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Abstract.  The observance of unpredictable episodes of clustered volatility in some 

data series has led to the development of models of social processes that will give rise 

to such clustered volatility.  Such models are not, however, validated directly against 

qualitative evidence about the behaviour of individuals and how they interact.  An 

agent based simulation model of the effect of drought on domestic water consumption 

is reported here that is the outcome of a process of development involving 

stakeholders to inform and validate the model qualitatively at micro level while 

ensuring that numerical outputs from the model cohere with observed time series data.  

We argue that this cross-validation of agent based social simulation models is a 

significant advancement in the analysis of social process. 

1. The issues. 

The relationship between social processes and institutions and social statistics has 

been an important and controversial issue in sociology at least since the publication in 

1904-5 of Max Weber’s The Protestant Ethic and the Spirit of Capitalism (Weber 

1958).  In this paper, we are concerned with that relationship.  We argue that, on the 

basis of the evidence of social enquiry, analytic models do not obviously explain 

important properties of social statistics.  However, a class of simulation models does 

generate numerical outputs that are consistent with important properties of real social 

statistics.  These models have two further properties that should be of consuming 

interest to sociologists.  One is that they appear to produce data with empirically 

relevant properties because they capture features of social order that are the subject of 

sociological enquiry – the social embeddedness of individuals together with the 

emergence of social norms.  The other is that these models naturally draw upon and 

cohere with the sort of detailed, qualitative studies of social processes found in core 

strands of the sociological literature. 

Our central argument can be seen as an operationalisation of some elements of 

structuration theory (Giddens 1984).  According to Blaikie (1993), Giddens proposed 

that social research can take place at four related levels: (1) hermeneutic elucidation 

of frames of meaning, (2) investigation of context and form of practical 

consciousness, (3) identification of bounds of knowledgeability and (4) specification 

of institutional orders.  Of these four levels, says Blaikie, the first two are “micro” and 

best investigated qualitatively while the second two are “macro” and best investigated 

with quantitative methods.  This view is very close to ours.  The micro behaviour is 

the behaviour of observed actors and described by autonomous software modules 

called agents.  The macro behaviour is the behaviour of a social institution 

(organisation, community, set of customers, or whatever) or a collection of such 

institutions and is described by the properties of the model containing the agents.  The 

properties of the model as a whole are amenable to summary using descriptive 

statistics while the behaviour of the individual agents can (and we argue should) be 

described qualitatively.   
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We neither seek nor claim an exact parallel with structuration theory.  Agents are 

not replications of persons.  They are simplified, formal representations.  The 

simplicity and formality reduces the ambiguity of any analysis of their behaviour and 

social interaction at the cost of losing expressiveness relative to qualitative studies of 

observed actors.  Consequently, there seems little to be gained by an in-depth study of 

a hermeneutic circle of a social simulation model.  As will become evident below, 

there is more to be gained from an analysis of the social context of individual agents – 

the other agents with which they interact and the patterns and extent of the influence 

of specific agents upon one another.  At the macro level, our concern is with the 

identification of ‘statistical signatures’ that can be explained by appeals to qualitative 

micro level behaviour and interaction.  When such micro level phenomena can be 

demonstrated to describe aspects of observed social behaviour and interaction and, at 

the same time, to generate the macro level phenomena sharing the statistical signature 

of real social data, then we shall say that the model has been cross-validated.  That is, 

the micro level behaviour has been validated qualitatively by domain experts and the 

macro level data has been validated by comparing statistical properties of the 

numerical outputs from the models with real social statistics.  The link between the 

two is provided by simulations with the model.  The chains of causation identified in 

simulation runs demonstrate a possible explanation of the link. 

Our reliance on simulation models rather than closed analytic models together with 

our focus on empirical validation in relation to both qualitative and statistical data 

imply a methodology that relies on a close interaction between observation and 

conceptual development to the exclusion of prior theoretical specification.  Our 

argument and methodology are atheoretical.  We offer no view on the prospects for a 

general social theory but we do insist on the importance of observation-based 

conceptual development as a precursor to any future social theory.  

We begin in section 2 with an account of a widespread social statistical signature 

that is shown in section 3 to be consistent with the sociological phenomenon of social 

embeddedness.  In section 4, we give an example of cross-validation using a model of 

household water consumption incorporating agent designs based on descriptions of 

individual behaviour provided by domain experts from the UK water supply industry 

and regulatory agencies. 

2. Social statistical signatures 

Statistics are used by social scientists not only to inform descriptions of existing 

social phenomena but also to forecast future outcomes.  In practice, there are many 

events that cannot be forecast.  Indeed, there has never, in the history of statistical 

analysis, been a correct statistically based forecast of a turning point in either 

macroeconomic trade cycles or financial market prices and volumes.
1
  Moreover, it 

has been known for more than a quarter-century, that statistical relations obtained 

from regression analyses on data covering one time period typically support different 

explanations of social relationships than are indicated by data covering a later (post-

publication) time period (Mayer 1975). 

