upon negative feedback that agent should first update its value function to incorporate

this feedback from the world, but this negative feedback should also communicate with

the action selection mechanism that the next action should be a reversal if possible.

Experiments with the Sophie platform show this behavior to lead to more robust

learning, keeping the agent in the positive areas of the world, approaching the bound-

aries but avoiding the negative spaces. This is particularly important for applications in

robotic agents acting in the real world with physical hardware that may not withstand

much negative interaction with the world. This behavior also generates more efficient

learning, reducing both the total time necessary and the number of trials that end in

failure.

5.2.1 Modification for Sophie’s ❯◆❉❖ Response

The experiment presented below uses a modification to the interactive Q-Learning algo-

rithm, Algorithm 1. This baseline algorithm is modified to respond to negative feedback

with an ❯◆❉❖ behavior (a natural correlate or opposite action) when possible. Thus a

negative reward affects the policy in the normal fashion, but also alters the subsequent

action selection if possible. The proper ❯◆❉❖ behavior is represented within each prim-

itive action and is accessed with an undo function:

• The action ●❖ ❬❞✐r❡❝t✐♦♥❪ returns ●❖ ❬✲❞✐r❡❝t✐♦♥❪

• The action P■❈❑✲❯P ❬♦❜❥❡❝t❪ returns P❯❚✲❉❖❲◆ ❬♦❜❥❡❝t❪

• The action P❯❚✲❉❖❲◆ ❬♦❜❥❡❝t❪ returns P■❈❑✲❯P ❬♦❜❥❡❝t❪

• The ❯❙❊ actions are not reversible.

Algorithm 5 shows how this is implemented with the changes in lines 2−6, as compared

to the baseline Algorithm 1.

5.2.2 Evaluation

Experimental data was collected from 97 non-expert human participants by deploying

the Sophie’s Kitchen game on the World Wide Web. They were asked to help the agent

learn to bake the cake by sending feedback messages as she makes attempts. When

they felt Sophie could bake the cake herself they pressed a button to test the agent and
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obtained their score (based on how many actions it took for the agent to bake the cake

on her own).1 2

The Sophie’s Kitchen platform offers a measurable comparison between two condi-

tions of the learning algorithm. In the ❜❛s❡❧✐♥❡ case the algorithm handles both pos-

itive and negative feedback in a standard way, feedback is incorporated into the value

function (Alg. 1). In the ✉♥❞♦ case the algorithm uses feedback to update the value func-

tion but then also uses negative feedback in the action selection stage as an indication

that the best action to perform next is the reverse of the negatively reinforced action

(Alg. 5). Statistically significant differences were found between the ❜❛s❡❧✐♥❡ and ✉♥❞♦

conditions on a number of learning performance metrics (summarized in table 5.1).

Training Failure Reduction

The ❯◆❉❖ behavior helps the agent avoid failure. The total number of failures during

the learning phase was significantly less in the ✉♥❞♦ case, t (96) = −3.77, p < .001. This

is particularly interesting for robotic agents that need to learn in the real world. For

these agents, learning from failure may not be a viable option; thus, utilizing a negative

feedback signal to learn the task while avoiding disaster states is necessary.

The ✉♥❞♦ case also had significantly less failures before the first goal was reached,

t (96) = −3.70, p < .001. Related to the overall number of failures being less, there were

also less failures before the first success. This is especially important when the agent

is learning with a human partner. The human partner will have a limited patience and

will need to see progress quickly in order to remain engaged in the task. Thus, the ✉♥❞♦

behavior seems to be a good technique for reaching the first success faster.

Training Time Efficiency

There was a nearly significant effect for the number of actions required to learn the task,

t (96) = −1.32, p = .09, with the ✉♥❞♦ condition requiring less steps (the high degree of

variance in the number of steps needed to learn the task leads to the higher p value).

Thus, the algorithm that uses the ✉♥❞♦ behavior is able to learn the task in less time

(fewer total actions taken).

Exploration Efficiency

Another indication of the efficiency of the ✉♥❞♦ case compared to the ❜❛s❡❧✐♥❡ is in the

state space needed to learn the task. The number of unique states visited is significantly

1Full protocol, instructions and consent forms for the study can be found in Appendix A.
2Participation over the web was anonymous and we did not collect gender statistics of the population.
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Table 5.1: 1-tailed t-test: Significant differences were found between the ❜❛s❡❧✐♥❡ and ✉♥❞♦

conditions, in training sessions with nearly 100 non-expert human subjects playing the Sophie’s
Kitchen game online.

Measure Mean baseline Mean undo chg t(96) p

# states 48.3 42 13% -2.26 =.01

# F 6.94 4.37 37% -3.76 <.001

# F before G 6.4 3.87 40% -3.7 <.001

# actions to G 208.86 164.93 21% -2.25 =.01

# actions 255.68 224.2 12% -1.32 =.095

less in the ✉♥❞♦ case, t (96) = −2.26, p = .01. This indicates that when the algorithm

interprets negative feedback as a directive for reversing the previous action, or return-

ing to the previous state, the resulting behavior is more efficient in its use of the state

space to learn the desired task. Thus, the learning agent stays ‘on the right track’ in its

exploration.

5.3 Asymmetric use of Feedback in Machine Learning

In Reinforcement Learning it is usual to represent the distinction between appetitive

and aversive evaluative feedback using just the sign of a scalar reward signal, where pos-

itive means good; negative means bad. Since RL algorithms are based on the objective of

maximizing the sum of rewards over time, this makes sense: positive feedback increases

the sum; negative feedback decreases it. But we see from Chapter 2 that when a human

partner is asked to train an RL agent, they do not use the reward channel in symmetric

ways.

Furthermore, it is clear that biological systems do not have symmetric responses

to positive and negative feedback. Evidence from neuroscience shows that the human

brain processes appetitive and aversive rewards differently. Positive and negative feed-

back stimulate physically different locations in the brain: the left side of the amygdala

responds to positive reinforcement, while the right responds to negative reinforcement

[Zalla et al., 2000]. Additionally, there is evidence for an ‘error processing’ mechanism

where the anterior cingulate cortex generates signals correlated with error detection (in-

dependent of task goal or modality) [Holroyd and Coles, 2002]. This evidence alone does

not tell us how or why to include the asymmetry of feedback in our computational learn-

ing model, but it does inspire us to search for computational grounds for such inclusion

with the goal of developing more efficient and robust learning algorithms. This chap-
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ter has presented two such computational implementations for treating appetitive and

aversive feedback differently.

In the first example, the Leonardo robot assumes that a task demonstration followed

by negative feedback will lead to refinement of that example. This is a departure from the

normal formulation of supervised learning, where the agent receives a bag of positive

and negative examples (or perhaps collects these online over time). In this case the

agent has seen only positive examples, and expands hypothesis goal representations.

