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In this review, we describe the role of suppressor of cytokine signaling-3 (SOCS3) in mod-
ulating the outcome of infections and autoimmune diseases as well as the underlying
mechanisms. SOCS3 regulates cytokine or hormone signaling usually preventing, but in
some cases aggravating, a variety of diseases. A main role of SOCS3 results from its bind-
ing to both the JAK kinase and the cytokine receptor, which results in the inhibition of
STAT3 activation. Available data also indicate that SOCS3 can regulate signaling via other
STATs than STAT3 and also controls cellular pathways unrelated to STAT activation. SOCS3
might either act directly by hampering JAK activation or by mediating the ubiquitination
and subsequent proteasome degradation of the cytokine/growth factor/hormone receptor.
Inflammation and infection stimulate SOCS3 expression in different myeloid and lymphoid
cell populations as well as in diverse non-hematopoietic cells. The accumulated data sug-
gest a relevant program coordinated by SOCS3 in different cell populations, devoted to
the control of immune homeostasis in physiological and pathological conditions such as
infection and autoimmunity.
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INTRODUCTION
Cytokines are secreted proteins central for coordination of the
initiation, maintenance, and termination of all types of immune
responses, including host responses to infection, inflammation,
and trauma. Most cytokines have a short half-life and are released
locally at high concentrations. They interact with cell surface
receptors triggering responses that include cell survival, activation,
coordination of microbicidal effector mechanisms, and prolifera-
tion and differentiation depending on the type of cytokine and the
nature of the target cell. Cytokines are released in response to envi-
ronmental clues to ultimately preserve physiological homeostasis.
Some of them are pro-inflammatory, and initiate an inflamma-
tory response necessary to fight infection. Other cytokines are
anti-inflammatory and serve to reduce inflammation and promote
healing once the injury/infection/foreign body has been destroyed.

A tight control of cytokine release and of responses to cytokines
is required for the defense against infections, the prevention of
infection-associated immunopathology, and the correct develop-
ment of immune cell populations. A number of different cellular
and molecular mechanisms control the magnitude and duration
of innate and adaptive immune responses and several of these
mechanisms regulate cytokine responses.

Several cytokines, growth factors, and hormones utilize the
Janus kinase–signal transducer and activator of transcription
(JAK–STAT) pathway to transmit their information into the cell
nucleus. In short, the cytokine receptor is activated after binding
the cytokine. Binding to the cytokine activates the kinase func-
tion of JAK, a tyrosine kinase that binds to the receptor, which
auto-phosphorylates itself, cross-phosphorylates a JAK molecule
bound to the accompanying heterodimer chain of the cytokine
receptor and also different tyrosine sites on the cytokine recep-
tor (1). The STATs will then bind to the phosphorylated receptor

though its SH2 domain and be phosphorylated by JAK. The phos-
phorylated STAT will undergo a conformational change, detach
from the receptor, and then bind to another phosphorylated STAT.
STAT homo- or hetero-dimers translocate into the cell nucleus,
bind to target genes, and promote their transcription (2). It is fas-
cinating that only four JAK and seven STAT molecules mediate a
huge diversity of biological effects, in face of their highly specific
functions in the control of various immune responses revealed
by genetic knockout studies (3). Such specificity is due to their
individual patterns of activation by particular cytokine receptors
and to some extent by their individual DNA sequence recognition
preferences (4).

Janus kinase–signal transducer and activator of transcription
pathways are tightly regulated at many steps through distinct
mechanisms, including phosphotyrosine phosphatases (PTPs),
protein inhibitor of activated STAT (PIAS), and suppressor of
cytokine signaling (SOCS) proteins (5).

Phosphotyrosine phosphatases participate in the regulation of
the JAK/STAT signaling pathway and have important implications
in physiology and diseases (6).

The PIAS regulate the activity of many transcription factors,
including STATs (7). Different PIAS bind different STATs and
probably act by inhibiting their DNA binding or by recruiting his-
tone deacetylases (8). Neither PTPs nor PIAS exclusively inhibit the
JAK/STAT pathways, but are also main regulators of other cellular
functions.