                                                

1 This statement which not been shown to be wrong in a wide search of the econometric and 

economic literature, circulation of the statement, with a request for disconfirmation, on the email 

discussion list of the International Institute of Forecasters, publication in a leading journal (Moss 

2002), or discussions with a wide range econometricians and social statisticians. 
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In this section, we concentrate on a general feature of social statistics of which the 

unpredictability of turning points and changing statistical relations are a special case.  

and demonstrate that the problem is far more general than is normally recognised.  

Since most social science models with this purpose are economic in nature and 

predictive in (avowed) purpose, we will start by examining their success.  Since they 

are predictive rather than explanatory in purpose, it is on predictive success they are 

judged.  Our purpose is more fundamental, namely to examine the usefulness of such 

kinds of model to capture social phenomena and the statistics derived from them. 

Both forecasting failure and unpredictable changes in estimated statistical 

relationships can be consequences of clusters of volatility in the data where neither 

the timing nor the magnitude nor the duration of the volatility can be predicted.  Some 

obvious cases are turning points in macroeconomic time series associated with 

upturns and downturns in economic performance (investment, employment, 

consumption, etc.) and turning points in stock market prices.  These turning points are 

marked by much bigger changes in the values of statistical variables than are observed 

between turning points – indeed, such marked  turning points are instances of 

clustered volatility. 

The usual explanations of unpredictable macroeconomic turning points are either 

some kind of structural change (Clements and Hendry 1995; Clements and Hendry 

1996) or that volatility begets volatility (for a while) (Bollerslev 1986; Engle 1982; 

Hansen 1982) so that the parameters of the statistical distribution from which 

observations are said to be drawn themselves vary over time.  The latter set of 

techniques constitute the approach of time varying parameters (TVP).  None of the 

estimating approaches associated with either of these explanations has yielded a 

correct forecast of a turning point or any other episode of volatility. The TVP 

approach has also been applied to financial data with no more success than to 

macroeconomic data (Bollerslev 2001). 

The only tests of the goodness of these techniques is their ability to capture salient 

aspects of the data series to which they are applied.  Like all other forecasting 

techniques, they fail to forecast future clusters of volatility.  The TVP approach does 

capture some aspects of previously observed data series but only because those 

aspects are already implicit in the estimating techniques (Tay and Wallis 2000). 

The wide recognition of the recalcitrance of macroeconomic and financial market 

turning points to forecasting has not been extended to the time series data from other 

social and economic processes.  Yet, the more general observation of unpredictable 

clusters of volatility appears to be far more widespread.  As Moss (2002) has pointed 

out in a slightly different context, unpredictably clustered volatility characterises the 

sales values and volumes of many fast moving consumer goods sold in UK and US 

supermarkets and, we now demonstrate, to domestic water consumption. 
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Figure 1: Daily water consumption (litres per day) in a metered UK 

neighbourhood 

It is clear from Figure 1 that there are occasional spikes, both upwards and 

downwards, in domestic water consumption that might be associated with weather 

conditions but that do not occur at the same times of the year.  While the quality of 

the data in general as good as we can expect, there is a long period from October, 

1995 into November 1997 when the readings were constant.  This is clearly a problem 

with the data collection and the data for that period has been excluded from all 

subsequent analysis.  Figure 2 shows the graph of proportional changes in the daily 

consumption of water. 
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Figure 2. Relative changes in daily water consumption 

The histogram in Figure 3 gives the frequency distribution of the changes in the 

daily values of water consumption and the continuous ogive is the normal distribution 

for the same mean, standard deviation and sample size.  The standard test for 

normality is the Kolmogorov-Smirnov statistic which gives, to three significant 

figures, zero confidence that the observed distribution is normal.  The higher, thinner 

peak of the actual frequency distribution with respect to the corresponding normal 

distribution is called leptokurtosis (= thin-peaked) and is due to the presence of 

significant numbers of values relatively far from the mean.  These distant values are 

manifestations of volatile episodes.   