Upon executing a task based on one of these hypotheses, and getting negative feedback,

Leo expects the human partner to lead him through refining the example. This lets the

agent at once label the hypothesis as bad and at the same time add another positive

example to its set. Thus refining the hypothesis space with the human partner.

In Sophie’s Kitchen on the other hand, the agent takes a different view of negative

feedback. It assumes that negative feedback should lead to reversing an action if pos-

sible. In the kitchen world, many of the actions are reversible, such that the previous

state can be easily achieved. If negative reinforcement is received and the last action

performed is reversible the agent choses this as the next action rather than using its nor-

mal action selection mechanism. In experiments with human trainers, this version of

the Sophie agent shows significantly better learning performance. The size of the state

space visited is much less, there are significantly fewer failures, and fewer actions are

needed to learn the task.

Finally it is interesting to address the simultaneous use of the two implementations

shown in this chapter. At first glance they may seem incompatible, however, the ap-

proaches represent two strategies on opposite ends of the guidance-exploration spec-

trum. In the Leo example the assumption is that more needs to be done from the current

state and the human partner is guiding the additional steps. On the other hand, the So-

phie example shows the utility of reverting to the previous state and trying again. Wait-

ing for refinement is a guidance-oriented response to negative feedback, while ‘undo’ or

‘do over’ is an exploration-oriented response to negative feedback. In the end, a learn-

ing agent is likely to need the ability to use both strategies, having the ability to slide

dynamically along the guidance-exploration spectrum. As seen throughout this thesis,

the ideal SG-ML system should be able to both learn on its own but take full advantage

of the human partner if they are present and offering support.
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Chapter 6

Contributions

This thesis concerns Socially Guided Machine Learning, exploring the ways in which ma-

chine learning can exploit social learning. The cornerstone of this research is the belief

that machines designed to interact with people to learn new things should more fully be

able to participate in the teaching and learning partnership, a two-way collaboration.

Moreover, the ability to utilize and leverage social interaction is more than a good inter-

face for people, it can positively impact the underlying learning mechanisms to let the

system succeed in a real-time interactive learning session.

Typical machine learning techniques have not been specifically designed for learn-

ing from untrained users, thus the learning process for standard ML techniques is not

currently feasible for non-experts. In Socially Guided Machine Learning, the goal is to

understand how to bridge this gap, enabling machine learning systems to succeed at

learning within a social interaction with everyday people. This chapter details the spe-

cific contributions made in this thesis towards the understanding of Socially Guided Ma-

chine Learning.

• An experiment investigating human teaching behavior yields three general char-

acteristics exhibited across participants.

• The guidance-exploration spectrum is a novel characterization of human inter-

action with machine learning. Three implementations represent several points

along this spectrum.

• An implementation and experiment in Sophie’s Kitchen shows that everyday hu-

man trainers are able to use guidance with a Reinforcement Learning agent, re-

sulting in significant performance improvements.

• Implementations of transparency devices to reveal aspects of the internal learning

state have been shown with software and robotic agents. Experiments with both
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Sophie and Leonardo show that transparency leads to significant improvements

in the quality of instruction received from a human teacher.

• Implementations with Sophie and Leonardo represent two asymmetric interpre-

tations of feedback from a human teacher. An experiment with human trainers

shows significant positive benefits to the learning mechanism.

• Novel approaches and implementations of goal-oriented task learning have been

demonstrated on the Leonardo robot.

6.1 Experimental findings about how people want to teach

This thesis contributes to the understanding of how people approach the task of teach-

ing a machine learner. Numerous prior works have explored learning agents (virtual

or robotic) that can be interactively trained by people, reviewed in Chapter 1. Many of

these works are inspired by animal or human learning (e.g., game characters that the hu-

man player can shape through interaction [Evans, 2002, Stanley et al., 2005, Stern et al.,

1998], and animal training techniques for robotic and software agents [Kaplan et al.,

2002, Saksida et al., 1998, Steels and Kaplan, 2001, Blumberg et al., 2002]). Many of these

prior works are also inspired by a situated learning paradigm for machines, and have

emphasized that an artificial agent should use social techniques to create a better in-

terface for a human partner. The work presented in the thesis goes beyond gleaning

inspiration from natural forms of social learning and teaching to formalize this inspira-

tion and empirically ground it in observed human teaching behavior through extensive

user studies.

The Sophie’s Kitchen experiment presented in Chapter 2 investigates “how people

want to teach” and yields three general characteristics that people exhibited:

• People want the ability to direct the agent’s attention, guiding the exploration.

• Players try to maximize their impact on the learning process as they infer a mental

model of the learner.

• Positive and negative feedback from a human teacher have asymmetric intentions

or meanings.

6.2 The Guidance-Exploration Spectrum

Chapter 3 introduced a novel characterization of human interaction with machine learn-

ing systems, the spectrum of guidance and exploration. As seen in prior works (Sec.
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1.3.1) most systems that incorporate a human teacher into the learning process main-

tain a constant level of involvement of the human partner. Several are highly depen-

dent on the human teacher’s guidance, and will learn nothing without their interaction.

Others are almost entirely exploration based, and barely take advantage of the human

partner. This thesis has addressed the important research question for SG-ML: how to

seamlessly incorporate both guidance and exploration, resulting in a system that can

learn on its own, but also take full advantage of a human partner if they are there to

provide guidance.

Three systems were implemented that explore different points along the spectrum

of guidance and exploration. On the guidance end of the spectrum, ‘Learning within

a Social Dialog’ on the Leonardo robot has many desirable SG-ML qualities that allow

it to take advantage of natural human guidance within a tutorial dialog. On the explo-

ration end of the spectrum, the Sophie’s Kitchen game was modified to incorporate hu-

man guidance, and an experiment with human subjects quantified the effects of human

guidance on a standard exploratory learner. Finally, the lessons from these two sys-

tems result in a third learning mechanism, ‘Guided Exploration’, implemented on the

Leonardo robot, in which the learning system uses both guidance and exploration.

6.3 Guidance with Everyday Human Trainers

Prior works have pointed out how supervision or guidance might benefit a machine

learner [Clouse and Utgoff, 1992, Smart and Kaelbling, 2002], but in the Sophie’s Kitchen

experiments presented in Chapter 3 we are able to show that ordinary people, given only

a high level description of the task and the agent, can understand and utilize a guidance

channel to improve the learning performance.

Guidance allows the agent to learn tasks using fewer executed actions over fewer tri-

als. Our modifications also led to a more efficient exploration strategy that spent more

time in relevant states. A learning process, as such, that is seen as less random and more

sensible will lead to more understandable and believable agents. Guidance also led to

fewer failed trials and less time to the first successful trial. This is a particularly impor-

tant improvement for interactive agents in that it implies a less frustrating experience,

creating a more engaging interaction for the human partner.