Suppressor of cytokine signaling is a protein family of eight
members (SOCS1–7 and CIS) that inhibit STAT activation by
many, but not all, JAK–STAT activating receptors. Experiments
in different genetically manipulated mice have demonstrated a
crucial role of SOCS molecules in pathophysiology. For example,
SOCS1-deficient mice die within 3 weeks of birth due to severe
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systemic inflammation resulting from uncontrolled interferon-γ
(IFN-γ) signaling (9). SOCS2-deficient mice develop gigantism
due to enhanced responses to growth hormone (10). Mice lacking
SOCS3, the objective of this review, die perinatally probably due
to defective placental formation (11, 12).

Non-canonical ways of STAT activation have been shown
(13). For example, unphosphorylated forms of STAT might func-
tion as transcription factors, modifiers of transcription factors,
regulate the heterochromatin formation, or even possess non-
transcriptional and extra-nuclear functions (14–16). The epider-
mal growth factor receptor (EGFR) catalyzes the tyrosine phos-
phorylation of STAT3 in response to EGF (17), and the intrinsic
kinase activity of the receptor, but not of any JAK, is required
for this reaction (18). Of importance for this review, these non-
canonical STAT activation pathways might be independent of
SOCS control (19).

Suppressor of cytokine signaling-3 regulates STAT3 activation
in response to cytokines using the gp130 receptor. gp130 (CD130)
forms part of the receptor complex for cytokines belonging to the
IL-6 family, including IL-6, IL-11, IL-27, leukemia inhibitory factor
(LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF),
cardiotrophin-1, and cardiotrophin-like cytokine. The functions
of these cytokines encompass both unique but also partially redun-
dant activities on multiple cell lineages (20). Gp130 is expressed
in almost all organs and targeted deletion of the gp130 gene in
mice results in embryonic lethality (21). SOCS3 also regulates
the response to cytokines, growth factors, and hormones that are
independent of gp130, such as the IL-12R, granulocyte-colony
stimulation factor (G-CSF), leptin, insulin, and others, usually
inhibiting STAT3 activation (22), but also other receptors that do
not activate STAT3 (Table 1).

Studies in different mouse models have proven the critical
importance of SOCS3 in restraining inflammation and allowing
optimal levels of protective immune responses against infections.
We here review the latest advances in SOCS3 biology, focusing on
its role in the control of infection and inflammation.

SOCS STRUCTURE AND FUNCTION
In 1995, Yoshimura et al. identified cytokine-induced STAT
inhibitor (CIS), the first member of the SOCS family (45). A cou-
ple of years later, SOCS1 was shown to inhibit STAT signaling (46,
47), and the presence of several SOCS proteins with homologous
conformations were predicted. Eight of these anticipated mole-
cules in the human genome were subsequently cloned (SOCS1–7,
CIS) (48–50).

All SOCS proteins have a central SH2 domain and a short C-
terminal domain, the SOCS box as well as an N-terminal domain
of varying length. SOCS inhibits the receptor complex by ubiquiti-
nation and subsequent proteasome-mediated degradation. SOCS
proteins act as substrate adapters: the SOCS box associates with
a complex containing elongin B and C and this complex then
binds Cullin-5 (51, 52). Since SOCS proteins contain a central
SH2 domain, any tyrosine phosphorylated signaling interme-
diate (phospho-JAK, phospho-STAT, phosphorylated receptors)
is a conceivable substrate. Thus, the SH2 domain functions as
an adapter bringing ubiquitin ligases close to kinase-activated
signaling proteins, mediating their degradation (52).

Table 1 | Molecules regulated by SOCS3.