 

Similar results are found in sales value and volume data for a wide range of fast 

moving consumer goods.  An example, reproduced from Moss (2002), is UK 

supermarket sales data for three brands of shampoo.  Similar results are found for 

virtually every one of the 120 or so brands of shampoo for which we have the data as 

well as every brand of tea, shaving preparations, biscuits and, in the US as well as the 

UK, every one of some 200 brands of spirituous alcoholic beverage and beers. The 

first row of Figure 4 shows weekly sales values. Brand A is a leading brand with no 

discernable sales trend while sales values of brand B are declining and sales values of 

brand C are increasing. Both of the latter have small market shares. The second row 

shows the time series of relative sales changes. Over the 65 weeks there were obvious 

clusters of volatility and it is these clusters that generated the extreme values that 

cause the leptokurtosis evident in the third row showing the frequency histograms of 

the relative sales changes compared with the corresponding normal distribution. 
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Figure 3: Frequency histogram and normal ogive for relative changes in daily 

water consumption data 

Each data set manifesting leptokurtosis and clustered, large changes in variable 

values can be ascribed a separate and special reason.  In markets for fast moving 

consumer goods, the phenomenon might be due to special offers (though we have 

found no evidence that this is so).  In water consumption data, the clustered changes 

could be due to the weather (though seasonally adjusting the data does not affect the 

outcome).  In the financial markets, there are speculative bursts (though it seems to us 

implausible that widespread shifts in expectations might be the result of strictly 

individual sentiment).  In national and international economic systems (or 

macroeconomies) episodes of large clustered changes are often put down to some 

kind of structural break or exogenous force (though if these were uniquely identifiable 

the occasions on which their consequences amounted to a turning point in the trade 

cycle ought also to be uniquely identifiable and hence correctly forecast).  Rather than 

to look only for special reasons to account for unpredictable and clustered volatility in 

each type of social institution, we find it natural to investigate whether there is any 

element of generality in the generation of these unpredictable phenomena. 
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Figure 4: Weekly shampoo sales and relative sales change; 2 Jan 2000-25 

March 2001 (Source: Information Resources International; reproduced 

from (Moss 2002)) 

3. Volatility and social embeddedness 

Following Granovetter (1985) and Edmonds (1999a), we define social 

embeddedness as a state in which an actor is significantly influenced by individual 

relationships with other actors. That is, the influences on the actor can not be 

modelled as if all actors were identical (by using, for example, representative or 

homogeneous agents).  The particularities of its interactions with those to which it 

relates have a significant impact upon the outcomes in the model. While social 

embeddedness neither implies nor denies optimising behaviour of the sort assumed by 

economists, it does mean that the simplifying assumptions used by economists in their 

formal analytic models critically distort the phenomena being analysed. 

 There appear to be no models incorporating agents as defined in conventional 

economic theory that generate the unpredictable volatile clusters described in the 

preceding section.  Indeed, results from a wide range of agent based social simulation 

models suggests that four conditions are associated with clustered volatility at the 

macro level.  The four conditions are:
2
 

• Individuals are metastable in the sense that they do not change their 

behaviour until some level of stimulus has been reached.  They would not, 

for example, reconfigure their desired shopping basket as a result of a penny 

rise in the price of a tin of tuna or change their religion because they dislike 

a sermon. A particular implication of metastability is that the behaviour of 

individuals cannot be represented by utility maximising agents. 

                                                

2 These are social interpretations of a more general set of conditions identified by Jensen (1998) in 

respect of physical models. 
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• Interaction among agents is a dominant feature of the model dynamics.  This 

amounts to social embeddedness in the sense of Granovetter (1985): the 

behaviour of individuals cannot be explained except in terms of their 

individual interactions with other individuals known to them. 

• Agents influence but do not slavishly imitate each other. 

• The system is slowly driven so that most agents are below their threshold 

(or critical) states a lot of the time.  In effect, most of us engage in routine 

behaviour most of the time without fundamentally changing either our 

behaviour or the expectations that drive that behaviour.  The system is 

slowly driven if we are not frequently being overwhelmed by pressures to 

change expectations and behaviour.  

An agent based social simulation model contains agents that are independent 

computer programs with an ability to perceive aspects of their environments 

(including some other agents) and to process those perceptions in order to produce 

some effect on their environment (including other agents) and perhaps to change the 

ways in which they process perceptions into actions.  As will be explained in more 

detail below, an important feature of agents is that they and their interactions can be 

designed by the modeller to describe the behaviour and interactions of social entities, 

whether individuals or organisational units.  Consequently, agent based social 

simulation models can be validated by comparing the agents and their social 

behaviour with individual and social behaviour found in real societies and by 

comparing the properties of numerical outputs of these models with the properties of 

real social statistics. 

Unfortunately the meanings of such phrases as “statistical signature” and “the 

properties of real social statistics” are by no means clear and unproblematic.  In some 

cases, the variance or even the mean of a distribution is not defined.  There is even no 

reason to believe that observed social statistics are drawn from some fixed, underlying 

population distribution and some reason to believe that (in some cases) they are not.  

These issues will be investigated in section 5.   In the meantime, we note that both 

societies and models can be viewed as data generating processes.  Many social 

arrangements including national economies, retail shops and supermarkets and 

collections of households generate time series data marked by clusters of volatility the 

timing, magnitude and duration of which cannot in practice be forecast.  Models with 

by the above four characteristics also generate time series data with the same 

clustered volatility properties. 

