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Summary: The acceleration of low-carbon transitions across the sociotechnical systems of electricity, 
heat, buildings, manufacturing, and transport requires new conceptual approaches, analytical foci, and 
policy recommendations. 
 

Rapid and deep reductions in greenhouse gas emission are needed to avoid dangerous climate 

change. To provide a reasonable (66%) chance of limiting global temperature increases to below 2oC, 

global energy-related carbon emissions must peak by 2020 and fall by more than 70% in the next 35 

years.1 This implies a tripling of the annual rate of energy efficiency improvement, retrofitting the 

entire building stock, generating 95% of electricity from low-carbon sources by 2050 and shifting 

almost entirely towards electric cars. 

Deep decarbonization will necessitate low-carbon transitions across electricity, transport, heat, 

industrial, forestry and agricultural systems. But despite recent rapid growth in renewable electricity 

generation, the rate of progress towards this wider goal remains slow. Moreover, many energy and 

climate researchers remain wedded to disciplinary approaches that focus on a single piece of the low-

carbon transition puzzle.2 A case in point is a recent Policy Forum3 proposing a ‘carbon law’ that will 

guarantee that zero-emissions are reached. This model-based prescription focuses on policy, but not 

politics, culture, business, and social factors, thus avoiding many crucial real-world drivers of 

accelerated transitions. 

This Policy Forum presents a ‘sociotechnical’ framework that addresses the multi-

dimensionality of the deep decarbonization challenge and shows how co-evolutionary interactions 

between technologies and multiple societal groups can accelerate low-carbon transitions. We organize 

this approach around four lessons, emphasizing factors that receive less attention in techno-economic 

and modeling approaches. 
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1. Focus on socio-technical systems rather than individual elements 

Rapid and deep decarbonization requires a transformation of ‘sociotechnical systems’ – the 

interlinked mix of technologies, infrastructures, organizations, markets, regulations and user practices 

that together deliver societal functions such as personal mobility. These systems have developed over 

many decades, and the alignment and co-evolution of their elements makes them resistant to change. 

A framework for understanding the multiple causal mechanisms characterizing system 

transitions is the Multi-Level Perspective (MLP).4 This sees transitions as driven by interactions 

between three analytical levels: a) the sociotechnical system itself, which is stabilized by lock-in 

mechanisms, but experiences incremental improvements along path-dependent trajectories; b) niche 

innovations, which differ radically from the dominant existing system, but are able to gain a foothold in 

particular geographical areas or market niches, or with the help of targeted policy support; and c) 

exogenous (‘landscape’) developments such as slow-changing trends (e.g. demographics, ideologies) 

or shocks (e.g. elections, economic crises, wars) that destabilize the system and facilitate the 

breakthrough of niche innovations. Instead of single drivers, the MLP’s key point is that transitions 

come about through the alignment of processes within and between these three levels - illustrated 

diagrammatically in Figure 1. 
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Figure 1: Multi-level perspective on sociotechnical transitions (adjusted from ref. 4) 

 

The acceleration of socio-technical transitions in the third phase involves three mutually 

reinforcing processes: growing internal momentum of niche-innovations, weakening of existing 

systems (represented with small diverging arrows in Figure 1), and growing exogenous pressures. The 

resulting socio-technical transitions go beyond the adoption of new technologies and include 

investment in new infrastructures, the establishment of new markets, the development of new social 

preferences and the adjustment of user practices. 

The unfolding German energy transition, for instance, involved the increasing momentum of 

wind, photovoltaic and biogas technologies due to price/performance improvements, support from 
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industrial coalitions (e.g. metal and machine-building, turbine manufacturing, farming), positive 

cultural framing and generous policy support (particularly through the 2000 Renewable Energy Act, 

which established 20-year long, attractive feed-in-tariffs).5 The existing system, especially nuclear 

power, faced long-standing tensions due to a powerful anti-nuclear movement, negative cultural 

discourses framing nuclear power as existential threat and utilities as large monopolists, and political 

pressure from the Labor/Green Party government coalition (1998-2005). The 2011 Fukushima accident 

was an external, destabilizing shock triggering the decision to phase-out nuclear power and embrace 

energy transition as a political goal. 