Receptor Cytokine or pathway

dysregulated

Reference

STAT3 gp130 (23–25)

IL-6 (23, 24)

IL-11 (26)

IL-27 (27)

OSM (28)

CT-1 (29)

LIF (30, 31)

ST
AT

ac
tiv

at
or

s

Non-gp130 receptors
G-CSF G-CSF R (32)

IL-23R IL-23 (33)

EPO-R EPO (34)

Leptin-R Leptin (35, 36)

STAT4 IL-12 Rb2 IL-12 (37)

STAT1 Gp130 IL-6 (30)

Indoleamine

dioxygenase

(38)

CD33-family CD33 (39)

NF-κB Siglec (40)

TRAF6 (41)

iκB (42)

Others Pyruvate kinase M2 (43)

IRS-1 Insulin (44)

ST
AT

-in
de

pe
nd

en
t

m
ol

ec
ul

es

IRS-2 Insulin (44)

However, SOCS1 and 3, the most studied molecules of the fam-
ily, are partially active in absence of their SOCS box domain (53).
Moreover, the SOCS box of SOCS1 and SOCS3 binds with lower
affinity to the E3 ubiquitin ligase than those of SOCS2, 4–7, and
CIS (52).

Instead, SOCS3 and SOCS1, but not the other members of the
SOCSs family, bind the JAKs directly inhibiting their kinase activ-
ity. Studies using truncated or chimeric forms of SOCS proteins
showed that SOCS1 and SOCS3 contained a short N-terminal
kinase inhibitory region (KIR) resembling a JAK substrate, which
allows them to suppress signaling by direct inhibition of JAK’s
catalytic activity (54, 55).

There are four mammalian JAKs (JAK1–3 and TYK2). SOCS3
has been shown to inhibit JAK1, JAK2, and TYK2 but not JAK3
(56). Despite the ability of SOCS3 to bind to and inhibit JAKs, dele-
tion of individual SOCS genes in mice has revealed an exquisite
specificity for particular cytokine receptor combinations rather
than specific JAKs. This specificity is provided by the binding
of the SH2 domain of the SOCS proteins to the gp130 cytokine
receptor (57).

The ability of SOCS3 to simultaneously bind to JAK and
to the cytokine receptor explains the specificity of the suppres-
sion. SOCS3 generates a ternary complex in which each moi-
ety is directly bound to the other two with an overall affin-
ity higher than the individual associations (Figure 1) (58). In
other words, SOCS3 inhibits JAK’s enzymatic activity by block-
ing substrate binding and gains specificity of action by only
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FIGURE 1 | Simultaneous binding of SOCS3 to JAK and the gp130 cytokine receptor. Adapted from Ref. (56).

binding tightly to JAK when the kinase is attached to specific
receptors. SOCS3 binds JAK and gp130 receptor simultane-
ously, using two opposing surfaces: while the phosphotyrosine-
binding groove on the SOCS3 SH2 domain is occupied by the
gp130 receptor, a subdomain in the SH2 domain of SOCS3
is also required for inhibition of JAK, binding in a phospho-
independent manner to a non-canonical surface of JAK2 (58,
59). The KIR of SOCS3 occludes the substrate-binding groove
on JAK2.

On the other hand, a relevant role for the SOCS box in the
SOCS3-mediated proteasomal degradation resulting in the regula-
tion of cytokine signaling through some receptors (i.e., the G-CSF
receptor) has been shown (60, 61). Thereby, SOCS3 regulates a
STAT3-mediated chemokine and chemokine receptor function
within the bone marrow, and plays a central role in the neutrophil
mobilization response (62).

The SOCS3 structure does not exclude an apparent specificity
of SOCS3 as an inhibitor of the activation of other STATs than
STAT3. As indicated below, SOCS3 also inhibits IL-6-mediated
STAT1 and STAT4 activation (30, 63).

SOCS3 AND STAT3
Loss of SOCS3 in vivo has profound effects on placental devel-
opment, inflammation, fat-induced weight gain, and insulin
sensitivity.