In the following section, we describe a model and the background to its 

development in order to exhibit the extent to, and ways in which, that model is 

validated by domain experts.  We also report simulated time series data generated by 

the model under various assumptions in order to suggest that the simulated data, like 

the real data, exhibit unpredictable clusters of volatility.  We also note the 

incompleteness of the validation as well as problems with the identification of the 

statistical signatures of leptokurtosis due to clustered volatility. 

4. A model of social influence on domestic water consumption 

The model reported in this section has been developed through five distinct 

versions.  The first version was constructed with little input of domain expertise in 

order to capture the effect of enjoinders on households to conserve water during 

periods of drought.  This version demonstrated that social influence was sufficient 
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significantly to reduce domestic water consumption when a minority of households 

were easily influenced by official requests provided that some households were so 

influenced and other households were influenced by other households with whom 

they had some stable relationship and were, in a well defined sense, similar to 

themselves.  Domain experts from the water supply companies evaluated the first 

version which they found deficient in that, when a drought ended, aggregate water 

consumption immediately returned to its pre-drought levels.  The second version was 

designed to address this deficiency.  Whereas, in the first version, households would 

observe and be influenced by the actions of their neighbours in the prevailing 

conditions, in the second version it was only the neighbours’ actions that influenced 

households and, moreover, the influence as assumed to decay over time in accordance 

with evidence from experimental cognitive science (Anderson 1993).
3
 

The third version of the model introduced the effect of new technology on 

domestic water consumption.  Because of Victorian public health legislation in the 

United Kingdom, it was not until recently permitted to apply mains pressure to 

domestic hot water.  As a result, “power showers”  were introduced in the early 1990s 

which involved the pumping of shower water under substantially higher pressure than 

could previously be obtained.  This was clearly a high-water-use technology, the 

adoption of which would increase domestic water consumption.  The first model 

version to incorporate technical change resulted in the complete adoption of power 

showers within a few months of their introduction.  In fact, the penetration of power 

showers among households in the regions for which we have data has not, after more 

than a decade, reached 45%.  While adoption was driven by the same sort of social 

influence that drove the responses to enjoinders to conserve water during periods of 

drought,  there were no impediments to adoption by households.  Informants from the 

UK Environment Agency, the regulator responsible for water quality and supply 

sufficiency, suggested that in practice power showers are installed as part of a more 

general bathroom renovation and households do not normally renew bathrooms more 

frequently than once in five years.  Other appliances such as dish washers and 

washing machines are replaced either as part of a wider renovation or when they 

break down. The representation in the model of such restraints on replacement and 

therefore innovation has served to replicate the broad time pattern of changes in 

ownership patterns.
4
 

We do not claim that the representation of household behaviour by agents is 

accurate.  Only that it reflects the views of domain experts from the water supply 

companies and the relevant regulating agency.  Further validation could be obtained 

by means of standard survey and interview techniques.  These would enable us to 

elaborate the agents as representations of households and perhaps to calibrate the 

model, especially in relation to the susceptibility of households to influence either 

from government and water companies or from their social networks. 

The model was not designed to illustrate the effects of social embedding in agent-

based social simulations but was incrementally developed to reflect expert and 

stakeholder opinion on the influences on households with respect to their habits 

concerning the use of water-consuming appliances, and hence, indirectly, how much 

                                                

3 For a more detailed account of this development, see (Downing, Moss and Pahl Wostl 2000) 

4 The latest versions of the model were implemented by our student, Olivier Barthelemy. 
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water they consume.  Only later did we discover that it also demonstrated the role 

social embedding plays in creating the sort of fat-tailed time series with clustered 

volatility that we have been discussing.  However, this was not surprising since our 

experience leads us to expect this result from models of this kind. 

 The water consumption model focuses upon the behaviour of households, in 

particular how the household-to-household behavioural influence affects the 

aggregate demand for water.  Thus the heart of the model is a network of agents each 

of which represents a single household.  These are distributed randomly on a two 

dimensional grid.  These ‘households’ can only interact with those with a certain 

distance of them, vertically and horizontally – their ‘neighbours’.  The totality of 

households and their potential interactions can be considered to represent a 

community or cluster. 

 

Figure 5. Influence network of between ‘most-similar’ households at a typical 

instant of simulation time 

We know from a half-century or more of social psychological studies (refs) that 

individuals tend to form stable social relationships with persons with whom they 

already have common social backgrounds and interests and, once such relationships 

are formed, the opinions and behaviour of these individuals tend to be similar.   In 

order to capture this finding, agents are designed endorse as most similar to 

themselves those neighbours whose water consumption behaviour is most like their 

own.  Such neighbours are then of particular importance in terms of influence.  The 

network of all the possible avenues of influence by such endorsed neighbours is 

shown in Figure 5.  The total web of possible influences among households is not 

shown as it is too dense to be sensibly displayed.  This structure was chosen to be 

consistent with what domain experts told us about influence between households.  