6.4 Transparency to Improve the Learning Environment

In human learning, teachers direct a learner’s attention, structure experiences, support

attempts, and regulate complexity. The learner contributes by revealing their internal
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state to help guide the teaching process. Each simplifies the task for each other. The

findings in the study presented in Chapter 2 support this notion of partnership. When

everyday users are asked to train a machine learning agent, they adjust their training

behavior as the interaction proceeds, reacting to the behavior of the learner.

Chapter 4 provided concrete examples of how the learning agent can use transparency

to communicate internal state about the learning process to the human partner. More-

over, experiments show that doing so improves its learning environment, helping the

human partner provide better instruction and guidance.

When the Sophie agent uses gazing behaviors to reveal its uncertainties and poten-

tial next actions, people were significantly better at providing more guidance when it

was needed and less when it was not. The Leonardo platform allows for a richer and

more extensive repertoire of social cues, detailed in Chapter 4. A study with human

subjects shows the significant benefit of these transparency devices. When these cues

allowed the human to maintain a good mental model of the robot, the quality of team-

work was improved. Transparency allowed the human to better coordinate her activities

with those of the robot, either to foster efficiency or to mitigate errors. As a result, the ex-

perimental case that utilized transparency devices demonstrated better task efficiency

and robustness to errors.

6.5 Asymmetric Interpretations of Human Feedback

One of the findings of the experiment in Chapter 2 concerned the biased nature of posi-

tive and negative feedback from a human partner. The majority of participants gave sig-

nificantly more positive rewards than negative rewards. Clearly, people have asymmet-

ric intentions they are communicating with the positive and negative feedback chan-

nels.

Chapter 5 addressed the asymmetric meaning of positive and negative feedback.

The two implementations in this chapter assumed that negative feedback from a human

partner is both feedback about the action or task performed and at the same time com-

municates something about what should follow. In the first example, Leonardo assumes

that negative feedback will lead to refinement of the performed task example. In the sec-

ond example, Sophie assumes that a negatively reinforced action should be reversed if

possible. This ❯◆❉❖ interpretation of negative feedback shows significant improvements

in several metrics of learning performance. In experiments with human trainers, this

version of the Sophie agent shows significantly better learning performance. The size

of the state space visited is much less, there are significantly fewer failures, and fewer

actions are needed to learn the task.
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The approaches represent two strategies on opposite ends of the guidance-exploration

spectrum. In the Leo example the assumption is that more needs to be done from

the current state and the human partner is leading the additional steps. The Sophie

example shows the utility of reverting to the previous state and trying again. Waiting

for refinement is a guidance-oriented response to negative feedback, while ‘undo’ is an

exploration-oriented response to negative feedback. In the end, a learning agent is likely

to need the ability to use both strategies, having the ability to slide dynamically along the

guidance-exploration spectrum. Again this addresses a fundamental SG-ML goal, that

the ideal system should be able to both learn on its own but take full advantage of the

human partner if they are present and offering support.

6.6 Mechanisms of Goal-oriented Learning

The implementations in Chapter 3 address several important aspects of goal-oriented

learning. In most machine learning examples, learning is an explicit activity. The system

is designed to learn a particular thing at a particular time. With human learning, on the

other hand, there is a motivation for learning, a drive to improve, and an ability to seek

out the expertise of others.

Thus, as a departure from a standard machine learning approach, the Guided Explo-

ration implementation described in Chapter 3 has motivations for learning that underlie

all activity: novelty, mastery and activity drives. These competing drives create an explo-

ration behavior that creates learning opportunities for the agent to learn on its own, but

also drive the motivation to take advantage of a human partner when they are available.

Additionally, in most machine learning examples, in particular examples that have a

system learn a new task or skill, it is often assumed that the system is given the task goal

or criteria function. This work backs off of that assumption and addresses how a learner

can be motivated to learn new tasks/goals online with a human partner.

The motivational drives create a good learning environment for a relatively standard

reinforcement learning process. An options learning mechanism is augmented with a

generalization mechanism that allows the system to better refine when a learned task

can be applied. The human scaffolding lets the system define landmarks and goals along

the way rather than the designer having had to encode this into the reward function, and

the human partner structures the environment and the experience to allow for appropri-

ate generalization. Thus, intrinsic measures along with extrinsic support define goals for

the machine, and action policies are learned for reaching these goals. This goal-oriented

approach of having a reinforcement learner define what options are good to know, fram-

ing its own learning problems, is novel and is fundamental for a social learner.
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6.7 Concluding Remarks

In Socially Guided Machine Learning, we advocate designing for the performance of

the complete, coupled human-machine teaching-learning system. This thesis has made

several contributions towards the understanding of Socially Guided Machine Learning,

covering several fundamental SG-ML topics. This new perspective reframes the ma-

chine learning problem as an interaction between the human and the machine, and al-

lows us to take advantage of human teaching behavior to construct a machine learning

process that is more amenable to the human partner. This interaction approach to ma-

chine learning forces the research community to consider many new questions. Some

of the grand challenges ahead for SG-ML include:

• Goal-oriented exploration, exploitation, and experimentation: In order for a sys-

tem to be guidable by an everyday person, the exploration process must be un-

derstandable. This thesis has shown several ways to achieve a more understand-

able exploration, and in future work, this line of research can be taken further.

For example, imagine an experimentation extension to the Explore Action of the

Guided Exploration on Leonardo. Rather than posing the problem as a tradeoff

between exploring and exploiting, for a goal-oriented learner perhaps we need

also to include experimenting. Thus, the system would be able to explore com-

pletely new territory, exploit and practice known tasks and skills, and falling be-

tween these two, the system could alter its known tasks slightly to experiment with

their boundaries and applicability in new domains.

• Mixed-initiative learning: In the learning examples of this thesis the machine learns

a new task through its own experience (guided or instructed by the human part-

ner at times). An important line of future work involves combining the merits of

learning by observation techniques with the kinds of learning through experience

techniques contributed here. In a SG-ML scenario, the machine will likely need

the ability to participate in a mixed-initiative learning interaction, fluidly switch-

ing between watching and acting, in order to learn a new task.

• Appraisal mechanisms: Several areas of future work exist in the study of ways that

an SG-ML system should accurately appraise its environment and its behavior.

Incorporating an emotion system into the cognitive architecture would be a cog-

nitively realistic approach to appraising the internal and external environment.

Additionally, this would allow for the use of affective regulation of the learning

process. As one example this could influence the probability of giving up in the

Relevance Action, or breadth versus depth in an exploration process. Another area
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of study involves how a machine might learn intrinsic measures of success.