Genetic deletion of SOCS3 leads to mid-gestational embryonic
lethality due to increased STAT3 and MAP kinase activation (11,
12). Lack of suppression of LIF and fetal erythropoiesis signaling
had been shown to account for the lethality of Socs3−/− mice (11,
12). LIF belongs to the IL-6 family and is involved in blastocyst
implantation. LIFR deficit rescued the Socs3−/− placental defect
and embryonic lethality. These double KO mice died by 190 days of
age due to neutrophilia accompanied by neutrophil tissular infil-
tration (64). However, mice with a mutation in the gp130 chain of
the IL-6 receptor family that impairs binding of SOCS3 (gp130F/F

mice) display no early lethality (65), indicating that altered LIFR

signaling is not the only cause of the mid-gestational death of
Socs3−/− mice (Table 2).

Mice with a deletion of SOCS3 in hematopoietic cells (Socs3fl/fl

vav cre) have been shown to develop a severe inflammatory dis-
ease during adult life (88). IL-6 was not critical in regulating the
severity of this spontaneous inflammatory disease but played a
role in the onset (89). Since Socs3−/− but not Socs3fl/fl vav cre mice
die during gestation, SOCS3 probably impairs lethal cytokine or
growth factor responses in non-hematopoietic cells.

Gp130F/F mice spontaneously develop lymphadenopathy,
splenomegaly, and gastric hyperplasia (70). The basis for this phe-
notype is complex, but it appears that the enhanced ability of
IL-11, rather than IL-6, to activate STAT3 and STAT1 in absence
of SOCS3 promotes inflammation and cancer (26, 69).

On the other hand, enhanced IL-6 responses accounted for the
enhanced susceptibility of Socs3fl/fl vav cre or Socs3fl/fl LysM cre
(deficient in SOCS3 in myeloid cells) mice to induced inflam-
matory diseases like rheumatoid arthritis (RA) or experimental
autoimmune encephalomyelitis (EAE) (90, 98). Gp130F/F mice
spontaneously develop a RA-like disease that is accelerated by IL-
6 administration (99). Accordingly, adenoviral-delivered SOCS3
reduced joint inflammation in mice with arthritis via inhibition
of IL-6 signaling (96).

Suppressor of cytokine signaling-3 is not an essential regula-
tor of IL-10 or IFN-γ responses (80). In the absence of SOCS3 in
hematopoietic or myeloid cells, IL-6 acts like IL-10 and attenuates
macrophage secretion of TNF and IL-12 after LPS stimulation
(80). Furthermore, Socs3fl/fl LysM cre mice were protected from
the lethal effects of galactosamine and LPS administration, a
model that is dependent on TNF-induced liver failure (100). These
results were somewhat contrary to the expected: if IL-6 is a pro-
inflammatory cytokine, removal of its inhibitor should result in
more, rather than in less, inflammation. Paradoxically, the pro-
inflammatory IL-6 and the anti-inflammatory IL-10, generating
nearly opposing cellular responses, both activate STAT3 after bind-
ing to their receptors. The kinetic of STAT3 activation was pointed
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Table 2 | Mouse models to study SOCS3 function.

Genotype Population targeted Cytokine involved Reference

Socs3−/− All LIF, EPO (11, 12, 64)

Socs3± All Leptin (66, 67)

Gp130F/F* All Gp130 (26, 27, 65, 68)

Gp130F/F Il-6−/− All Non IL-6, gp130 mediated cytokines (69, 70)

Gp130F/F Stat3± All Role of SHP2 in inhibition via gp130 (26, 69, 71)

Gp130fl/fl LysM cre Myeloid cells (72)

Socs3fl/fl Lck cre/CD4 cre T cells IL-23, IL-12 (27, 73–79)

Socs3fl/fl LysM cre Myeloid cells IL-6, G-CSF, IL-27 (63, 74, 80–84)

Socs3fl/fl Nes cre Neural cells Leptin (85)

Socs3fl/fl Syn cre Neural cells Leptin (85)

Socs3fl/fl aP2 cre Adipose tissue Insulin (67)

Socs3fl/fl Alb cre Liver cells Insulin (63)

Socs3fl/fl MBP cre Oligodendrocytes LIF (86, 87)

Socs3fl/fl vav cre Hematopoietic and endothelial (75, 88–90)

Socs3fl/fl Tie cre Hematopoietic stem cells G-CSF (81)