The result is that agents are given a non-uniform local network of relationships within 

which each household determines neighbours by which they are most influenced. 
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The external environment for each household consists of: the temperature and 

precipitation; the exhortations of the policy agent (which used to be a government 

agency and is now the local water company); and, critically, the neighbouring 

households.  Each household has a number of different water-using devices such as: 

showers, washing machines, hoses etc.   The distribution and properties of these 

devices among agents matches the distribution of these appliances among households 

as obtained in a recent survey.  The numerical outputs include the volume of water the 

used by each  household in each appliance from which we calculate total domestic 

water consumption and the time patterns of the effects of new technologies on water 

consumption. 

The domestic water consumption model captures hydrological phenomena as well 

as processes of social influence that are believed to affect the domestic demand for 

water.  The hydrological element determined the addition to the water supply each 

month given actual temperature and precipitation as well as the month (hence hours of 

daylight influencing water transpiration (from plants and animals) and evaporation 

into the atmosphere.  Since our temperature and precipitation data was monthly, the 

month was the level of time step used to calculate consumption. 

Each month, each household adjusts its water-using habits, in terms of the amount 

it uses each device, and whether it acquires new devices (such as power showers).  It 

does this adjustment based on the following: what devices it has; its existing habits; 

what its neighbours do (except for private devices such as toilets); and what the water 

company may be suggesting (in times of drought).  The weighting that each 

household uses for each of these is different and is set by the modeller.  In many of 

the runs it was set such that about 55% of the households were biased towards 

imitating a neighbour; 15% were predisposed to listen to the water company and the 

rest were largely immune to outside suggestion.  Obviously it is not known what 

proportions might be more realistic in terms of real communities, but anecdotal 

accounts suggest it varies greatly between communities.   

The “policy agent” represents the body responsible for issuing guidance to 

consumers as to water use in times of water shortage (currently this is the individual 

water companies in each area).  In the model there is a calculation of the level of 

ground water derived from the climatological data, and the policy agent starts issuing 

suggestions during the second month where the ground is dry.  In subsequent dry 

months its suggestions are to use increasingly less water. 

The model structure is illustrated in Figure 6. 
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Figure 6. The structure of the model of domestic water demand 

The model does not attempt to capture all the influences upon water consumption.  

In particular it does not include any direct influence of the weather upon micro-

component usage nor does it include any inherent biases towards increased usage due 

to background social norms such as increased cleanliness.  The behaviour of the 

policy agent is not sophisticated since it is the reaction of the households that is 

important here. 
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Figure 7. Simulated relative change in monthly consumption 
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Figure 8. Relative changes in simulated monthly water consumption 

The times series from an typical run is shown in Figure 7. It exhibits clustered 

volatility similar to that seen in the water data usage shown above (Figure 2).  The 

histogram of the relative changes is shown in Figure 8 – this shows the same level of 

leptokurtosis as was seen in the corresponding histogram for the water usage shown 

above (Figure 3). 

Equally importantly, the model exhibited a variety of responses to the same 

external conditions.  Figure 9 shows the aggregate usage from the model for 12 

different runs of the same model subject to the same climate data and external 

interventions (principally the droughts in 1976, 1990 and 1996, the introduction of 

power showers in 1990 and new water-saving washing machines in late 1992).
5
 

                                                

5
 The bold line giving the median water consumption at each time step naturally exhibits less 

volatility than the water consumption in the individual runs.  This shows how descriptive statistics can 

hide what might be important features of the outputs from simulation experiments. 
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Figure 9.  12 runs of the water demand model under the same conditions (bold 

line is median demand) 

To investigate the importance of the embedding of the agents in the model, we ran 

the model again with exactly the same structure, parameters and inputs, but with the 

neighbourhood relations randomised.  That is, where in the previous versions of the 

model a household might be influenced by its neighbours as to its patterns of water 

usage, in this version the neighbour ‘sees’ a different random selection of neighbours 

each time.  Thus patterns of influence are randomised and different at each time 

period in the simulation.  The corresponding patterns of aggregate water usage that 

are produced by the model are shown in Figure 10. 