• Mechanisms of engagement: In order to remain engaged over long periods of time,

the teaching process has to be rewarding for the human. This thesis has shown a

few ways that the learning process can be made more engaging for the human

partner, but a fruitful area of future work is in exploring various mechanisms of

engagement for the learning process. Visible progress and social connection are

two elements that might strengthen engagement in the machine learning process.

This research agenda will enable a number of exciting future applications. For ex-

ample, personal robot assistants in everyday human environments will require SG-ML

capabilities. When robots are able to learn via social interaction from ordinary people

this will enable them to be usefully deployed in everyday human environments. People

in their homes, schools, hospitals and offices will be able to teach these robots to per-

form new tasks to help them achieve their goals. For instance, a robot that can help an

elderly person remain self-sufficient in their own home, or a robot that can be a coop-

erative partner in a home improvement project. It would be impossible for a designer

to encode into the machine ahead of time every skill necessary to achieve these types of

goals. A machine that learns opportunistically through self-motivated exploration will

also offer a new kind of educational technology. Such a robot could be a true learning

companion for a child, creating a co-learning scenario where the robot and the child

are exploring the environment together, learning from each other’s discoveries. It’s also

important to recognize that teaching is a fundamentally rewarding activity for us as hu-

mans, thus teachable machines and software agents will usher a new realm of entertain-

ment technology. SG-ML technology will enable teachable characters for a novel genre

of computer and robotic games.

In aiming to enable robots and machines in general to learn new tasks from natu-

ral human instruction with ordinary people (not experts in robotics or machine learn-

ing), it will be important to enable these systems to take advantage of social interactions.

Structuring guidance through interpersonal interaction will be natural for everyday peo-

ple who need to teach their machines new things. We need a principled theory of the

content and dynamics of this tightly coupled teaching-learning process in order to de-

sign systems that can learn efficiently and effectively from ordinary users. This thesis

has made several contributions towards the understanding of Socially Guided Machine

Learning, explicating the fundamental SG-ML principles of Guidance, Transparency,

Asymmetry, and Goal-Oriented Learning.
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Appendix A

Sophie’s Kitchen Experiments

Throughout this thesis various experiments were completed with the Sophie’s Kitchen

platform. This appendix will cover the details of exactly how these experiments were

run, both in lab and online, including system configuration difference, instructions, pay-

ments, and consent forms.

A.1 Experiment 1 – in Lab

In the initial experiments in lab, covered in Chapter 2, participants were solicited from

the campus community via email and completed the experiment in the lab space of the

Robotic Life Group and the MIT Media Lab (E15-468).

A.1.1 Experimental Protocol

• Introduction: Participants will be given a short introduction to the study and given

the informed consent form.

• Game Task: Participants will be asked to play a video game. It is expected this will

last for approximately 20-40 minutes (though the time spent is entirely up to the

participant and is one of our measures). In the video game there is a virtual robot

character that is in a scene with a number of everyday objects. After being shown

the game, participants will be given a task that they are to get the robot to learn

how to do (one example: in a kitchen scene they may be asked to teach the robot

the proper sequence of steps involved in baking a cake given objects like bowls,

spoons, sugar, flour, an oven, etc.). The robot character has ’a mind of its own’ and

when told to begin it will try to start guessing how to do the task. The participants

will have to communicate with the character to let it know when it is doing good

or bad until it has the right idea for how to complete the goal task.
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• Questionaire: Once the participant is done they will complete a questionaire.

• Payment: At the end the participant will receive payment. $5 for participation, and

an additional amount (up to $10) based on the performance of their character on

the goal task, based on a demonstration completed after they indicate they are

finished teaching.

A.1.2 Informed consent signed by each participant

You are asked to participate in a research study conducted by Cynthia Breazeal (Asso-

ciate Professor), Guy Hoffman (Ph.D. candidate) and Andrea Thomaz (Ph.D. candidate),

from the Robotic Life Group at the Massachusetts Institute of Technology (M.I.T.). Re-

sults of this study will contribute to the Ph.D. thesis research of Guy Hoffman and Andrea

Thomaz. You should read the information below, and ask questions about anything you

do not understand, before deciding whether or not to participate.

PARTICIPATION AND WITHDRAWAL

Your participation in this study is completely voluntary and you are free to choose whether

to be in it or not. If you choose to be in this study, you may subsequently withdraw from

it at any time without penalty or consequences of any kind. The investigator may with-

draw you from this research if circumstances arise which warrant doing so.

PURPOSE OF THE STUDY

We are investigating Machine Learning applications for software computer games.

PROCEDURES

If you volunteer to participate in this study, we would ask you to do the following things:

You will be asked to play a video game, in which your goal is to train the virtual robot

character to complete one of a variety of tasks. You will be able to communicate with

the character through the use of the keyboard and the mouse. Once you feel your char-

acter has learned the task, you will complete a questionnaire about the experience. The

complete study is estimated to take less than one hour of your time.

POTENTIAL RISKS AND DISCOMFORTS

We are unaware of any potential risks in this experiment.
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POTENTIAL BENEFITS

Your participation will help us to build software agents and robots that are more respon-

sive and sociable learning partners.

PAYMENT FOR PARTICIPATION

Every participant will receive, $5 for doing the experiment. You can receive up to an

additional $10 based on the speed and accuracy with which your character learns the

task.

CONFIDENTIALITY

Any information that is obtained in connection with this study and that can be identified

with you will remain confidential and will be disclosed only with your permission or as

required by law.

IDENTIFICATION OF INVESTIGATORS

If you have any questions or concerns about the research, please feel free to contact:

Associate Professor, Cynthia Breazeal; 617 452 5601; MIT Media Lab, E15-468, Cam-

bridge, MA 02139; cynthiab@media.mit.edu

Andrea L. Thomaz (Ph.D. candidate); 617 452 5612; MIT Media Lab, E15-48, Cam-

bridge, MA 02139; alockerd@media.mit.edu

Guy Hoffman (Ph.D. candidate); MIT Media Lab, E15-468a, Cambridge, MA 02139;

guy@media.mit.edu

EMERGENCY CARE AND COMPENSATION FOR INJURY

“In the unlikely event of physical injury resulting from participation in this research you

may receive medical treatment from the M.I.T. Medical Department, including emer-

gency treatment and follow-up care as needed. Your insurance carrier may be billed for

the cost of such treatment. M.I.T. does not provide any other form of compensation for

injury. Moreover, in either providing or making such medical care available it does not

imply the injury is the fault of the investigator. Further information may be obtained by

calling the MIT Insurance and Legal Affairs Office at 1-617-253 2822."