Socs3fl/fl MMTV-LTR Glands, seminal vesicle, skin, and B and T cells IL-23 (T cells in vitro) (33)

Socs3fl/fl Mx cre Hematopoietic cells during type I IFN response (79)

Lck-SOCS3 Tg T cells Th2 cytokines (91–94)

Socs3fl/fl Adenovirus cre Liver cells (95)

SOCS3 adenovirus Local injection IL-6, TNF, IL-1β (96)

Cell-penetrating SOCS3 All (97)

as the putative cause of SOCS3’s effect: the suppressive effect of
IL-6 signaling on TNF and IL-12 secretion in absence of SOCS3
was explained to be due to a sustained STAT3 activation (101,
102). In line with this, a transient activation of the IL-10 receptor
elicited an IL-6-like response (102). However, how the duration
of STAT3 activation can direct distinct responses is far from being
understood.

Interestingly, after the initial phosphorylation of STAT3 in
response to IL-6 followed by a subsequent inhibition by SOCS3,
a second wave of activation leads to the re-phosphorylation of
STAT3 (101). It has been recently shown that re-phosphorylation
requires an IL-6-dependent association of IL-6R and EGFR with-
out involvement of gp130. STAT3 phosphorylation thus might
continue to be driven for many hours by this two-receptor complex
that is immune to inhibition by SOCS3 (19).

The anti-inflammatory responses of SOCS3-deficient
macrophages or dendritic cells (DCs) are not restricted to dimin-
ished TNF- or IL-12 levels but also have been shown to increase
the secretion of IL-10, expand the numbers of regulatory T (Treg)
cells, and decrease MHC-II expression levels (81). In line with
this, SOCS3 inhibited the TGFβ1/Smad3 signaling pathway, lead-
ing to enhanced LPS responses in macrophages (103). In contrast,
SOCS3 expression in myeloid cells has been shown to mediate
LPS-induced lung injury (82).

Deletion of SOCS3 in hematopoietic cells surprisingly also
enhanced the expression of STAT1-stimulated genes in response
to IL-6 (30, 63). The activation of STAT1 in SOCS3-deficient cells
is probably due to a more dramatic inhibition of STAT1 than of
STAT3 by SOCS3. A differential effect of SOCS3 on STAT3 and
STAT1 has lately been used to explain the preferential development

of either M1 (classically activated) (83, 98) or M2 (alternatively
activated) macrophages from Socs3fl/fl Lys M cre mice (104, 105).
M1 macrophages are differentiated after IFN-γ-stimulation, while
IL-4 and/or IL-10 activate an alternative M2 program. Impor-
tantly, in these contradictory studies on the role of SOCS in the
regulation of M1 and M2 polarization, Socs3fl/fl LysM cre mice
showed either increased resistance or susceptibility to LPS-induced
septic shock (83, 104). Altogether, it is still unknown whether
SOCS3 determines whether a cellular response to IL-6 is pro- or
anti-inflammatory. The fine regulation exerted by SOCS3 needs
further understanding.

Mechanisms regulating macrophage polarization via SOCS3
were also studied. The Notch signaling pathway specifies cell differ-
entiation during development (106). Activation of Notch signaling
increased M1 macrophage differentiation, no matter whether M1
or M2 inducers were applied. When Notch signaling was blocked,
even the M1 inducers induced a M2 response. Interestingly, Notch
signaling has been shown to regulate macrophage polarization via
SOCS3 (107): in the presence of an inhibitor of Notch signaling,
macrophages over-expressing SOCS3 showed restored M1 polar-
ization in response to LPS (107). Notch is also involved in SOCS3
up-regulation following a mycobacterial infection (108).

Perturbed hematopoiesis was observed in mice lacking SOCS3
in myeloid cells (88, 109). IL-6 played a role in the onset of this
severe disease (89). These mutant mice were hyper-responsive to
injected G-CSF, showing exaggerated neutrophilia, mobilization
of progenitor cells into the blood, splenomegaly, and an acceler-
ated disease (88, 110). SOCS3 expression was stimulated by G-CSF
and SOCS3 directly bound to a phosphotyrosine on the G-CSF-
receptor (32). The effect of SOCS3 in the regulation of neutrophil
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biology might well underlie its protective activity in development
of spontaneous or induced inflammatory diseases.

