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Abstract: This paper applies multiobjective optimization to show how the efficient tradeoffs 

between cost and carbon emissions may be obtained in the context of socially responsible 

operations. We thus formulate a model where transportation mode selection and lot sizing 

decisions are considered jointly. We derive structural properties of the model and develop 

several insights that remain hidden under single-objective optimization. First, we show that 

switching to a socially responsible mode of transportation while continuing to optimize the total 

logistics costs function may lead to a dominated solution. Second, we prove that the modal shift 

occurs only under strong carbon emissions reduction requirements. Third, we show that the 

efficient frontier is non-convex. Two classical ways of taking carbon emissions into account in 

the decision making process are also compared and the results are illustrated through an example 

of a French retailer. 
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1.  Introduction 
Environmental and social awareness has considerably increased since the Brundtland report’s 

publication (World Commission on Environment and Development, 1987). Nowadays, many 

leading companies worldwide are committed in creating value for a broader set of stakeholders 

instead of focusing solely on creating profits for shareholders or owners. In extending their 

traditional profit driven perspective, these companies acknowledge the concept of “triple bottom 

line” where planet driven and people driven perspectives are additionally taken into account 

(Elkington, 1998). As an example, two thirds of the European companies have intensified their 

green actions from 2008 to 2010 (Bearing Point, 2010). In line with this trend, the academic 

literature on socially responsible operations has grown rapidly. 

By following the “triple bottom line” principle, socially responsible operations aim at 

optimizing several objectives. In this context, companies may identify situations where multiple 

objectives may be improved simultaneously, i.e. win-win situations. However, these situations 

may become more difficult to find as more socially responsible practices are deployed. 

Consequently, an increasing number of companies start thinking that “sustainability can only be 

attained by optimizing seemingly conflicting targets” (DHL, 2010). In this case, a socially 

responsible company seeks to identify the most favorable trade-off between the considered 

objectives. 

In this paper, we argue that multiobjective optimization would be quite useful for socially 

responsible operations. Multiobjective optimization is the process of simultaneously optimizing 

several objectives. In most of the cases, objectives are conflicting and one cannot identify a 

single solution that simultaneously optimizes each objective. Thus, the aim of multiobjective 

optimization is to identify particular solutions such that, when attempting to improve an 

objective further, other objectives suffer as a result (Ehrgott, 2005). These solutions are called 

efficient or Pareto optimal and they correspond to the tradeoffs that are of interest for socially 

responsible companies. The paper shows how the efficient tradeoffs between different types of 

objectives may be obtained in a decision problem related to socially responsible operations. 

Moreover, some new insights based on the efficient frontier properties analysis are highlighted. 

This paper focuses on a model where transportation mode selection and lot sizing decisions 

are jointly optimized. We indeed acknowledge that inventory and transportation decisions are 

strongly interrelated. However, there is a lack of papers on socially responsible operations 

 2 



addressing this issue. The objective functions taken into account intend to reflect the “triple 

bottom line”. The profit dimension is translated into a cost minimization objective. The planet 

dimension is taken into account via a carbon emissions minimization objective. The reduction of 

carbon emissions is indeed one of the main challenges of socially responsible operations as the 

logistics industry is responsible for around 5.5% of global greenhouse gas emissions worldwide. 

Moreover, this share is even larger in the EU and US and this one is expected to increase in the 

future. These carbon emissions are mainly generated by transportation. Nevertheless, inventory 

contributes to 13% of the logistic sector’s carbon footprint mainly due to indirect emissions from 

electricity consumption (World Economic Forum, 2009). The people related dimension of 

socially responsible operations is generally considered as more difficult to assess. This may 

explain why the social dimension of the “triple bottom line” has received less attention in the 

literature (White and Lee, 2009). An example of social aspect that may be of interest in a model 

that simultaneously considers inventory and transportation decisions is the injury rate. Injuries 

are due to both transportation and warehousing activities and may be related to the order size and 

to the mode of transportation considered. In this paper, we focus on the first two objectives. 

Our multiobjective optimization results enable showing that switching to a greener mode of 

transportation while continuing to optimize the total logistics costs function may lead to a 

dominated option (such that it is possible to reach the same level of carbon emissions with a 

lower cost by solely adjusting the ordering quantity). Second, we prove that a shift towards a 

more carbon-efficient mode of transportation is interesting only for strong carbon emissions 

reduction requirements. Otherwise, lot sizing adjustments may enable efficiently greening the 

supply chain. Third, we show that the efficient frontier is non-convex. This structural property is 

of great importance as this implies that some non-supported solutions exist (Geoffrion, 1968). 

This type of solution cannot be generated by using a linear combination of the objectives. Thus, 

using carbon pricing for such non-convex problems may provide a misleading impression to the 

decision maker as non-supported solutions would be hidden. The paper also contributes to the 

literature on green supply chains by studying a new model that aims at simultaneously 

optimizing the transportation mode selection and the lot sizing decisions while taking carbon 

emissions into account. 

The paper is organized as follows. First, the related literature is reviewed in Section 2. 

Section 3 is then devoted to the presentation of the model, to the multiobjective optimization 
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results and to the presentation of a motivating example. Two classical ways of taking carbon 

emissions into account in the decision making process are then analyzed and discussed in 

Section 4. In the first one, we assume that the company aims at reducing its carbon emissions by 

meeting a self-imposed emissions reduction target. In the second one, a regulatory policy based 

on a carbon tax is imposed to the company. Finally, Section 5 is devoted to the conclusion and to 

future research directions. 

2.  Literature review 
The number of published papers on socially responsible operations has drastically increased 

these last years. We refer to Linton et al. (2007), Srivastava (2007), Seuring and Müller (2008), 

Kleindorfer et al. (2009) and Dekker et al. (2012) for reviews. The planet related dimension of 

socially responsible operations and more particularly carbon emissions have attracted more 

attention. Moreover, most of the model-based research on socially responsible operations focuses 

on mono-objective models. Finally, most of the papers adopt a regulatory perspective, i.e. these 

papers consider that the companies include the “triple bottom line” in their business model 

forced by regulation. However, other considerations such as customers’ pressure, company 

image, resources scarcity issues and employees motivation may also entice the companies to act 

in a socially responsible way. We conclude that there is a gap in socially responsible literature as 

regards the use of multiobjective optimization. 

This paper shows how the efficient tradeoffs between cost and carbon emissions may be 

obtained by focusing on a model where transportation and lot sizing decisions are jointly 

considered. Several papers related to inventory control and carbon emissions have recently been 

proposed. Bonney and Jaber (2011) briefly study the impact of including vehicle emissions cost 

into the EOQ model. Only emissions from transportation are taken into account in the form of a 

fixed emissions cost per shipment. Saadany et al. (2011) study a two-echelon supply chain model 

where the demand is assumed to be a function of the price and product’s environmental quality. 