RIGHTS OF RESEARCH SUBJECTS

You are not waiving any legal claims, rights or remedies because of your participation

in this research study. If you feel you have been treated unfairly, or you have questions
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regarding your rights as a research subject, you may contact the Chairman of the Com-

mittee on the Use of Humans as Experimental Subjects, M.I.T., Room E32-335, 77 Mas-

sachusetts Ave, Cambridge, MA 02139, phone 1-617-253 6787.

SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE

I understand the procedures described above. My questions have been answered to my

satisfaction, and I agree to participate in this study. I have been given a copy of this form.

A.1.3 Written instructions given to participants

Thank you for participating in the Game Character Training Experiment. Read these

instructions and ask the experimenter if you have any questions.

The Game Setup

In this study you play a video game. (If the application is not yet running on the com-

puter please ask the experimenter to start the application so you can view the game

while reading the instructions.) This game has one character, Sophie, a robot in a kitchen.

Sophie begins facing the shelf that has various objects that can be picked up, put down,

or used on other things (a bowl, a spoon, a tray, flour, and eggs). In the center of the

screen is a table, the workspace for preparing foods before they go in the brick oven (on

the left hand side of the screen).

Baking a Cake

In this game your goal is for Sophie to bake a cake, but she does not know how to do

the task yet. Your job is to get Sophie to learn how to do it by playing this training game.

The robot character has ’a mind of its own’ and when you press the ’Start’ button on the

bottom of the screen, Sophie will try to start guessing how to do the task.

Overall steps for baking the cake include:

1. make batter by putting both the flour and eggs in the bowl and

2. mix them with the spoon.

3. then put the batter into the tray

4. then put the tray in the oven
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Feedback Messages

You can’t tell Sophie what actions to do, and you can’t do any actions directly, you’re

only allowed to give Sophie feedback by using the mouse. When you click the mouse

anywhere on the kitchen image, a rectangular box will appear. This box shows the mes-

sage that you are going to send to Sophie.

• Dragging the mouse UP makes the box more GREEN, a POSITIVE message.

• Dragging the mouse DOWN makes the box more RED, a NEGATIVE message.

• By lifting the mouse button, the message is sent to Sohpie, she sees the color and

size of the message and it disappears.

• If you click the mouse button down on a specific object, this tells Sophie that your

message is about that object. As in, “Hey Sophie, this is what I’m talking about..."

(the object lights up to let you know when you’re sending an object specific mes-

sage).

• If you click the mouse button down anywhere else, Sophie assumes that your feed-

back pertains to everything in general.

Disasters & Goals

Sometimes Sophie will accidentally do actions that lead to the Disaster state. (Like

putting the spoon in the oven!) When this happens "Disaster" will flash on the screen,

the kitchen gets cleaned up and Sophie starts a new practice round. Additionally, if

Sophie successfully bakes the cake, “Goal!" will flash on the screen, the kitchen gets

cleaned up and Sophie starts a new practice round. For the disaster state, Sophie is

automatically sent a negative message. For the goal state, Sophie is automatically sent a

positive message.

Completing the Study

Play the training game with Sophie until you believe that she can get the cake baked all

by herself (or you’ve had enough fun with the training game, whichever happens first!).

Note that she may need your help baking the cake more than once before she can do

it herself. When you think she’s got it, press the ’Finish’ button and notify the experi-

menter. At this point your game character will be tested, and your performance will be

calculated based on the time it took you to train the character and how fast your charac-

ter can bake the cake in a test run.
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Practice & Questions

Please take a moment before starting to move the mouse around the kitchen scene and

try clicking/dragging the mouse to get used to how you send messages to Sophie. Then

tell the experimenter that you are ready to go!

A.1.4 Questionnaire Completed by participants

Thank you for participating in the Game Character Training Experiment. To complete

the experiment, we would like you to answer a few questions related to your experience

in the game. For each of the statements below, please indicate – on a scale of 1 to 7, the

degree to which you agree disagree with the statement. Strongly Disagree is 1, Strongly

Agree is 7.

1. My overall experience with the software was enjoyable.

2. I am likely to want to play this game again.

3. The software interface was intuitive and clear.

4. The software interface (not the robot character) was responsive.

5. The robot character was responsive to my commands.

6. The robot character seemed to understand my intentions.

7. The robot character seemed to get better at the task as time went by.

8. The robot character spent much time performing seemingly useless actions.

9. I usually had a good understanding what the robot character was trying to do at a

given moment.

10. I usually had a good understanding what the robot character’s overarching goals

were.

11. When the robot character was making mistakes, I had a good understanding what

the root of those errors were.

12. I could generally tell whether the robot character was undecided.

13. My interaction with the robot character had a positive effect on its performance.

14. The robot character understood where I was trying to direct it.

15. The more I invested in teaching the character, the better it became at solving the

task.

16. The robot character seemed to have a good sense of what a certain reward per-

tained to.

17. As time passed, the robot character seemed to need me less and less

18. I have had significant experience with machine learning software and systems in

the past.
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A.1.5 Informal Interview

After they played the game and completed the questionnaire, each participant talked

casually with one experimenter about the experience. They were not prompted with

particular questions, just asked to give any thoughts or feedback about the experience.

A.2 Experiment 2 – Online

After the first experiment, we made several modifications to the Sophie’s Kitchen game

and had a number of hypotheses. The platform was modified slightly to run as a Java

applet rather than a Java application. A Webpage was built with an Introductory page, an

Informed Consent page, and finally the Java applet. Participants were solicited via MIT

mailing lists and advertisements on craigslist. Each participant was randomly assigned

to a configuration of the applet that conformed to one of the conditions used for the

experiments covered in Chapter 4 and Chapter 5.

In the online version of the game, we had to reduce the task slightly to make the ex-

perience shorter. We took away the spoon and the bowl objects. Thus, now to bake the

cake Sophie needed to put the eggs and flour in the tray, and then put the tray in the

oven. This made the task much shorter, so people were able to spend about 5-15 min-

utes training Sophie, rather than the 30 minutes needed for the previous experiment.

Additionally, the questionnaire portion was conducted through surveymonkey.com di-

rectly after they finished training Sophie.

A.2.1 Experimental Protocol

The study protocol is the same as described in Section A.1.1. We received approval to

make one modification to the online version of the Sophie experiments regarding pay-

ment. We were concerned that if we offered money for the study online we would have

people gaming the system by playing many times in order to collect more money. This

would bias our results considerably. Thus the IRB board agreed that we could offer the

study online without paying people. Since we were asking people to volunteer to play a

game, the enjoyment factor is their benefit or compensation. In practice, we found that

people did need some motivation to participate. Instead of paying each individual, we

had a raffle. Each player had three entries in a raffle for $100 at Amazon.com.
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A.2.2 Introduction page

This is an online game that is part of a research study about how different people try and

teach the Sophie agent. Our hope is that people can have fun teaching an agent a simple

little task, and that we can learn a little about the teac hing process along the way.