SOCS3 BUT NOT STAT3
Besides inhibiting JAK–STAT-mediated signals, SOCS3 has been
suggested to hamper other signaling pathways (Table 1). SOCS3
has been shown to bind to indoleamine dioxygenase (IDO), target-
ing the complex for ubiquitination in DCs. Thus, acting at a post-
transcriptional level it antagonizes IDO-dependent tolerogenic
signals in DCs and converts them into immunogenic (38, 111).

Suppressor of cytokine signaling-3 has also been shown to bind
and degrade CD33 or Siglec 3, blocking CD33-mediated inhibi-
tion of proliferation (39). Siglec 7, another CD33-family receptor,
has also been found to be bound and degraded by SOCS3 (40).

It has also been proposed that SOCS3 can bind to the insulin
receptor (IR) or the insulin receptor substrate-1 (IRS-1) targeting
them for proteasomal degradation and regulating thereby insulin
sensitivity (44, 112–114).

Suppressor of cytokine signaling-3 has also been shown to
directly interact with SMAD3 inhibiting the responses to TGF-
β (103). On the other hand, TGF-β has been shown to induce
the expression of SOCS3, allowing TNF-induced osteoclast for-
mation (115).

Different microorganisms including mycobacteria stimulate
the expression of SOCS3. PPE18, associated with mycobacter-
ial virulence has been shown to increase SOCS3 expression and
its tyrosine phosphorylation. Surprisingly phospho-SOCS3 was
found to bind to iκB hampering its degradation and thereby
blocking NF-κB activation (42). Another study indicated that
SOCS3 inhibits both the IL-1-induced NF-κB and JNK/p38 path-
ways by binding the upstream molecule TRAF6 and preventing its
function (41). Similarly, IL-25, a member of the IL-17 cytokine
family that promotes Th2 responses, has been shown to ham-
per the LPS-induced, MAP kinase p38-dependent secretion of
pro-inflammatory cytokines in a SOCS3-mediated manner (116).

The functional role of a JAK/STAT-independent SOCS3 regu-
lation of these molecules remains to be validated. However, these
results suggest that the characterization of SOCS3 as a STAT3
inhibitor is oversimplified.

SOCS3 AND T CELLS
The role of SOCS3 in T cell development has been somewhat over-
looked. SOCS3 is expressed in the double negative (early) stage of
thymocyte differentiation (73), a stage at which T cells determine
their expression of γδ+ or αβ+ T cell receptors (TCR). Most T
cells have a TCR composed of two chains called α and β (so called
αβ+ T cells). In contrast, a small subset of T cells has a TCR made
up by a γ and a δ chain. These γδ+ T cells are more of an innate T
cell subset, with a relatively invariant TCR and lower if any require-
ment of antigen recognition or processing for activation. Recent
experiments from our laboratory showed that the thymus, or sec-
ondary immune organs of either neonatal or adult mice with T
cells lacking SOCS3 have an increased frequency of γδ+ T cells
compared to controls (74). Thus, SOCS3 regulates T cell develop-
ment in the thymus. However, the precise mechanisms utilized by
SOCS3 remain unexplored.

IL-27 has an anti-inflammatory role during immune responses,
such as CD28-mediated IL-2 secretion. SOCS3-deficient CD8+
T cells showed higher proliferation in response to TCR ligation
than wild-type cells despite a normal activation of signaling path-
ways downstream the TCR and CD28 receptors. Suppression of
IL-27 signaling was found to substantially reduce the increased
anti-CD3-induced proliferation of SOCS3-deficient T cells (27).
Thus, SOCS3 mediates the anti-proliferative role of IL-27. The
expression of SOCS3 is induced by IL-27 in mouse and human
cells (117), and mediates the inhibitory effect of IL-27 (118). In
line with this, SOCS3 deficiency in donor T cells promoted acute
GVHD mortality (75).