In the version where the social embedding is disrupted we notice two ways in 

which the aggregate behaviour is different to the original version.  Firstly, there is a 

greater level of local oscillation in the demand.  Secondly, there is almost no 

systematic, collective response to the occurrence of droughts, as is indicated by the 

course of the median of the demand lines.  The consequences of the removal of social 

embedding from the model is that we no longer capture events that were of 

considerable importance to stakeholders.  That is, prior to the privatisation of the 

water supply industry in the United Kingdom, exhortation and to save water 

restrictions on water use during droughts were effective to the point of neighbours 

reporting others who were, despite hosepipe and sprinkler bans, watering their 

gardens.  After privatisation, there was public concern about the very large increases 

in senior managerial remuneration packages and outrage at the discovery that more 

than half the water in the mains was lost through leakage while households were 

being exhorted to conserve water.  As a consequence, there was very little reduction 

in household water consumption post-privatisation.  Our models with and without 

social embeddedness support the conjecture that social responses are conditioned by 

social embeddedness. 
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Figure 10. 12 runs of the water demand model under the same conditions 

where the social embedding is disrupted (bold line is median demand) 

5. Descriptive Statistics vs. Statistical Models 

The presumption that statistics is ‘science’ but qualitative research is ‘mere 

anecdote’ is at variance with our experience of participatory agent based modelling. 

Our agent-based models often produce time series data that are characterised by 

clustered volatility and high levels of leptokurtosis.  This is not because we tune our 

models to produce these kinds of time series but seems to be a consequence of the 

characteristics we put in to our models, namely: social embeddedness; the prevalence 

of social norms; and individual behaviour.  The reason we often make models with 

these characteristics is that these are a necessary part of making our models consistent 

with the observations of sociologists and other domain experts concerning the 

behaviour of the actors concerned.  The fact that the time series derived from social 

phenomena often have these same characteristics may indicate that the models are on 

the right track.   

This is in sharp contrast to many statistical approaches, where it is assumed that 

conventional statistical models and tools will apply.  These assumptions are often 

completely unwarranted and seem to be made purely because due to a perceived lack 

of choice.  The burden of proof should be on those who wish to make these 

assumptions, otherwise they will be merely ‘muddying’ the debate with statistical 

artefacts by presenting ‘results’ that do not fundamentally derive from the social 

phenomena we are concerned.  It is not possible to prove that such assumptions are 

wrong – it is always logically possible that there is an well-defined, fixed distribution 

function underlying the time series, even when all the indications of available data are 

to the contrary.  One can always assume that such a distribution can be recovered by 

means such as: increasing the sample size; considering a longer series; and excluding 

‘exceptional’ events.   

The time series that results from social phenomena and the agent-based models of 

these phenomena provide some evidence against these sort of assumptions.  Agent-

based models that seek to be consistent with the anecdotal evidence of how social 

actors behave often produce time series which are best described by power laws, 

Pareto distributions and the like.  The extreme ‘peaks’ observable in the time series 



 16

they produce do not always result from substantial or exceptional factors but are 

intrinsic products of the processes captured by the models.  This adds credibility to 

the hypothesis that similar processes could be responsible for the similar time series 

derived from social phenomena.  

If one insists on assuming the time series obtained from social phenomena can not 

only be described by fixed distributions in a post-hoc manner but are also generated 

by them (in some underlying or a priori way), then the high levels of leptokurtosis 

and clustered volatility do not support an assumption that such distributions as the 

normal, binomial are applicable, but rather fit those like the Pareto distribution.  With 

the Pareto distribution high levels of leptokurtosis indicate that the second moment 

(the variance) is undefined – in other words, that you as you take longer samples the 

variance will not tend to a limiting, ‘stable’ value.  In fact, over half of its parameter 

space, the Pareto distribution do not even have a defined mean.   

If we were to suppose that a particular social process generates data described by a 

Pareto distribution function, then the prevalence of leptokurtosis implies that, in 

general, that distribution function has no defined variance and very likely has no 

defined mean.  That is, increasing the number of observations will not result in the 

convergence of an undefined mean or variance to any fixed population value. 

Considered as a data generating process, social institutions in this case would not 

produce numerical data that can be treated as if they were drawn from an underlying 

population distribution.  We would not expect social environments marked by 

clustered and unpredictable volatility to generate data described by a fixed frequency 

distribution.  This is because social institutions frequently respond to episodes of 

volatility by changing the behaviour of the institution.  A clear example is the changes 

in the norms and rules governing trading in organised financial markets.  These rules 

are typically changed after a serious downturn as happened after the financial panics 

of the 19
th
 century (after which stocks were issued fully paid up), certainly after the 

1929 crash (when the value of debt that stockbrokers could lend customers against 

their portfolio values were limited by law in the United States) and, more recently, 

after the 1987 downturn in world stock markets (when trading pauses were introduced 

in conditions where automated trading appeared to have become unstable).  Other 

example include corporate reorganisations, consequences of technical change and 

changes in political regimes (e.g., the French Revolution or the ‘revolutions’ in 

Eastern Europe in 1989). 

That there is no evidence that the variance of daily domestic water consumption is 

settling down to a defined variance can be seen in Figure 11.
6
   This figure is similar 

to the (lack of) convergence found by Mandelbrot (1963) in financial time series. 