How it works:

In this game, players teach the Sophie robot agent to bake a cake. While watching the

agent try to bake the cake on her own, players teach by sending various messages via the

mouse. The entire activty (playing the game and filling out the survey) takes about 15-

20mins. Everyone who completes the study will be entered in a raffle for three chances

to win $100 at Amazon. Please, it is important for the integrity of our study that people

only play the game one time. The study has the following steps:

• First you play the game

• When the game comes up, the instructions will tell you about how to use the

mouse to communicate with Sophie

• Not everyone has the same instructions about the mouse, so it’s important to read

these carefully!

• Be sure to practice with the mouse communication before pressing Start because

you can’t pause the game onc e it’s started.

• When you press the Start button, Sophie will start bumbling around the kitchen

trying to bake a cake.

• When you feel like Sophie has learned, press the ’Sophie is Ready’ button. Sophie

will then try to bake the cake by herself and your score will be calculated based on

her success (and how quickly she can do it).

• You then fill out a survey about your experience playing with Sophie, so tell us

what you thought!

• Finally, you will be given a link to send us an email to enter the raffle. We will con-

firm your entry within a day, and the raffle will be run once the study is complete at

which time we will notify you with the results. You can only enter the raffle once.

We will update this page throughout the study with the number of participants

needed, so you can have an idea of when the raffle will happen.

Requirements:

You will need Java 1.4.2 or higher in order to play this game. This website has been

tested on the PC with Internet Explorer, and Firefox, and on the Mac with Safari, but if

you encounter any problems, please let us know (see the Contact Page).
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A.2.3 Informed consent page

After the introductory page the participant is brought to a page that shows the approved

consent form seen in Section A.1.2. At the bottom of this page they are asked to click a

button ‘I agree’ if they agree with the terms and wish to volunteer for the study.

A.2.4 Instructions

Once they clicked the ‘I agree’ button they were taken to the page with the Sophie’s

Kitchen Java applet. The web-based version of the game has a significantly simpler

description of the instructions. They were asked to read all of the instructions and to

practice with the mouse interface before pressing the start button. Every player saw the

game instructions and the feedback instructions, but only players that were assigned to

a condition using the guidance channel of communication saw the guidance instruc-

tions.

The Game

This is Sophie’s kitchen, she is currently facing the shelf looking at the cooking tools, to

her right is a table, and behind her is the brick oven. Sophie needs to learn how to bake

a cake. The steps are: Make batter by putting the tray on the table, then add eggs and

flour, and finally put the tray in the oven. You can’t do any actions for Sophie, or tell her

exactly what to do, but you can send messages with the mouse to try and help (details

below), Sophie may need help baking the cake a couple of times before she can do it

herself, when she can do it, press ’Sophie is Ready!’ and she will go into TEST mode, you

will get a score based on how many steps she takes and how long you spent training her.

After this, please complete the 2 minute survey. Thanks for playing!

Feedback Messages

You can give feedback messages (+/-) after Sophie does an action. When you click the

LEFT mouse button a rectangle appears, showing your message for Sophie. Drag the

mouse to change the size and color of your message. UP = GREEN (positive), DOWN =

RED (negative).

Guidance Messages

You can direct Sophie’s attention to particular objects with guidance messages. Click the

RIGHT mouse button to make a yellow square (if you only have one mouse button, hold

down the option key to do this type of message). Use the square to help guide Sophie
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to the right objects at the right times, as in ’Pay attention to this!’ Objects light up when

the mouse is over them to help you know what guidance message you will send. You

can only use the guidance on an object (not a location like the table, shelf or oven). And

Sophie only sees your message if she is facing the object. For example, if she is facing

the table and you make the yellow square over the flour on the shelf she won’t see that,

but if you do it when she is facing the shelf, she will see it and think you are telling her to

pay attention to or do something with the flour.

A.3 Guidance Experiment – in Lab

The experiment covered in Chapter 3 was conducted in lab. Participants were solicited

from the campus community via email and completed the experiment in the lab space

of the Robotic Life Group and the MIT Media Lab (E15-468). This experiment used the

protocol seen in Section A.1.1, the informed consent seen in Section A.1.2, and the in-

structions seen in Section A.2.4. In this experiment however, the full set of kitchen ob-

jects is used, rather than the reduced set used in the online version of the experiment.
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Appendix B