Hua et al. (2011) study how the carbon emissions trading mechanism can influence optimal 

ordering quantity in the EOQ framework. Carbon emissions issued from both ordering and 

warehousing are taken into account. The authors present analytical and numerical results and 

provide some managerial insights. They especially prove that the amount of carbon emissions 

depends only on the carbon price in the economic order quantity model under a cap and trade 
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regulation. Jaber et al. (2012) include carbon emissions into a joint economic lot-size problem by 

considering different emissions trading schemes. Their numerical study proves that coordination 

minimizes the total system cost without automatically reducing carbon emissions. Bouchery et 

al. (2012) include sustainability criteria into single and multi-echelon inventory models by using 

multiobjective optimization. The efficient frontier is analytically characterized for both models 

and an interactive procedure allowing the company to quickly identify the preferred option is 

proposed. Chen et al. (2013) study the EOQ model with a carbon constraint. They provide 

analytical results and discuss the conditions under which the cost increase is relatively less than 

the carbon emissions decrease. Benjaafar et al. (2013) include carbon emissions constraints on 

single and multi-stage lot-sizing models with a cost minimization objective. Four regulatory 

policy settings are considered. Insights are derived from an extensive numerical study. 

Velázquez-Martínez et al. (2013) examine the limitation of aggregate carbon emissions models 

by studying different aggregate approaches for transportation carbon emissions in a lot-sizing 

model. Their numerical experimentation shows that the magnitude of errors can be substantial. 

Finally, Absi et al. (2013) include carbon emissions constraints on a lot-sizing model. Four types 

of constraints are proposed and analyzed. One case is shown to be solvable in polynomial time, 

while the three others are proven to be NP-hard. The papers cited above focus solely on 

inventory optimization decisions. The impacts of transportation decisions are not taken into 

account as it is assumed that a single mode of transportation is available. All these papers ignore 

the effect of transportation mode selection and most of them are mono-objective. 

Including some carbon emissions concerns into freight transportation mode selection 

problems has also attracted some research as freight transportation is recognized as a main 

contributor of carbon emissions within the supply chain. Winebrake et al. (2008) present an 

energy and environmental analysis model to explore the tradeoffs in an intermodal transportation 

network. Bauer et al. (2009) especially focus on determining the optimal planning for intermodal 

rail transportation in order to minimize the carbon emissions from transportation. Cholette and 

Venkat (2009) present a case study where several modes of transportation are available in a wine 

supply chain context. Their analysis takes cost, carbon emissions and energy consumption into 

account. Pan et al. (2013) investigate how freight consolidation may help in decreasing the 

carbon emissions from transportation. They formulate a carbon emissions minimization model 

where both road and rail transportation are available. They apply their model for optimizing the 
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carbon emissions of two large retail chains. Leal and D’Agosto (2011) consider the 

transportation mode selection decision in a case study based on a bio-ethanol supply chain. 

Socio-environmental considerations are included into the model. To our knowledge, there are the 

only two published papers incorporating carbon emissions into a transportation mode selection 

and inventory optimization problem. Rosič and Jammernegg (2013) extend the dual sourcing 

model based on the newsvendor framework by considering the environmental impact of 

transportation. They analyze two types of regulatory policies, i.e. the carbon tax and the carbon 

cap-and-trade mechanism. They prove that it is possible to reduce the carbon emissions from 

transportation without substantially affecting the economic performance of the system if the cap-

and-trade mechanism is applied with appropriate carbon cap setting. In Hoen et al. (2012), a 

stochastic inventory model is extended to incorporate transport emissions costs. The transport 

mode and order-up-to level of a base-stock inventory policy are jointly optimized in a single 

product setting. 

Our work extends the existing literature in several ways. First, we use multiobjective 

optimization in order to efficiently show the existing tradeoffs that a company can face when 

jointly optimizing transportation mode selection and lot sizing decisions. This process adequately 

reflects the concept of socially responsible operations. Moreover, multiobjective optimization 

helps the decision maker to build a conviction of what is possible and to use this knowledge to 

identify the most valuable trade-off. This conviction may also be reinforced by enabling a 

graphical representation of the interesting tradeoffs. Second, we focus on a joint transportation 

mode selection and lot sizing optimization model. We indeed consider that lot sizing decisions 

have a strong impact both on the transportation mode selection decisions and on the carbon 

emissions levels. Third, our model allows accounting for realistic transportation costs and carbon 

emissions structures as piecewise linear functions may be considered. We also include carbon 

emissions associated with the storage of the product in the analysis instead of considering 

transportation carbon emissions solely. This amount of carbon emissions may indeed affect the 

lot sizing decision and should not be disregarded in the analysis. Fourth, we analyze two 

different decision-making contexts. In the first one, we assume that the company aims at 

reducing its carbon emissions by meeting a self-imposed emissions reduction target. In the 

second case, a regulatory policy based on a carbon tax is imposed to the company. We prove that 
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controlling emissions via a carbon tax has some technical drawbacks mainly due to the fact that 

the efficient frontier is non-convex. 

3.  Model description and multiobjective optimization results 

3.1 Model description 
In this paper, we consider that several transportation options are available for inbound 

transportation. Each option is characterized by a cost function in the form of a fixed cost (per 

vehicle) and a variable cost (per item). Moreover, a fixed lead time is associated to each option. 

The lead time has an effect on the average in-transit inventory level. We also take the capacity of 

each option into account. Finally, a minimum amount per shipment may be considered in order 

to make the option available. The proposed model may be applied in a context where several 

transportation modes including air, water, rail, road and any type of intermodal combination are 

considered. Moreover, the model may also be used to study the effect of speed reduction for a 

given transportation mode as speed is recognized to have some major impacts on costs, fuel 

consumption (Corbett et al., 2009; Fransoo and Lee, 2013) and safety. The model is flexible 

enough to account for realistic transportation cost structures such as the modified all-unit 

discount cost structure studied by Chan et al. (2002) and Croxton et al. (2003). Indeed, any type 

of piecewise linear function may be taken into account by considering each piecewise linear part 

of the transportation cost function as an option characterized by a fixed cost (per vehicle) and a 

variable cost (per item). The minimum and maximum capacity limits enable making the option 

available only for the quantities related to the segment under consideration. 

The per shipment transportation cost function for option 1 is defined as follows for all 

1minQQ ≥  (  x  represents the nearest integer x≥ ) : 

 QLh
Q

QTQTQT TCFCVCC 1
1max

111 )( +







+= , (1) 

with: 

Q  = ordering quantity, 

1minQ  = minimum ordering quantity (if applicable), 

1maxQ  = transportation option capacity ( 1min1max QQ ≥ ), 

1VCT  = variable transportation cost (per item), 
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1FCT  = fixed transportation costs (per vehicle), 

TCh  = in-transit inventory holding costs per product unit and time unit, 

1L  = transportation lead time. 
 

The total inventory holding and transportation cost function per time unit for option 1 is 

defined as follows: 

 DP
Q
DQTCO

Q
DhQQZ CCCC +++= )(

2
)( 11 , (2) 

with: 

Q  = ordering quantity (decision variable), 

D  = demand per time unit, 

Ch  = inventory holding costs per product unit and time unit, 

CO  = fixed ordering costs, 

CP  = purchase costs per product unit. 