                                                

6 The measure of cumulative variance used here is taken from (Mandelbrot 1963). 
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Figure 11: The cumulative variance of log changes in daily domestic water 

consumption (litres per day) in a metered UK neighbourhood (derived from 

the figures illustrated in figure 1 above). 

It is likely that much of the apparent normality of some socially derived time series 

is an artefact of the way they are produced.  A consequence of the central limit 

theorem is that any averaging in the construction of the data (either implicit as in 

summing over fixed time periods or explicit) will tend to make the data appear more 

normal.  For example if daily time series has a high descriptive leptokurtosis then the 

monthly series will have a much lower level of leptokurtosis. To illustrate this we 

took the water consumption data illustrated above in Figure 2 and averaged it in 

consecutive groups (e.g. the first four numbers, the second four etc.) and then 

constructed frequency distributions of the resulting figures.  Three of these 

distributions are illustrated in Figure 12.  The distribution becomes clearly less 

leptokurtic as the grouping size increases.  The Kurtosis for different levels of 

averaging is shown in Table 1. 

Group size 1 2 4 8 16 32 

Kurtosis 2490.0 130.1 82.5 39.5 33.5 15.7 

Table 1. Kurtosis of the frequency distribution of relative changes of water 

consumption after being binned into different size groups 

Group size 2 Group size 8 Group size 32 

Figure 12. The frequency distributions of the relative changes, grouped in 

sizes 2, 8 and 32 respectively 
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This result serves to illustrate the difference between descriptive statistics and 

statistical models of the underlying process.  The former is a numerical description of 

some data whilst the later is a model of the data-generating process – conflating the 

two can be misleading. 

The lack of an underlying fixed distribution behind the phenomena indicates a 

capacity endogenously to generate dynamic and/or structural change.  This change 

results, in part, from the ability of a system to ‘re-wire’ itself into new configurations.  

It seems plausible that this ability is limited by the complexity of the system.  

Although agent-based models are considerably more complex that analytic models 

they are still formal systems and, hence, much simpler than the social processes they 

seek to capture.  The simplistic nature of the influence mechanisms in the water 

demand model and its limited size (40 or 100 agents, depending on the purpose of the 

experiment) are probably not sufficient to bring about such structural changes 

endogenously.  Indeed this is indicated by the fact that, unlike the real water demand 

statistics, the variances of the demands from the model do seem to be defined.  The 

equivalent of Figure 11 for the demand time series derived from the embedded model 

is shown in Figure 13. 
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Figure 13. The cumulative variance of changes in the log values of the water 

demand time series derived from 12 runs of the model. 

It seems essential to us that in good (social) science, observation of how processes 

actually occur should take precedence over assumptions about the aggregate nature of 

the time series that they produce.  That is, generalisation and abstraction are only 

warranted by an ability to capture the evidence.  Simply conflating descriptive 

statistics with a (statistical) model of the underlying processes does not render the 

result more scientific but simply more quantitative.  

In the end this comes down to deep assumptions about the nature of the 

phenomena one is concerned with, especially about the characteristics of what might 

be considered as ‘noise’.  In any model one will only be able to capture limited certain 

aspects of what one is modelling – the rest can be thought of as ‘noise’.  However one 

can not assume that this noise is random (in a statistical sense), just because it is 
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unpredictable.  One can not even assume that this noise will obey the ‘Law of Large 

Numbers’ – which, broadly stated, is the property that random noise will cancel out 

faster than any ‘signal’ as sample size increases. Models that illustrate this possibility 

include Kaneko’s example of ‘Globally coupled chaos’ and Brian Arthur’s ‘El Farol 

Bar’ model (Arthur 1994) as investigated in (Edmonds 1999b).  What we do not 

understand about social phenomena, even through the lens of aggregate time series, 

can not be dealt with as simply as an engineer might treat meaningless electrical 

fluctuations.   

6.  Conclusion 

The water consumption model presented in this paper represents an attempt to 

describe a social process that is consistent with both the qualitative data provided by 

stakeholders and other domain experts and observed characteristics of time series data 

concerning domestic water consumption.  Each successive version of the model has 

been subject to validation by domain experts.  Their validation concerned both the 

representation of agent behaviour and interaction as well as characteristics of the 

aggregate time series output (especially the recovery of demand after drought-induced 

restrictions have been rescinded). 

This approach differs fundamentally from the usual approaches to statistical 

research. and extends the usual approaches to qualitative research.  Both of these 

features of our approach depend crucially on the use of agent based social simulation 

models. 

Although agent based modelling is in widespread use, the agents are not 

universally implemented as descriptions of the behaviour of observed social entities.  