Cytokines can direct CD4+ Th0 cells into Th1, Th2, Th17, or
Treg cell lineages. Th2 cells contain higher amounts of SOCS3
compared to Th1 cells (119). SOCS3 has been also suggested
to inhibit IL-12-induced STAT4 activation by direct binding to
IL-12Rβ2 (37), the IL-12R subunit that is not shared with the
IL-23R.

In line with this, the increased SOCS3 expression in T cells
correlated with the severity of asthma and atopic dermatitis or
with the Th1-mediated condition psoriasis (91, 120, 121). Fur-
thermore, defined haplotypes of SOCS3 have been linked with
atopic dermatitis in childhood cohorts (121).

Accordingly, over-expression of SOCS3 in T cells inhibits
Th1 and promotes Th2 development suggesting that SOCS3
stimulates allergic responses (91). T cell-specific expression of
SOCS3 also aggravated allergic conjunctivitis, a Th2-mediated
model of disease (92). Inhibition of SOCS3 expression in T
cells exhibited markedly suppressed airway hyper-responsiveness
and eosinophilia (76, 77). Mice with T cells over-expressing
SOCS3 also showed a delayed onset of EAE and restricted Th17
differentiation (122).

In vitro, SOCS3-deficient CD4+ T cells produced more TGF-β
and IL-10 but less IL-4 than control T cells (77). TGF-β inhibits IL-
6- and IL-21-induced SOCS3 expression, thus enhancing as well as
prolonging STAT3 activation in naive T cells (123). Thus, TGF-β
production is inhibited by SOCS3 and vice versa.

Th17 cell differentiation is induced by IL-6 and IL-21 in the
presence of TGF-β through the activation of STAT3 (124). STAT3
induces the orphan nuclear receptor RORγt, which directs Th17
cell differentiation by producing the IL-23 receptor (124). The
survival and expansion of committed murine Th17 cells requires
IL-23 (125). The critical role of STAT3 in Th17 differentiation
was also confirmed in human patients lacking functional STAT3
(126). SOCS3 was found to be a major negative regulator of IL-
23-mediated STAT3 phosphorylation and Th17 generation (33,
78, 123).

Suppressor of cytokine signaling-3 expression in fibroblasts has
been shown to participate in Th17 development. IL-17 increased
a STAT3-dependent IL-6 expression in fibroblasts. IL-6 secretion
was enhanced in mice deficient for SOCS3 in fibroblasts resulting
in enhanced Th17 levels (99). Thus, SOCS3-mediated regulation
of cytokine responses in T and non-T cell lineages impairs Th17
differentiation.

IL-17 has been also shown to increase collagen fiber formation
and fibrous cap development in atherosclerosis models (127). The
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strength of the cap given by the collagen fibers prevents plaque rup-
ture, a condition that elicits thrombosis and infarction in patients.
The increased Th17 frequency among SOCS3-deficient T cells
reduced atherosclerotic lesion development, which was dependent
on IL-17. Accordingly, the over-expression of SOCS3 in T cells
reduced IL-17 levels and accelerated atherosclerosis and severe
aortic aneurysm formation (78, 93).

Transplanted neural progenitor cells (NPCs) differentiate into
neural cells and provide the means to repair demyelinated nerve
fibers in the CNS in neuroinflammatory diseases like multiple
sclerosis. Surprisingly, NPC treatment has been shown to suppress
self-reactive T cells and control tissue inflammation via the secre-
tion of LIF. LIF inhibits Th17 differentiation by inducing SOCS3
(128). The LIF receptor is expressed on T cells. Thus, two mem-
bers of the IL-6 family, IL-6 and LIF, show opposing effects on
Th17 development: while IL-6 is required for Th17 development,
LIF counteracts it. During Th17 development, IL-6 activates while
LIF inhibits STAT3 activation. In line, inhibition of SOCS3 with
specific siRNA hampered the inhibitory effects of LIF on Th17
development (128).