Assume that *
1CQ  is the ordering quantity that minimizes the total cost function for option 1 

(i.e. *
1

*
11 )( CCC ZQZ = ). In most of the practical situations, we could observe that 1max

*
1 QQC ≤ . The 

only incentive to order more than the vehicle capacity is provided by CO  which represents costs 

for order forms, authorization, receiving, inspection and/or handling of invoice from the supplier 

(Axsäter, 2006). These costs are generally small comparing to the costs of requiring a second 

vehicle for inbound transportation as well as the costs of holding extra inventory. These costs 

have also been reduced by new technologies such as electronic data interchange or radio 

frequency identification. In the following, we thus assume that 1max
*

1 QQC ≤  (note that a sufficient 

condition for having 1max
*

1 QQC ≤  is given by 
D

hQ
OC 2

2
1max≤ ). As 1CZ  is convex on [ ]1max1min ;QQ , 

we obtain that: 

 



















 +
=

C

FCC
C h

DTO
QQQ

)(2
,min;max 1

1max1min
*

1  . (3) 
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Modeling carbon emissions across the supply chain is attracting more and more research (see e.g. 

Scipioni et al., 2012; Sundarakani et al., 2010). In the proposed model, three main sources of 

carbon emissions may be identified. First, carbon emissions are generated by producing the item. 

We assume that the retailer has no control on the production scheme of the manufacturer (that 

certainly supplies several other retailers) and that the carbon emissions resulting from producing 

the items are thus independent of the batch size and of the transportation mode selected by the 

retailer. A fixed amount of carbon emissions is thus associated to each item due to production. 

Second, carbon emissions are generated by inbound transportation. The transportation mode 

selection as well as the batch size decisions may affect the amount of carbon emissions generated 

by inbound transportation. For a given transportation mode, the generated carbon emissions are 

modeled with a fixed term (due to emissions generated by the vehicle if running empty) and a 

linear term in function of the order size (due to the extra energy consumption generated by 

transporting the items). Note that this modeling is commonly used in the transportation literature 

(see e.g. Pan et al. (2013) for rail and road transportation) and is consistent with the NTM 

methodology (NTM, 2008). Third, an amount of carbon emissions is associated with the storage 

of each product unit per time unit. This amount is mainly due to indirect carbon emissions from 

energy consumption (mainly electricity) in the warehouse. This amount may become important 

in case of refrigeration. As noted earlier, warehousing contributes to 13% of the logistics sector’s 

carbon footprint. 

For transportation option 1, the total carbon emissions in function of the batch size may be 

expressed as follows for all 1minQQ ≥ : 

 DT
Q
D

Q
QThQDPQZ VEFEEEE 1

1max
11 2

)( +







++= , (4) 

with: 

EP  = fixed amount of carbon emissions per item, 

Eh  = inventory holding emissions per product unit and time unit, 

1FET  = fixed amount of carbon emissions per shipment, 

1VET  = variable amount of carbon emissions per product unit. 
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Assume that *
1EQ  is the ordering quantity that minimizes the carbon emissions function for 

transportation mode 1 (i.e. *
1

*
11 )( EEE ZQZ = ). We can observe that 1max

*
1 QQE ≤  (there is no 

incentive to order more than the maximum transportation capacity). It follows that: 

 




















=

E

FE
E h

DTQQQ 1
;1max1min

*
1

2
min;max  . (5) 

3.2 Multiobjective optimization results 
In this paper, the costs and the carbon emissions are considered as two distinct objective 

functions that have to be minimized. An alternative a  is thus said to be dominated if there exists 

another alternative b  that performs at least as good as a  on one objective and that performs 

better on the other objective. Multiobjective optimization consists in identifying all the non-

dominated alternatives called efficient solutions. 

As a first step, we identify the set of efficient solutions when considering transportation 

option 1 solely. In this case, the only decision variable for the problem is the order quantity and 

the set of possible values for Q  is [ ]1max1min ;QQA = . Let ℜ×ℜ→AZ :1 , 

{ })();()( 111 aZaZaZ EC= , for all Aa∈ , with 1CZ  defined by Formula 2  representing the total 

costs and 1EZ  defined by Formula 4 representing the total carbon emissions. 

( ){ )();()( 111 QZQZAZ EC= }AQ∈  is the image of A  in the criterion space (evaluation space). 

The set of efficient solutions also called the efficient frontier is a subset of A  noted 1E . Its 

image in the criterion space is )( 11 EZ . By extension, we also refer to )( 11 EZ  as the efficient 

frontier (in the criterion space) in what follows. Proposition 1 enables identifying analytically the 

efficient frontier, when only one transportation option is available. This one can be expressed in 

function of *
1CQ  and *

1EQ , the optimal ordering quantities defined by Formulas 3 and 5 

respectively. 

 
Proposition 1:  Let 1E  be the efficient frontier of the problem when considering transportation 

option 1 solely, then: 

[ ]);max();;min( *
1

*
1

*
1

*
11 ECEC QQQQE = . 

 

 10 



Note that all the proofs from here onwards may be found in Appendix A. In most of practical 

situations, *
1

*
1 EC QQ <  thus [ ]*

1
*

11 ; EC QQE = . Indeed, 
C

FCC

h
TO 1+

 is generally lower than 
E

FE

h
T 1  as 

the holding cost includes the opportunity cost of the capital tied up into inventory. Moreover, 

transportation is recognized as a major source of carbon emissions. We consider that 

E

FE

C

FCC

h
T

h
TO 11 <

+
 in what follows. 

The following definitions are used in Proposition 2: 

- Let S  be a subset of ℜ×ℜ , )(SConv is the convex hull of S , i.e. the set of all convex 

combinations of points in S . 

- )(SEff is the set of efficient solutions of S . 

- Let S  be a set of efficient solutions (i.e. SSEff =)( ), then S  is convex iff SSConvEff =))(( . 

 
Proposition 2:  Let )( 11 EZ  be the efficient frontier of the problem when considering 

transportation option 1 solely, then: 

)( 11 EZ  is convex. 

 
Proposition 2 implies that the problem behaves nicely when considering only one transportation 

option. Indeed, all the elements of a convex efficient frontier may be generated by minimizing a 

weighted sum of objectives. We prove later that the efficient frontier is non-convex when more 

than one option is considered (see Proposition 6). 

Consider that a second transportation option (option 2) is available. As for option 1, *
2CQ  and 

*
2EQ  may be obtained by using Formula 3 and Formula 5 respectively. Moreover, let 

)( *
22

*
2 CCC QZZ =  and )( *

22
*

2 EEE QZZ = . Proposition 1 and Proposition 2 are also valid for 

option 2. Without loss of generality, we assume that option 1 is less costly than option 2, i.e. 
*

2
*

1 CC ZZ < . Propositions 3 and Lemma 1 restrict the possible number of intersection between 

)( 11 EZ  and )( 22 EZ . Note that S  corresponds to the cardinality of the set S . 
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Proposition 3. Let )( 11 EZ  and )( 22 EZ  be the efficient frontiers for transportation option 1 and 

transportation option 2 respectively, then: 

2)()( 2211 ≤∩ EZEZ . 