 The case highlights that accelerated low-carbon transitions depend on both techno-economic 

improvements, and social, political and cultural processes, including the development of positive or 

negative discourses.6 Although the Labor/Green Party coalition could not foresee later fortuitous 

alignments, the 2000 Renewable Energy Act was deliberately introduced as a long-term transition 

strategy, which created protected market niches that stimulated technological learning and 

improvement, the growth of new industries (based on an ecological modernization vision), and the 

entry of new firms (which keener to drive renewables than incumbent regime actors).5 The case also 

demonstrates that acceleration depends heavily on country-specific dynamics in political coalitions, 

industry strategy, cultural discourses and civil society pressures. There is no “one-size-fits-all” 

blueprint for accelerating low-carbon transitions. 

 
2. Aligning multiple innovations and systems 

Socio-technical transitions gain momentum when multiple innovations are linked together, improving 

the functionality of each and acting in combination to reconfigure systems. The shale gas revolution, 

for instance, accelerated when seismic imaging, horizontal drilling, and hydraulic fracturing were 

combined. Likewise, accelerated low-carbon transitions in electricity depend not only on the 

momentum of renewable energy innovations like wind, solar-PV and bio-energy7, but also on 

complementary innovations including: energy storage (e.g. batteries, flywheels, compressed air, 

pumped hydro); smarter grids (to enhance flexibility and grid management); demand response (e.g. 

new tariffs, smart meters and intelligent loads); network expansion (to increase capacity, connect 

remote renewables and link to neighboring systems); and new business models and market 

arrangements (such as energy-only markets and capacity markets to ensure system security). 
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Linkages between systems may also drive deep decarbonization. Vehicle-to-grid configurations, 

for instance, can facilitate the diffusion of battery-electric vehicles and mitigate the intermittency 

problems of wind and solar electricity if car batteries support load balancing.8 District heating systems 

can be coupled with electricity and gas grids, leading to integrated systems in which thermal energy 

fulfill storage and back-up functions for intermittent electricity.9 Urban planning and transport systems 

can be integrated via transit-oriented development (building mixed-use areas around public transport 

stops), compact cities, and intermodal transport (which facilitates mode-switching with seamless 

transfer facilities, smart cards, and aligned time-tables).10 

Attention must thus be broadened towards interactions between multiple innovations and socio-

technical systems. ‘Whole system’ models have started to do so but often focus on energy flows and 

technical linkages, giving limited consideration to consumer acceptance, business models and socio-

political drivers. 

 

3. Societal and business support 

 Low-carbon transitions are often seen as a techno-economic implementation challenge, justified 

by climate science and driven by R&D and carbon pricing. But accelerated transitions also depend 

upon social acceptance and business support.11 Public support is crucial for effective transition policies 

because “whatever can be done through the State will depend upon generating widespread political 

support from citizens”.12 Low-carbon transitions in mobility, agro-food, heat and buildings will also 

involve millions of citizens who need to modify their purchase decisions, user practices, beliefs, 

cultural conventions and skills. To motivate citizens, financial incentives and information about climate 

change threats need to be complemented by positive discourses about the economic, social and cultural 

benefits of low-carbon innovations. 

 Business support is essential because the development and deployment of low-carbon 

innovations depends upon the technical skills, organizational capabilities and financial resources of the 

private sector. Green industries and supply chains can also solidify political coalitions supporting 

ambitious climate policies and provide a counterweight to incumbents.13 Furthermore, technological 

progress can drive climate policy by providing solutions or altering economic interests.14 Shale gas and 

solar-PV developments, for instance, altered the US and Chinese positions in the international climate 

negotiations. 
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Societal and business support can be built gradually in the first and second phase of transitions 

(Figure 1), through bottom-up learning processes, participatory governance and polycentric stakeholder 

engagement.15 Business support also depends on low-carbon market opportunities, which can be 

enhanced by policies (subsidies, tax credits, standards) or changing consumer preferences. Once in 

place, societal and business support improves resilience against political setbacks. In the Danish 

electricity and heat transition, for instance, reductions in renewable energy policies by a newly elected 

government (2001) triggered a bottom-up backlash from local energy cooperatives, citizen groups, 

NGOs, manufacturers, and SMEs, which enabled policy restoration several years later.16 In the UK, the 

low-carbon transition is predominantly a top-down project involving policymakers and incumbents. 