Sphinx Grammar

B.1 Full JSGF Grammar with Parse Tags

❁♥✉♠❜❡r❡❞❚❛s❦◆❛♠❡s❃ ❂ t❛s❦ ✭ ♦♥❡ ④❚❆❙❑✲✶⑥ ⑤

t✇♦ ④❚❆❙❑✲✷⑥ ⑤ t❤r❡❡ ④❚❆❙❑✲✸⑥ ⑤ ❢♦✉r ④❚❆❙❑✲✹⑥ ⑤ ❢✐✈❡ ④❚❆❙❑✲✺⑥ ⑤ s✐① ④❚❆❙❑✲✻⑥ ⑤

s❡✈❡♥ ④❚❆❙❑✲✼⑥ ⑤ ❡✐❣❤t ④❚❆❙❑✲✽⑥ ⑤ ♥✐♥❡ ④❚❆❙❑✲✾⑥ ⑤ t❡♥ ④❚❆❙❑✲✶✵⑥ ✮❀

❁s♣❡❝✐❛❧❚❛s❦◆❛♠❡s❃ ❂ ✭ ❁s♣❡❝✐❛❧❚❛s❦◆❛♠❡❖♥✶❃ ⑤

❁s♣❡❝✐❛❧❚❛s❦◆❛♠❡❖♥✷❃ ⑤ ❁s♣❡❝✐❛❧❚❛s❦◆❛♠❡❖❢❢✶❃ ⑤ ❁s♣❡❝✐❛❧❚❛s❦◆❛♠❡❖❢❢✷❃ ✮❀

❁t❛s❦◆❛♠❡s❃ ❂ ❁♥✉♠❜❡r❡❞❚❛s❦◆❛♠❡s❃ ⑤ ❁s♣❡❝✐❛❧❚❛s❦◆❛♠❡s❃❀

❁s♣❡❝✐❛❧❚❛s❦◆❛♠❡s❃ ❂

✭t✉r♥ ❬❛❧❧❪ t❤❡ ❜✉tt♦♥s ✭ ♦♥ ④❚❆❙❑✲❇❯❚❚❖◆❙✲❖◆⑥⑤ ♦❢❢ ④❚❆❙❑✲❇❯❚❚❖◆❙✲❖❋❋⑥✮ ✮ ⑤

✭t✉r♥ ✭ ♦♥ ④❚❆❙❑✲❇❯❚❚❖◆❙✲❖◆⑥⑤ ♦❢❢ ④❚❆❙❑✲❇❯❚❚❖◆❙✲❖❋❋⑥✮ ❬❛❧❧❪ t❤❡ ❜✉tt♦♥s ✮ ❀

♣✉❜❧✐❝ ❁s♣❡❝✐❛❧❚❛s❦◆❛♠❡❖♥✶❃ ❂

✭t✉r♥ ❬❛❧❧❪ t❤❡ ✭❜✉tt♦♥s ⑤ ❧✐❣❤ts ✮ ♦♥✮ ④❚❆❙❑✲❇❯❚❚❖◆❙✲❖◆⑥❀

♣✉❜❧✐❝ ❁s♣❡❝✐❛❧❚❛s❦◆❛♠❡❖♥✷❃ ❂

✭t✉r♥ ♦♥ ❬❛❧❧❪ t❤❡ ✭❜✉tt♦♥s ⑤ ❧✐❣❤ts ✮✮ ④❚❆❙❑✲❇❯❚❚❖◆❙✲❖◆⑥❀

♣✉❜❧✐❝ ❁s♣❡❝✐❛❧❚❛s❦◆❛♠❡❖❢❢✶❃ ❂

✭t✉r♥ ❬❛❧❧❪ t❤❡ ✭❜✉tt♦♥s ♦❢❢ ⑤ ❧✐❣❤ts ✮✮ ④❚❆❙❑✲❇❯❚❚❖◆❙✲❖❋❋⑥❀

♣✉❜❧✐❝ ❁s♣❡❝✐❛❧❚❛s❦◆❛♠❡❖❢❢✷❃ ❂

✭t✉r♥ ♦❢❢ ❬❛❧❧❪ t❤❡ ✭❜✉tt♦♥s ⑤ ❧✐❣❤ts ✮ ✮ ④❚❆❙❑✲❇❯❚❚❖◆❙✲❖❋❋⑥❀
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♣✉❜❧✐❝ ❁ ●r❛♠♠❛r❚❛s❦s✳❜❛❞❙❡♥t❡♥❝❡❃ ❂