 
Lemma 1. Let )( 11 EZ  and )( 22 EZ  be the efficient frontiers for transportation option 1 and 

transportation option 2 respectively, then: 

If *
2

*
1 EE ZZ > , then 1)()( 2211 ≤∩ EZEZ , 

Else { }2;0)()( 2211 ∈∩ EZEZ . 

The efficient frontier of the problem with two available transportation options may be identified 

by applying Lemma 1 and by acknowledging that *
2

*
1 CC ZZ <  as shown in Propositions 4 and 

Proposition 5. 

 

Proposition 4. Let )(EZ  be the efficient frontier for the problem with two available 

transportation options with *
2

*
1 CC ZZ <  and *

2
*

1 EE ZZ >  then: 

If 1)()( 2211 =∩ EZEZ , then the intersection point is noted { }∩∩ ec ;  and: 

{ } { }∩∩ ≤∈∪≤∈= eeEZecccEZecEZ 2222211111 )();()();()( . 

Else 0)()( 2211 =∩ EZEZ : 

If )()( *
11 EZQZ E ⊂ , then: 

{ }*
12222211 )();()()( EZeEZecEZEZ <∈∪= , 

Else, 

{ } )()();()( 22
*

211111 EZZcEZecEZ C ∪<∈= . 
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Proposition 5. Let )(EZ  be the efficient frontier for the problem with two available 

transportation options with *
2

*
1 CC ZZ <  and *

2
*

1 EE ZZ <  then: 

If 0)()( 2211 =∩ EZEZ  then: 

)()( 11 EZEZ = . 

Else 2)()( 2211 =∩ EZEZ . Let { }11; ∩∩ ec  and { }22; ∩∩ ec  be the two intersection points and 

assume that 12 ∩∩ < ee , then: 

{ }111111 )();()( ∩≥∈= eeEZecEZ { }2212222 )();( ∩∩ ≥≥∈∪ eeeEZec { }121111 )();( eeEZec ≥∈∪ ∩  

 

Propositions 4 and 5 enable quickly identifying the set efficient solutions for the problem with 

two transportation options. 

When *
2

*
1 EE ZZ > , i.e. when option 1 is cheaper and option 2 is greener, we can observe that 

switching to a greener transportation option is efficient only in case of a strong carbon emissions 

reduction target. Otherwise, increasing the ordering quantity is more efficient. Proposition 4 also 

implies that switching to a greener mode of transportation while continuing to optimize the total 

logistic cost function may lead to a dominated solution (for instance if )()( 2211 EZEZ ∩  is non-

empty). An example of such situation is proposed in Section 3.3. In this case, the same level of 

carbon emissions may be obtained with a lower cost by only increasing the ordering quantity. 

This result proves that poor decisions may be taken when ignoring the strong interrelationship 

between inventory control and transportation mode selection. When *
2

*
1 EE ZZ < , we could expect 

option 2 to be out of interest as this is possible to obtain a cheaper solution as well as a greener 

solution with option 1. However, these two solutions are not obtained simultaneously in most of 

the cases. Option 2 may thus be considered in some situations as a better compromise between 

costs and carbon emissions. 

 
Proposition 6:  Let )(EZ  be the set of efficient solutions for the problem with two available 

transportation options, then: 

If )()( 11 EZEZ ≠  then )(EZ  is non-convex. 
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The study of the global problem with 2>n  transportation options may be conducted as follows. 

First, the efficient frontier for problem k  noted kE  (with corresponding image noted )( kk EZ ) 

may be identified by using Proposition 1 for all [ ]nk ;1∈ . We assume without loss of generality 

that for all [ ]1;1 −∈ nk , *
1

*
+< CkCk ZZ . Propositions 4 and 5 may be applied to compare option 

[ ]nk ;1∈  to all the other available options [ ]nj ;1∈  (such that kj ≠ ). )(, EZ jk  is the 

corresponding efficient frontier (by extension, we also consider )()(, kkkk EZEZ = ). Let define 


n

j
jkkk EZEZ

1
, )()(

=

∩ = . Note that ∩)( kk EZ  may be an empty set. The efficient frontier of the 

global problem may be identified by applying Proposition 7. 

 
Proposition 7. Let )(EZ  be the set of efficient solutions for the global problem with 2>n  

available transportation options, then: 


n

k
kk EZEZ

1

)()(
=

∩= . 

3.3 Application 
We consider that a French retailer orders bottles of wine from an external supplier. We assume 

that the bottles are delivered on pallets (a full pallet contains 400 bottles) and that the supplier 

requires to order at least one full pallet. The pallet is chosen as the quantity unit in what follows. 

We assume that the hypotheses of the EOQ model are fulfilled. The data relative to the problem 

may be found in Table 1. Inventory holding emissions were estimated by evaluating the 

electricity consumption for six warehouses of a major French retailer. We accordingly assume 

that 65.2=Eh kg CO2 per pallet and per month. 
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Costs (€) 

Q 

time unit 1 month 
quantity unit 1 pallet 

nb product / pallet 400 product/pallet 
product price 7,5 euro/product 

product weight 1,25 kg/product 
unit price 3000 euro/pallet 

unit weight 500 kg/pallet 
inbound distance 500 km 

demand 20 pallets/month 
hc 75 euro/pallet.month 
htc 50 euro/pallet.month 
Oc 100 euro/order 

 

Table 1: Application’s data 
 

We first consider that the retailer decides to use heavy duty trucks for inbound transportation. 

The truck capacity is 33 pallets and the transportation leadtime is 0.5 day. The transportation 

costs follow a modified all-unit discount structure with two discount rates. Moreover, the full 

truckload cost is 600€. In this setting, the company may over-declare a quantity to take 

advantage of the next discount or to take advantage of the full truckload tariff. The per shipment 

transportation cost in function of the order quantity (up to the truck capacity) is shown in 

Figure 1. Note that the in-transit inventory holding cost is also considered in the transportation 

cost function, thus, the cost of transporting 33 pallets is equal to €50.627  (i.e. €600  from the 

full truckload cost + €50.2750*30/5.0*33 = from in-transit inventory). 
 

 
Figure 1: Truck transportation costs in function of the ordering quantity 

 
The NTM methodology (NTM, 2008) was used to evaluate the carbon emissions related to 

transportation. This methodology allows for computing a per product amount of carbon 

emissions by considering a given average load factor. We consider in this application that the 
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load factor depends on the batch size decision. This is indeed common for retailers not to allow 

the logistics provider for including other type of cargo for inbound transportation. The NTM 

methodology provides data for empty truck carbon emissions. This gives 324=FET  kg CO2 for 

the proposed example. We also consider that the maximum load of the truck is 26 tons of cargo. 

The truck is thus fully loaded in volume with 33 pallets for a corresponding load factor of 0.63 in 

this application. This leads to a variable amount of carbon emissions 69.3=VET  kg CO2 per 

pallet. 