The narrower societal support base creates the risk that the weakened climate policy by the 

Conservative government since 2015 will derail the unfolding transition. 

 

4. Phasing out existing systems 

Socio-technical transitions can also be accelerated by actively phasing out existing 

technologies, supply chains, and systems that lock-in emissions for decades.17 The UK transition to 

smokeless solid fuels and gas, for example, was accelerated by the 1956 Clean Air Act, which allowed 

cities to create smokeless zones where coal use was banned. This drastic policy was introduced after 

the 1952 Great London Smog (resulting in 4000 excess deaths) created public pressure and the political 

will for change.18 Another example is the 2009 European Commission decision to phase-out 

incandescent light bulbs, which accelerated the shift to compact fluorescents and LEDs. French and UK 

governments have announced plans to phase-out petrol and diesel cars by 2040. Moreover, the UK 

intends to phase out unabated coal-fired power generation by 2025 (if feasible alternatives are 

available). 

Phasing out existing systems accelerates transitions by creating space for niche-innovations and 

removing barriers to their diffusion. The phase-out of carbon-intensive systems is also essential to 

prevent the bulk of fossil fuel reserves from being burned, which would obliterate the 2oC target. This 

phase-out will be challenging since it threatens the largest and most powerful global industries (e.g. oil, 

automobiles, electric utilities, agro-food, steel), which will fight to protect their vested economic and 

political interests. 
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Phase-out policies can take several forms:19 bans or regulations that stipulate emission 

reductions from specific technologies or sectors; targeted financial incentives to encourage 

decarbonization; or removal of implicit or explicit subsidies for high-carbon systems, which globally 

range from $1.9 to $5.3 trillion per year.20 Whatever policies are used, it is important to consider 

transitional strategies such as phased tightening of regulations, financial compensation, retraining of 

personnel or redevelopment programs for disadvantaged regions.21 Such policies may reduce the 

likelihood of resistance to transitions. Dutch policymakers, for instance, alleviated the disruption of the 

1960s transition from coal to gas by retraining miners and assisting the company’s transformation to a 

chemicals firm.22 Unassisted UK mine closures, in contrast, disrupted entire communities in the 1980s, 

creating persistent social problems. Similar fears are presently motivating US and German coal mining 

communities to resist low-carbon transitions, leading to political backlashes. 

 

Policy implications  

General policy implications for accelerated low-carbon transitions can be derived from the above 

lessons. First, innovation is a crucial accelerator, because it can improve technological 

price/performance characteristics, generate new functionalities and open up new markets, disrupt 

existing systems, galvanize public enthusiasm around positive visions, and nurture green business 

coalitions, which may subsequently support stronger climate policies. Sector-specific innovation policy 

is therefore at least as important as economy-wide climate policy, and may in fact enable it.13 

Innovation policies (R&D subsidies, feed-in-tariffs, demonstration projects, adoption subsidies) are 

also more politically feasible than economy-wide carbon taxes, because the former provide 

concentrated benefits, whereas the latter imposes costs on many voters and industries.11 

Second, low-carbon innovation policy should not only focus on R&D and financial incentives, 

but also on experimentation, learning, stakeholder involvement, social acceptance, positive discourses 

and opportunities for new entrants. Without sufficient societal and business support, it is difficult to 

accelerate or sustain low-carbon transitions for long periods. 

Third, stronger alignments are necessary between innovation policy and sector-specific policy 

(in electricity, heat, transport, urban planning) to explore the potential of interacting technologies and 

systems, both through foresight methods and on-the-ground demonstration projects. Polycentric efforts 
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in particular, which connect and align scales, actors, and responsibilities, tend to be more effective than 

efforts contained to one scale. 

Fourth, since the emergence of innovations takes time, accelerated low-carbon transitions also 

involves actively phasing out existing systems. This requires careful political attention to the social and 

distributional consequences of decarbonization. 

Deep decarbonization requires complementing model-based analysis with socio-technical 

research. While the former analyzes technically feasible least-cost pathways, the latter addresses 

innovation processes, business strategies, social acceptance, cultural discourses and political struggles, 

which are difficult to model but crucial in real-world transitions. While full integration of both 

approaches is not possible, productive bridging strategies may enable policy strategies that are both 

cost-effective and socio-politically feasible.23 
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