✭ ❁♥✉♠❜❡r❡❞❚❛s❦◆❛♠❡s❃ ✮ ④■▼P❘❖P❊❘✲P❍❘❆❙❊⑥❀

♣✉❜❧✐❝ ❁q✉❡st✐♦♥❃ ❂ ✭✭ ❝❛♥ ②♦✉ ✮ ⑤ ✭ ❝♦✉❧❞ ②♦✉ ✮✮ ④◗❯❊❙❚■❖◆⑥❀

♣✉❜❧✐❝ ❁r♦❜♦t♥❛♠❡❃ ❂ ❧❡♦ ⑤ ❧❡♦♥❛r❞♦❀

♣✉❜❧✐❝ ❁❣r❡❡t✐♥❣s❃ ❂ ❤❡❧❧♦ ⑤ ❤✐❀

♣✉❜❧✐❝ ❁❢❛r❡✇❡❧❧❃ ❂ ❬❣♦♦❞❪ ❜②❡ ⑤ ❜②❡❀

❁❛❝t✐♦♥s❃ ❂ ✭❧♦♦❦ ❛t✮ ④▲❖❖❑✲❆❚⑥ ⑤ ♣♦✐♥t ④P❖■◆❚⑥ ⑤

✭✇❤❡r❡ ✐s ⑤ s❤♦✇ ♠❡ ⑤ ❢✐♥❞✮ ④❋■◆❉⑥ ⑤ ✭ ♣r❡ss ⑤ ♣✉s❤ ✮ ④P❘❊❙❙⑥ ⑤

✭ ❢❧✐❝❦ ⑤ ❢❧✐♣ ✮ ④P❖■◆❚✲❋▲■❈❑⑥ ⑤ ✭ sq✉❡❡③❡✮ ④P❖■◆❚✲❙◗❯❊❊❩❊⑥ ⑤

✭ t✇✐st ✮ ④P❖■◆❚✲❋▲■❈❑✲■◆⑥ ⑤ ✭❞♦✉❜❧❡ sq✉❡❡③❡✮ ④P❖■◆❚✲❉❖❯❇▲❊✲❙◗❯❊❊❩❊⑥ ⑤

✭s❧✐❞❡ ✐♥✮ ④❙▲■❉❊✲■◆⑥ ⑤ ✭s❧✐❞❡ ♦✉t✮ ④❙▲■❉❊✲❖❯❚⑥❀

♣✉❜❧✐❝ ❁❛❢❢❡❝tP♦s❃ ❂ ✭❣♦♦❞✮ ⑤ ✭❢✉♥✮ ⑤ ✭❢r✐❡♥❞❧②✮ ⑤ ✭②♦✉r ❢r✐❡♥❞✮ ⑤ ✭♥✐❝❡✮❀

♣✉❜❧✐❝ ❁❛❢❢❡❝t◆❡❣❃ ❂ ✭❜❛❞✮ ⑤ ✭s❝❛r②✮ ⑤ ✭♠❡❛♥✮ ⑤ ✭♥♦t ♥✐❝❡✮❀

♣✉❜❧✐❝ ❁❢❡❡❞❜❛❝❦❃ ❂ ✭✭ ❣♦♦❞ ❥♦❜ ✮ ⑤ ❣♦♦❞ ✮ ④●❖❖❉✲❋❊❊❉❇❆❈❑⑥ ⑤

✭ ♥♦t q✉✐t❡ ⑤ ❜❛❞ ✮ ④❇❆❉✲❋❊❊❉❇❆❈❑⑥❀

♣✉❜❧✐❝ ❁❢✐❧❧❡rP❤r❛s❡s❃ ❂ t❤❡ ⑤ ✭❛t t❤❡✮ ⑤ ❛t ⑤ t♦ ⑤ ✭t♦ t❤❡✮ ⑤ t♦✇❛r❞s❀

♣✉❜❧✐❝ ❁●r❛♠♠❛r❖t❤❡r✳❜❛❞❙❡♥t❡♥❝❡❃ ❂

✭ ❁q✉❡st✐♦♥❃ ⑤ ❁r♦❜♦t♥❛♠❡❃ ⑤ ❁❣r❡❡t✐♥❣s❃ ⑤ ❁❛❝t✐♦♥s❃ ✮ ④■▼P❘❖P❊❘✲P❍❘❆❙❊⑥❀

❁♥✉♠❜❡r❡❞❇✉tt♦♥s❃ ❂ ❜✉tt♦♥ ✭♦♥❡ ④❇❯❚❚❖◆✲✶⑥ ⑤ t✇♦ ④❇❯❚❚❖◆✲✷⑥ ⑤

t❤r❡❡ ④❇❯❚❚❖◆✲✸⑥ ⑤ ❢♦✉r ④❇❯❚❚❖◆✲✹⑥ ⑤ ❢✐✈❡ ④❇❯❚❚❖◆✲✺⑥ ⑤ s✐① ④❇❯❚❚❖◆✲✻⑥ ⑤

s❡✈❡♥ ④❇❯❚❚❖◆✲✼⑥ ⑤ ❡✐❣❤t ④❇❯❚❚❖◆✲✽⑥ ⑤ ♥✐♥❡ ④❇❯❚❚❖◆✲✾⑥ ✮❀

❁♣❡♦♣❧❡❃ ❂ ♠❛tt ④P❊❘❙❖◆✲▼❆❚❚⑥ ⑤ ❥❡ss❡ ④P❊❘❙❖◆✲❏❊❙❙❊⑥ ⑤ ♠❛r❝ ④P❊❘❙❖◆✲▼❆❘❈⑥ ⑤

❛♥❞r❡❛ ④P❊❘❙❖◆✲❆◆❉❘❊❆⑥ ⑤ ❝②♥t❤✐❛ ④P❊❘❙❖◆✲❈❨◆❚❍■❆⑥ ⑤ ❣✉② ④P❊❘❙❖◆✲●❯❨⑥ ⑤

③♦③ ④P❊❘❙❖◆✲❩❖❩⑥ ⑤ ❝♦r② ④P❊❘❙❖◆✲❈❖❘❨⑥ ⑤ ❥❡❢❢ ④P❊❘❙❖◆✲❏❊❋❋⑥ ⑤

❞❛♥ ④P❊❘❙❖◆✲❉❆◆⑥❀

❁❝♦❧♦r❡❞❇✉tt♦♥s❃ ❂ ✭r❡❞ ④❇❯❚❚❖◆✲❘❊❉⑥ ⑤ ❜❧✉❡ ④❇❯❚❚❖◆✲❇▲❯❊⑥ ⑤
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❣r❡❡♥ ④❇❯❚❚❖◆✲●❘❊❊◆⑥✮ ❜✉tt♦♥❀

❁❝♦❧♦r❡❞❇❛❧❧s❃ ❂ ✭r❡❞ ④❇❆▲▲✲❘❊❉⑥ ⑤ ❜❧✉❡ ④❇❆▲▲✲❇▲❯❊⑥ ⑤

②❡❧❧♦✇ ④❇❆▲▲✲❨❊▲▲❖❲⑥ ⑤ ✇❤✐t❡ ④❇❆▲▲✲❲❍■❚❊⑥ ✮ ❜❛❧❧❀

❁♦t❤❡r❚♦②s❃ ❂ ✭❬②❡❧❧♦✇❪ ❧✐③❛r❞✮ ④❚❖❨✲▲■❩❆❘❉⑥ ⑤ ✭ ❬②❡❧❧♦✇❪ ❢✐s❤ ✮ ④❚❖❨✲❋■❙❍⑥ ⑤

✭ ❬❜❧✉❡❪ ❜✉❝❦❡t ✮ ④❚❖❨✲❇❯❈❑❊❚⑥ ⑤ ✭ ❡❧♠♦ ✮ ④❚❖❨✲❊▲▼❖⑥ ⑤ ✭ ❦❡r♠✐t ✮ ④❚❖❨✲❑❊❘▼■❚⑥ ⑤

✭ ❜✐❣ ❜✐r❞ ✮ ④❚❖❨✲❇■●❇■❘❉⑥ ⑤ ✭✇❤❡r❡ ■ t❤✐♥❦ ❡❧♠♦ ✐s✮ ④❍❯▼❆◆✲❇❊▲■❊❋✲❚❖❨✲❊▲▼❖⑥ ⑤

✭❬t♦②❪ ❜♦①✮ ④❚❖❨✲❇❖❳⑥❀

❁♦❜❥❡❝ts❃ ❂ ❁♥✉♠❜❡r❡❞❇✉tt♦♥s❃ ⑤ ❁❝♦❧♦r❡❞❇✉tt♦♥s❃ ⑤ ❁❝♦❧♦r❡❞❇❛❧❧s❃ ⑤

❁♦t❤❡r❚♦②s❃ ⑤ ❁♣❡♦♣❧❡❃❀

♣✉❜❧✐❝ ❁●r❛♠♠❛r❖❜❥❡❝ts✳❜❛❞❙❡♥t❡♥❝❡❃ ❂

✭ ❁♥✉♠❜❡r❡❞❇✉tt♦♥s❃ ⑤ ❁❝♦❧♦r❡❞❇✉tt♦♥s❃ ⑤ ❁♦❜❥❡❝ts❃ ✮ ④■▼P❘❖P❊❘✲P❍❘❆❙❊⑥❀

♣✉❜❧✐❝ ❁❇❛❞❙❡♥t❡♥❝❡s❃ ❂ ❁●r❛♠♠❛r❖❜❥❡❝ts✳❜❛❞❙❡♥t❡♥❝❡❃ ⑤

❁●r❛♠♠❛r❙❡q✉❡♥❝❡s✳❜❛❞❙❡♥t❡♥❝❡❃ ⑤ ❁●r❛♠♠❛r❚❛s❦s✳❜❛❞❙❡♥t❡♥❝❡❃ ⑤

❁●r❛♠♠❛r❖t❤❡r✳❜❛❞❙❡♥t❡♥❝❡❃ ❀

♣✉❜❧✐❝ ❁q✉❡st✐♦♥❙❡♥t❡♥❝❡❃ ❂

❬❁r♦❜♦t♥❛♠❡❃❪ ❬❁q✉❡st✐♦♥❃❪ ❁❛❝t✐♦♥s❃ ❬❁❢✐❧❧❡rP❤r❛s❡s❃❪ ✭❁♦❜❥❡❝ts❃ ✮❀

♣✉❜❧✐❝ ❁❢❡❡❞❜❛❝❦❃ ❂ ✭✭ ❣♦♦❞ ❥♦❜ ✮ ⑤ ✭❣♦♦❞ ✇♦r❦✮ ⑤ ✭❣r❡❛t ❥♦❜✮ ⑤

✭✇❡❧❧ ❞♦♥❡✮ ⑤ ✭❣♦♦❞ ❬❁r♦❜♦t♥❛♠❡❃❪✮✮ ④●❖❖❉✲❋❊❊❉❇❆❈❑⑥ ⑤

✭✭♥♦t q✉✐t❡✮ ⑤ ✭tr② ❛❣❛✐♥✮ ✮ ④❇❆❉✲❋❊❊❉❇❆❈❑⑥❀
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