In order to apply the model proposed in Section 3, truck transportation mode is divided into 

six different transportation options (due to the piecewise linear structure of the transportation 

cost function). The characteristics of the six options are summarized in Table 2.  
 

 

minQ  maxQ  FCT  VCT  
C

FCC

h
DTO )(2 +  

E

FE

h
DT2  *

CZ  
*
EZ  

*
CQ  *

EQ  

option 1 1 6 0 50 7.3 70.0 1575.00 1161.79 6.0 6.0 
option 2 6 10 300 0 14.6 70.0 1191.67 735.10 10.0 10.0 
option 3 10 14 0 30 7.3 70.0 1191.67 555.25 10.0 14.0 
option 4 14 21 420 0 16.7 70.0 1265.67 410.24 16.7 21.0 
option 5 21 30 0 20 7.3 70.0 1299.40 329.58 21.0 30.0 
option 6 30 33 600 0 19.3 70.0 1608.33 313.92 30.0 33.0 

 

Table 2: Truck transportation options’ parameters 
For option [ ]5;1∈i , assuming that iCi QQ max

* ≤  is reasonable as a better tariff may be achieved for 

iQQ max>  . For option 6, we can notice that CO
D

hQ
>≈ 2041

2

2
6max  which is a sufficient condition 

to assert that 6max
*

6 QQC ≤ . Proposition 1 may be directly used to obtain the efficient frontiers of 

each option solely.  

Figure 2 displays the results in the criterion space for [ ]33;6∈Q . The x-axis represents the 

costs and the y-axis represents the carbon emissions of the available alternatives. The efficient 

solutions are represented with a straight line and the dominated ones with a dash line. Note that 

CP  and EP  are not included in the costs and carbon emissions evaluations as they are not 

affected by a change in the lot size or in the transportation mode. The efficient frontier 

(composed by the six options in the model) may be easily obtained by using the results provided 

in Section 3.2. First it may be noticed that option 1 and option 2 are out of interest as they are 
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dominated by option 3 by applying Proposition 5.  By applying Proposition 4 with option 3 and 

4, we obtain that [ ] [ ]21;7.162.13;104,3 ∪=E . We finally obtain that [ ] [ ]33;7.162.13;10 ∪=TruckE  

by including option 5 and option 6 to the analysis and by applying Proposition 7. 

 

 

 
 

Figure 2: Truck transportation  

 
Assume that the retailer currently orders 10* =CTruckQ  pallets (i.e. that the retailer minimizes its 

total logistics costs). Figure 2 shows that a carbon emissions reduction of 57% can be achieved 

by increasing the ordering quantity up to 33 pallets without switching to a greener mode of 

transportation. Moreover, the required financial effort first remains reasonable when decreasing 

carbon emissions. For instance, increasing the lot size from 10=Q  to 17=Q  enables a 35% 

reduction in carbon emissions for a 6% costs increase. On the opposite, the financial effort will 

increase as Q  is getting closer to *
ETruckQ  (the ordering quantity that minimizes the amount of 

carbon emissions for truck transportation). This feature is commonly highlighted in the literature 

on inventory control with carbon emissions concerns (Bouchery et al., 2012; Chen et al., 2013). 

Consider now that rail transportation is also available for inbound transportation. A train 

includes 26 freight cars, each of them fully loaded in volume with 36 pallets. The rail 

transportation leadtime is 2 days. A fixed transportation cost 449=FCT  € per freight car is 

considered. In opposition to truck transportation, several types of cargo (from several retailers) 

Cost (€/month) 

Carbon emissions(kg CO2/month) 
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may be included into the same train. In this case, the carbon emissions associated with the train 

when running empty may be split between the different users. A fixed amount of carbon 

emissions per freight car is then derived from the average utilization rate of the train. Moreover, 

a variable amount of carbon emissions is associated to each pallet. By using average values 

provided by the NTM methodology, we obtain that 333=FET  kg CO2 per freight car and 

30.1=VET  kg CO2 per pallet. Due to both costs and carbon emissions structure, there is no 

incentive in ordering more than one full freight car. The related characteristics are summarized in 

Table 3. 

 

 

minQ  maxQ  FCT  FET  
C

FCC

h
DTO )(2 +  

E

FE

h
DT2  *

CZ  
*
EZ  

*
CQ  *

EQ  

option 7 1 36 449 333 17.1 71.0 1350.29 258.86 17.1 36.0 
 

Table 3: Train transportation options’ parameters 
 
Without performing the multiobjective optimization analysis provided in this paper, the retailer 

may decide to switch to rail for inbound transportation while continuing to minimize the total 

cost function in order to decrease the carbon emissions of the supply chain. This solution leads to 

1 350 € and 441 kg CO2 per month. This should be compared to 1192 € and 735 kg CO2 per 

month in case of truck transportation with 10=Q (a 40% decrease in carbon emissions for a 13% 

increase in costs). 

Figure 3 displays the efficient frontier for both truck transportation (straight line) and train 

transportation (dash line) in the criterion space. Figure 3 clearly shows that the solution 

consisting in switching to rail while continuing to minimize the cost function is a dominated 

solution. The same decrease in carbon emissions may be achieve with a lower cost by continuing 

to use truck for inbound transportation and by choosing 19=Q (leading to 1 277 € and 440 kg 

CO2 per month). This example clearly shows that switching to a greener mode of transportation 

while continuing to optimize the cost function may not be the best option to green the supply 

chain. This highlights the necessity of taking an integrated inventory control and transportation 

model selection perspective when intending to green the supply chain. 

In the proposed application, truck transportation does not always outperform train 

transportation as the efficient frontier of the global problem includes both truck and train 
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transportation options. Deciding whether to use truck or train for inbound transportation depends 

on the company’s wiliness to reduce its carbon emissions. 

 

 

 
 

Figure 3: Truck versus train transportation in the criterion space 

4.  The carbon cap and the carbon tax cases 
Multiobjective optimization is a first layer of analysis as this may not lead to a unique solution. 

In a second step, the decision maker may identify the most valuable trade-off between costs and 

carbon emissions in the set of the efficient solutions. Moreover, the set of efficient solutions for 

the joint transportation mode selection and lot sizing optimization problem includes more than 

one mode of transportation in non-trivial cases. The decision of choosing the greener option thus 

depends on the company’s willingness to pay for reducing its carbon emissions. This willingness 

to pay may come from several types of pressures that the company can face (i.e. regulation, 

customers’ pressure, employees’ pressure) but may also come from a voluntarily effort made by 

the company (Lieb and Lieb, 2010). 

Two ways of taking carbon emissions into account in the decision making process are 

analyzed in this section. In the first one, we assume that the company aims at reducing its carbon 

emissions by meeting a self-imposed emissions reduction target. In the second case, a regulatory 

policy based on a carbon tax is imposed to the company. For the two situations, we consider that 

Cost  (€/month) 

  

 

Carbon emissions(kg CO2/month) 
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two options are available. We assume that option 1 is cheaper ( *
2

*
1 CC ZZ < ) and that option 2 is 

greener ( *
2

*
1 EE ZZ > ). Several managerial insights are also drawn from comparing the two 

situations. 