It is not uncommon, for example, for agents to be specified as genetic algorithms 

(Chen and Yeh 2002; LeBaron, Arthur and Palmer 1999; Palmer et al. 1993) or as 

artificial neural networks (LeBaron 2002) or as players in a game theoretic setting 

(Macy and Sato 2002)7.   While these agent designs are sometimes implemented in 

simulation models addressing issues of concern to sociologists such as trust or social 

norms, the agents themselves cannot be compared directly with the behaviour of  the 

individuals or composite social entities they are intended to represent.  Such designs 

do not facilitate validation of the agents using qualitative data and qualitative research 

methods.  Particularly in the case of models of financial markets, such agent based 

models do generate leptokurtic time series data due to clustered volatility.  Typically, 

these models satisfy the four conditions of agent metastability, interaction, social 

influence and being slowly driven.  We do not know whether all such models will 

generate leptokurtosis and volatility
8
 but we do know that commonly they do. 

What these models show is that the observed features of aggregate time series data 

for financial markets, macro economies and markets for fast-moving consumer goods 

can be the result of data generating processes in which there is no individual 

maximising behaviour and in which interaction among individuals is crucial.  

However the TVP models discussed in section 2 also produce aggregate time series 

                                                

7 Macy (1991) reviews the earlier literature in this area. 

8 Jensen (1998) points out that there only a few, rather special analytical results on systems of this 

type.  Consequently we can only conjecture about the generality of the relationship between these four 

conditions and unpredictable, clustered volatility and hence leptokurtosis. 
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data with the same observed properties.  And these models are intended to be 

consistent with the economic  rational expectations hypothesis based on the 

presumption that individual do maximise utility and that they are not socially 

embedded.  Although the TVP models, unlike the agent based models, have no 

formally elaborated micro element, they are neither more nor less well validated than 

the agent based models implementing agents as genetic algorithms, artificial neural 

networks or game theoretic strategies. 

We have shown that descriptive statistics are insufficient to identify the processes 

that generated the data. We have also shown that, provided the data is sufficiently fine 

grained, some models of data generating processes can be shown to be consistent with 

that data and some can be excluded.  But to choose among the classes of models that 

purport to describe the underlying data generating process must require some 

additional discriminants.  To avoid mere tautology, such discriminants must be 

empirically based.  Additional statistical data is of no help since we have already 

shown that such data cannot be used to discriminate among the possible data 

generating processes.  If we are not to use statistical data for this purpose, we must 

use qualitative data or at least data describing micro behaviour.  In designing and 

developing our domestic water consumption model, we used qualitative data and 

assessments provided by domain experts and, in particular, by stakeholders in the 

water resource management process.  As a result, the models were assessed 

independently in relation to the macro level statistical data and the micro level 

qualitative data – the process we have called cross-validation. 

We believe it to be both interesting and important that the process of validating the 

model qualitatively at the micro level is clear and straightforward while the validation 

using macro level statistics is suggestive and based on visual impressions of clustered 

volatility.  This experience stands on its head the notion that qualitative research is 

mere anecdote while statistics is science. 

Our aim has been to demonstrate that agent based models have the particular 

strength that they can be validated with respect to both qualitative and statistical data 

and at both micro and macro levels.  In so doing, we have identified a number of 

further issues that need to be addressed. 

 We have reported that some of our models generating leptokurtosis and clustered 

volatility do and some do not produce time series data with apparently convergent 

moments of the frequency distributions of those data.  The differences in the models 

that lead to these different results might well be important but we have no idea of 

what it is that causes those differences.  In particular, we do not know whether these 

differences are artefacts of the model or something the model represents about social 

relations and individual behaviour.   We simply point out that if the distributions are 

stable, then a non-convergent variance is consistent with a Levy distribution and a 

convergent variance is not.  This result will be important to those who investigate 

empirical distributions of personal incomes, firms sizes, market shares, city sizes or 

any of the other power law distributed cross sectional and time series economic data 

since power law distributions are a consequence of the Levy distribution. 

A second problem is that the notion of the “statistical signature” is without formal 

content.  If we are to use the features of social statistical data to identify classes of 

possible models of social data generating processes, then it would clearly be useful if 

we could relate formal descriptors of the data to features of suitable data generating 

processes. 
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We have also pointed out that the common practice in social simulation of 

producing a series of runs and then reporting summary statistics such as median 

values can hide important episodes of volatility.  Yet, the reasons for running suites of 

simulation experiments – to identify robust properties of the models – is surely valid.  

There is a tension here that needs to be addressed. 

Finally, we do not claim to be experts in qualitative research.  We are, however, 

aware that some social researchers are uncomfortable about generalising from the 

experiences of individual organisations and institutions.  We do not speculate as to 

whether there is any justice in this position but we do claim that more formal 

representations of qualitative evidence by agent based social simulation models 

provides a means of identifying any general properties of social systems that are 

consistent with independently observed macro level data. 
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