4.1 The carbon cap case 
In this section, we assume that the company is voluntarily committed to reduce its carbon 

emissions up to a certain level by self-imposing an upper limit on its carbon emissions. In most 

of the cases, the companies who voluntarily reduce their carbon emissions also want to disclose 

this information to other parties in order to experience some positive side-benefits. For instance, 

Corbett and Klassen (2006) notice that adopting an environmental perspective often yields 

benefits beyond what was expected beforehand. This may explain that 294 of the Global 500 

companies have voluntary emissions reduction targets (Carbon Disclosure Project, 2011). 

Companies often express an emissions reduction target as a percentage reduction of its 

current total emissions. This target may be directly imposed to all the company’s departments or 

to all the company’s products. On the other hand, this target can be modulated in order to 

achieve a stronger reduction for departments or products with a stronger emissions reduction 

potential. In this section, we consider that the emissions reduction target has been translated into 

an upper limit CAP  on carbon emissions for each product. We further assume that *
2EZCAP ≥ , 

which is the minimum amount of carbon emissions that can be emitted with the two available 

modes of transportation. Otherwise, no feasible solution exists. In this context, transportation 

option 2 will performs better than transportation option 1 only if the emissions reduction target is 

strict enough. This result is stated in Proposition 8. 

 
Proposition 8. Assume that the company faces an upper limit on carbon emissions noted CAP , 

then there exists a threshold EL  on carbon emissions such that: 

  - if ELCAP > , option 1 performs better option 2, 

   - if ELCAP < , option 2 is the best option. 

 
The result of Proposition 8 directly follows from Proposition 4. It may also be noticed that the 

value of EL  is not unique if )()( *
22 EZQZ C ⊂ . Moreover, when ELCAP = , the best 
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transportation option has to be determined in a case by case basis. If  )()( 2211 EZEZ ∩  is non-

empty, ∩= eLE  and the performances of both transportation options are the same. Otherwise, 

one of the transportation options outperforms the other one in the case of a carbon cap equal to 

EL . 

4.2 The carbon tax case 
In this section, we consider that a cost is associated to the company’s carbon emissions. Assume 

that the company incurs a cost that is linear in function of its total carbon emissions. This cost 

can be imposed to the company in the case of a carbon tax. However, this cost can also come 

from an internal evaluation from the company, by considering the cost of the energy used or the 

cost issued from an environmental accounting analysis. This cost per amount of carbon 

emissions is noted [ )∞∈ ;0α . In this context, there exists a value ( )∞∈ ;0CL  that allows 

deciding which option is the most interesting as show in Proposition 9. 

 
Proposition 9. Assume that a cost α  is associated to the company’s carbon emissions, then 

there exists a unique value CL  such that: 

  - if CL<α ,  option 1 performs better than option 2, 

   - if CL>α , then option 2 is the best option. 

 
Contrary to the carbon cap case, the value of CL  is unique and corresponds to the slope of the 

common tangent of )( 11 EZ  and )( 22 EZ . The value of CL  may be easily approximated by 

finding a value of 1α  such that option 2 is the best option (i.e. CL>α ) and by applying the 

bisection method on the interval [ ]1;0 α  (at each iteration, the interval [ ]1; +ii αα  such that option 

1 is the best option if iαα =  and option 2 is the best option if 1+= iαα  is considered). 

4.3 Discussion 
Proposition 1 implies that increasing the batch quantity for a given transportation option may 

enable reducing the carbon emissions of the supply chain. This gives additional flexibility to 

supply chain managers who are likely to be focused on low-carbon transportation projects 

implementation without taking a global supply chain costs and carbon emissions perspective. 
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Then, the question is to decide whether to only modify the ordering quantity or to switch to a 

greener transportation option when intending to reduce the carbon footprint of the supply chain. 

Two different contexts have been analyzed. In the first one, the company aims at reducing its 

carbon emissions by meeting a self-imposed emissions reduction target. In the second case, a 

regulatory policy based on a carbon tax is imposed to the company. We have proven that the 

analysis of these two decision contexts may be simply performed by directly extending the 

proposed multiobjective optimization results. 

These two contexts are illustrated on the example provided in Section 3.3 (see Figure 4). For 

the carbon cap case studied in Section 4.1, we obtain that 386== ∩ELE  kg CO2/month. This 

amount should be compared with the cost minimization solution where the related level of 

carbon emissions is 735 kg CO2/month. Thus, the company should be committed in decreasing 

its carbon emissions by almost 50% to make the modal shift happen. For the carbon tax case 

studied in Section 4.2, we obtain that 35.1670=CL €/ ton CO2. This result shows that an 

extremely high emissions cost is required to induce a modal shift. This result is consistent with 

other studies such as Hoen et al. (2012). 

 

 
 

Figure 4: Carbon cap and carbon tax limit values 

 

Cost  (€/month) 

  

 

Carbon emissions(kg CO2/month) 

 

CL
xyy −= 0

EL
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We can then conclude that realistic values of the emission cost are expected to have a limited 

effect on modal shift due to the price inelasticity of freight transportation. Moreover, the 

financial effort will considerably increase as getting closer to the minimum amount of emissions 

as both operational costs and emissions costs will significantly increase. Our results also show 

that controlling emissions via a carbon price has some technical drawbacks due to the fact that 

the efficient frontier is non-convex in most of the situations as proven in Proposition 6. In this 

case, the non-supported efficient solutions cannot be generated by modifying the value of the 

carbon tax. However, these solutions may be chosen by companies committed in self-imposed 

carbon emissions reduction targets. For instance, the efficient solution corresponding to 

ELCAP =  is non-supported as shown in Figure 4. Several solutions may also be optimal for a 

given carbon price as in the case where CL=α . However, the costs and the carbon emissions 

are different for both options. At a macroeconomic level, this operational flexibility implies that 

the total amount of carbon emissions is hardly controllable by setting a carbon price. Whatever 

the chosen value of α , some companies may face CL=α . These companies may thus be able to 

choose among several carbon emissions levels. However, governments are interested in 

designing regulatory policies that enable to predict and manage the global amount of carbon 

emissions as many countries have ratified the Kyoto protocol mainly based on a negotiated 

carbon cap for each country (UNFCC, 1997). 

As a result, using an upper limit on carbon emissions seems to be more effective to green 

supply chains as the previous drawbacks are avoided. Moreover, using a carbon cap is in 

accordance with multiobjective optimization principles. Indeed, all the efficient solutions of the 

problem may be generated by gradually strengthening the constraint on carbon emissions starting 

from )( *
11 CE QZ  (which correspond to the efficient solution associated to the maximum amount of 

carbon emissions). This observation is the basis of the epsilon-constraint method (Ehrgott, 2005). 

However, a regulatory policy based on a carbon cap without the opportunity to trade allowances 

may be harder to implement as a carbon emissions reduction target has to be set up with a lot of 

caution for each company. To our knowledge, such a regulatory policy has never been 

implemented. One way to overcome this issue may consist in designing regulatory policies that 

entice the companies to self-impose an upper limit on their carbon emissions. For instance, 

disclosure requirements, innovation supports or technical regulations may be considered. 
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5.  Conclusions 
This paper applies multiobjective optimization to show how the efficient tradeoffs between 

different types of objectives may be obtained in the context of socially responsible operations. 

Moreover, the efficient frontier properties enables us to identify several insights that remain 

hidden when considering single-objective models. The paper focuses on joint inventory and 

transportation model with cost and carbon emissions objectives. We prove that switching to a 

greener mode of transportation while continuing to optimize the total logistics costs function 

may lead to a dominated solution. The proposed results give additional flexibility to supply chain 

managers who are likely to be focused on low-carbon transportation projects implementation 

without taking a total supply chain costs and carbon emissions perspective. We also prove that 

the modal shift is interesting only for strong carbon emissions reduction requirements. 

Otherwise, lot sizing adjustments may enable efficiently greening the supply chain. The 

proposed model is shown to be applicable in an industry example based on relevant data. In this 

example, the modal shift is interesting for a 50% carbon emissions reduction target or for a 

carbon price greater than 1670€/ton CO2. On other situations, adjusting the ordering lot size 

would be more efficient to green the supply chain. Two classical ways of reducing supply 

chain’s carbon emissions are studied. For both a regulatory policy based on a carbon tax and a 

self-imposed carbon emissions reduction target, we prove that there exists a limit value that 

allows deciding between two available modes of transportation. We also prove that controlling 

emissions via a carbon tax has some technical drawbacks mainly due to the fact that the efficient 

frontier is non-convex. 

Several research directions can be considered. First, other models related to socially 

responsible operations could be revisited by using multiobjective optimization. Multiobjective 

optimization could indeed be efficiently used as a first step of analysis in order to provide an 

effective decision making support tool to the decision maker by enabling a graphical 

representation of the existing trade-offs. The decision maker may thus easily build a conviction 

of what is possible and use this knowledge to identify the most valuable trade-off. Moreover, this 

process of simultaneously optimizing several conflicting objectives adequately reflects the 

concept of socially responsible operations as the “triple bottom line” is a good illustration of 

multiple objectives. 
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Second, other transportation mode selection and inventory optimization models could be 

studied. For instance, considering both stochastic demand and stochastic transportation lead 

times may enable enriching the analysis. In this case, safety stock optimization decisions has to 

be considered in addition to transportation mode selection and batch size optimization decisions. 

More complex supply chain structures could also be considered by revisiting the multi-echelon 

lot sizing models. Considering a carbon-sensitive demand could also be of great interest as 

customers’ pressure is nowadays considered as a main driver of environmental improvements for 

companies. 

Third, other aspects of the “triple bottom line” could also be considered in order to take a 

broader socially responsible operations perspective. For instance, very interesting analyses may 

be developed by taking the impact of working conditions into account such as the level of 

training into operations management models. Other people related dimensions of socially 

responsible operations such as the risk of accident resulting in injuries or deaths may also be 

included into the models. This research direction may however be viewed as a challenging one as 

there is still a lack of consensus on how to assess the people related dimension of socially 

responsible operations. 
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Appendix A 

Proof of Proposition 1: 
Both )(1 QZC  and )(1 QZ E  are convex on [ ]1max1min ;QQ . 

If *
1

*
1 EC QQ = , *

11 CQE =  as *
1CQ  is the optimal ordering quantity for both costs and carbon 

emissions. 
Assume that *

1
*

1 EC QQ < : 

- )(1 QZC  is strictly increasing on ],[ *
1

*
1 EC QQ , 

- )(1 QZ E  is strictly decreasing on ],[ *
1

*
1 EC QQ , 

- )(1 QZC  and )(1 QZ E  are strictly increasing on ],[ 1max
*

1 QQE  and strictly decreasing on 

],[ *
11min CQQ  then the solution is dominated if ],[ *

1
*

1 EC QQQ∉ . 

By using the same argumentation in the case where *
1

*
1 CE QQ < , it follows that: 

)],max();,[min( *
1

*
1

*
1

*
11 ECEC QQQQE = . 

Proof of Proposition 2: 
Let { }ec,  be an element of ))(( 11 EZConv . { }ec,  may be expressed as the barycenter of at most 
three elements of )( 11 EZ  by using Carathéodory’s theorem, thus there exists { } 3

1321 ;; EQQQ ∈  

such that: 
{ } { })()()(.);()()(., 313212111313212111 QZQZQZQZQZQZec EEECCC λλλλλλ ++++=  

with 1
3

1
=∑

=i
iλ . 

As )(1 QZC  and )(1 QZ E  are convex on 1E , we obtain that )( 3322111 QQQZc C λλλ ++≥  and that 

)( 3322111 QQQZe E λλλ ++≥ . Moreover, the equalities hold only if { } )(, 11 EZec ∈ . We thus 

conclude that )()))((( 1111 EZEZConvEff =  as 1332211 EQQQ ∈++ λλλ . 

 

Proof of Proposition 3: 
Let { }ec,  be an element of )()( 2211 EZEZ ∩ . Then there exists { } 2121; EEQQ ×∈  such that 

)()( 2211 QZQZc CC ==  and )()( 2211 QZQZe EE == . 
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As 
E

FE

C

FCC

h
T

h
TO 11 <

+
 and  

E

FE

C

FCC

h
T

h
TO 22 <

+
, we obtain that 0<A  and 0>B . 

If 0=C , 21 Q
A
BQ −= . By substituting, we obtain that: 
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Then )( 2QP  is a second degree polynomial that has at most two roots, thus 
2)()( 2211 ≤∩ EZEZ . 

If 0≠C , then: 0
2

2
1 >

−
=

ACQ
BQQ , thus 

C
AQ >2  as 0>B . 0

1

1
2 >

−
=

BCQ
AQQ , thus 

C
BQ <1  as 

0<A . 

If 0<C , then 0<
C
B  and 0)()( 2211 =∩ EZEZ . 

Assume that 0>C : 

By taking 
ACQ

BQQ
−

=
2

2
1 , we obtain that: 
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3
221 ...)( QQQQP ,  with 0

2
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D
ChEα , 

CTT
B
CTBA

D
h

VEVE
FEE )()(

2 21

2
1 −+++=β , 

CT
B

ACTTTA FE
FE

VEVE 2
1

12
2)( −−−=γ  and 

B
TAAT FE

FE
1

2

2 +=δ . 

If 0≤δ  then )( 21 QP  has at least one negative root as )( 21 QP  tends to ∞  as 2Q  tends to ∞−  (
0<α ). Therefore, )( 21 QP has at most two strictly positive roots, thus 2)()( 2211 ≤∩ EZEZ . 

Assume that 0>δ : 
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γβα ++=
∂

∂
2

2
2

2

21 23)( QQ
Q
QP . Let ∆  be the discriminant of 

2

21 )(
Q
QP

∂
∂ , then αγβ 124 2 −=∆ . 

If 0≤∆ , then 
2

21 )(
Q
QP

∂
∂  has at most one root. In this case, the sign of 

2

21 )(
Q
QP

∂
∂  changes at most 

once, then )( 21 QP  has at most two roots and we can conclude that 2)()( 2211 ≤∩ EZEZ . 

If 0>∆ , the two roots of 
2

21 )(
Q
QP

∂
∂  are 

α
β
6

2
1

∆−−
=q  and 

α
β
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2
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=q . 
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α
βq . As the sign of 

2

21 )(
Q
QP

∂
∂  changes at most once on *

+ℜ , then 

)( 21 QP  has at most two strictly positive roots and we can conclude that 2)()( 2211 ≤∩ EZEZ . 

Assume that 0>β : 

If 0≥γ , then β2≥∆  thus 0
6

2
2 ≤

∆+−
=

α
βq  as 0<α . As the sign of 

2

21 )(
Q
QP

∂
∂  changes at 

most once on *
+ℜ , then )( 21 QP  has at most two strictly positive roots and we can conclude that 

2)()( 2211 ≤∩ EZEZ . 

Assume finally that 0<γ : 

Let 2

2

3α
β

α
γ
−=p , 23

3

327
2
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α
δ
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−+=r  and 
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As 0>s , )( 21 QP  is a third degree polynomial with only one root thus 1)()( 2211 ≤∩ EZEZ . 

Proof of Lemma 1: 
Recall that *

2
*

1 CC ZZ < . 

If *
2

*
1 EE ZZ > , then there exists either zero or an odd number of intersections between )( 11 EZ  

and )( 22 EZ . As 2)()( 2211 ≤∩ EZEZ  by applying Proposition 3, then 1)()( 2211 ≤∩ EZEZ . 

If *
2

*
1 EE ZZ < , then there exists an even number of intersections between )( 11 EZ  and )( 22 EZ . As 

2)()( 2211 ≤∩ EZEZ  by applying Proposition 3, then { }2;0)()( 2211 ∈∩ EZEZ . 
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Proof of Proposition 4: 
As *

2
*

1 EE ZZ > , then 1)()( 2211 ≤∩ EZEZ  by applying Lemma 1. 

If { }∩∩=∩ ecEZEZ ;)()( 2211 : 
)( *

11 CQZ  is efficient, moreover, both )( 11 EZ  and )( 22 EZ  are continuous as convex by applying 

Proposition 2. This implies that all the elements )();( 1111 EZec ∈  with ∩≤ cc1  are efficient and 

that all the elements )();( 2222 EZec ∈  with ∩> ee2  are dominated. 

As )( *
22 EQZ is efficient, we conclude that all the elements )();( 1111 EZec ∈  with ∩> cc1  are 

dominated and that all the elements )();( 2222 EZec ∈  with ∩≤ ee2  are efficient. We conclude 
that { } { }∩∩ ≤∈∪≤∈= eeEZecccEZecEZ 2222211111 )();()();()(  

Else =∩ )()( 2211 EZEZ Ø: 

If )()( *
11 EZQZ E ⊂ , then all the element of )( 11 EZ  are efficient. Moreover, the only 

efficient solutions of )( 22 EZ  are the ones with lower carbon emissions thus: 
{ }*

12222211 )();()()( EZeEZecEZEZ <∈∪= . 

Else all the elements of )( 22 EZ  are efficient and the only efficient solutions of )( 11 EZ  

are the ones with lower costs thus: 
{ } )()();()( 22

*
211111 EZZcEZecEZ C ∪<∈= . 

Proof of Proposition 5: 
As *

2
*

1 EE ZZ < , then { }2;0)()( 2211 ∈∩ EZEZ  by applying Lemma 1. 

If =∩ )()( 2211 EZEZ Ø, then all the elements of )( 22 EZ  are dominated by elements of )( 11 EZ  

thus )()( 11 EZEZ = . 

Else, { } { }22112211 ;;)()( ∩∩∩∩ ∪=∩ ececEZEZ  with 12 ∩∩ < ee . By using the same arguments as for 

Proposition 4, we conclude that: 
{ 111111 )();()( ∩≥∈= eeEZecEZ or } { }122222221 )();( ∩∩∩ ≤≤∈∪≤ eeeEZecee . 

Proof of Proposition 6: 
If )()( 11 EZEZ = then )(EZ  is convex by applying Proposition 2. 

Else: 
If =∩ )()( 2211 EZEZ Ø, then )(EZ  is non-continuous thus non-convex. 

Else, assume that { }∩∩ ec ;  is the element of )()( 2211 EZEZ ∩  with the biggest evaluation in terms 
of carbon emissions. Let ε  be a small positive number. Then both ε+=∈ ∩eeEZec 11111 )();(  

and ε−=∈ ∩eeEZec 22222 )();(  are included into )(EZ  by applying Propositions 4 and 5. Let  
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);( 33 ec  
2

21
3

ccc +
= , 

2
21

3
eee +

= . );( 33 ec  is an element of ))(( EZConv , moreover, );( 33 ec  

dominates { }∩∩ ec ; . This proves that )()))((( EZEZConvEff ≠ thus )(EZ  is non-convex. 

 

Proof of Proposition 7: 
Assume that ∩∈ )();( kkkk EZec  with [ ]nk ;1∈ . Then )();( EZec kk ⊂  by definition of an 

efficient solution thus )()(
1

EZEZ
n

k
kk ⊂

=

∩ . 

Let )();( EZec ∈ . As 
n

k
kk EZEZ

1

)()(
=

⊂ , there exists [ ]nk ;1∈  such that )();( kk EZec ∈ . If 

∩∉ )();( kk EZec , then it is a dominated element thus )();( EZec ∉  which is a contradiction. 

Thus, 
n

k
kk EZEZ

1

)()(
=

∩⊂ . 

This proves that 
n

k
kk EZEZ

1

)()(
=

∩= . 

Proof of Proposition 8: 
A feasible value of EL  may be constructed as follows: 

If { }∩∩=∩ ecEZEZ ;)()( 2211 , then ∩= eLE , 

If )()( *
11 EZQZ E ⊂ , then )( *

11 EEE QZL = , 
Else )( *

22 CEE QZL = . 

By using Proposition 4, we can conclude that: 
- if ELCAP > , option 1 performs better than transportation mode 2 as )();( EZec ∈  such that 

CAPe =  is included into )( 11 EZ . 

- if ELCAP < , option 2 is the best option as )();( EZec ∈  such that CAPe =  is included into 

)( 22 EZ . 

Proof of Proposition 9: 
In the criterion space, for ( )∞∈ ;0α , the cost minimization problem resulting from associating a 

cost α  to the company’s carbon emissions is equivalent to find the tangent point between the 

efficient frontier )(EZ  and a straight line of slope 
α
1

− . As *
2

*
1 EE ZZ > , there is a unique 

common tangent to )( 11 EZ  and )( 22 EZ . Let 
CL

1
−  be the slope of this common tangent. Then: 

- if CL<α ,  option 1 performs better than option 2, 

 - if CL>α , then option 2 is the best option. 
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