As stated above, SOCS3 expression in non-T cells can direct
T cell differentiation and function. DCs are required for T cell
selection, differentiation, and activation. SOCS3-deficient DCs
expressed lower levels of MHC II, CD40, CD86, and IL-12 (81,
111). As discussed, SOCS3 expression in DCs antagonized a tolero-
genic CTLA-4 activity by direct interaction and degradation of
IDO (38).

Contrary to these observations, DCs transduced with SOCS3
significantly inhibited IL-12 and IL-23 activation of STAT4 and
STAT3, respectively. Together with an inhibition of MHC-II and
CD86 expression, SOCS3 promoted a Th2 differentiation that
hampered EAE development (129). SOCS3 might also interact

with pyruvate kinase-M2 to decrease ATP production, accounting
for such a DC dysfunction (43).

SOCS3 AND INFECTIONS
Suppressor of cytokine signaling-3 expression is stimulated by
cytokine or innate immune receptor agonists present in viruses,
bacteria, and parasites (22, 130). Due to the multiple binding part-
ners of SOCS3, it is hard to predict its role in different infections.
Of importance, SOCS3 expression is induced by several cytokines
to which the receptor has no binding site (i.e., IL-10), probably to
inhibit trans-signaling via other cytokines (131). Table 3 provides
a summary of the role of SOCS3 in several infections.

VIRAL INFECTIONS
The lymphocytic choriomeningitis virus (LCMV) clone 13 trig-
gers insufficient CD8+ T cell responses and thus persists indef-
initely in the host. LCMV promotes high expression of SOCS3
in T cells, resulting in impaired antiviral functions and viral per-
sistence. Treatment of LCMV-infected mice with IL-7 repressed
SOCS3 expression and enhanced T cell effector functions and viral
clearance. Mechanistically, a reduction of SOCS3 allowed the dif-
ferentiation of Th17 cells. IL-17 stimulates the expression of IL-6
that mediates survival and function of antiviral T cells. IL-7 also
promotes IL-22 secretion, which protects against immune tissue
destruction (79). On the other hand, the deletion of SOCS3 in all
hematopoietic cells induced an IL-6 dependent early lethality in
LCMV-infected mice despite the viral clearance (89).

Hepatitis C virus (HCV) infection is a major cause of chronic
liver disease, affecting 170 million persons worldwide. The most
effective current treatment for chronic HCV is the combination
of type I IFN and ribavirin, a nucleoside analog. Hepatic SOCS3
expression is associated with non-response to therapy in human

Table 3 | Role of SOCS3 in infections.

Pathogen Mechanism Pathology Pathogen control Reference

HSV-1 ↓IFN-αβ signaling Worsened (132)

RSV ↓IFN-αβ signaling Worsened (133)

SIV ↓Th17 responses Worsened (134, 135)

↓IFN-αβ signaling

HCV/HIV-1 ↓IFN-αβ signaling ↓Response to IFN-therapy (136)

EBV ↓IFN-αβ secretion and signaling (137)

HBV ↓Hepatic insulin signaling (138)

HCV ↓Insulin signaling (139)

HCV ↓Response to IFN-therapy (140–142)

Influenza A virus ↓IRF3 and NF-κB Worsened (143, 144)

↓IFN-αβ signaling

LCMV ↓T cell activation and memory ↑If SOCS3 is deleted in all cells Worsened (79, 89)

↓If SOCS3 is deleted in T cells None

LCMV ↑T cell memory (145)

L. major ↓TGF-β/IL-10 production by T cells (T cell knockdown) Improved (77)

L. major ↑IL-4 (T cell transgene) Worsened Worsened (94)

T. gondii ↑IL-12 induction in dendritic cells Improved Improved (68, 84)

M. tuberculosis IL-12 induction by DCs Improved Improved (74, 146)

γδ+T cells formation Improved Improved
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HCV patients (136, 140). Particular SOCS3 (-4874 AA) genotypes
express SOCS3 at elevated levels and consequently have a poorer
response to therapy (140–142). One microRNA (miR122) modu-
lated the response to type I IFNs: silencing of miR122 enhanced
IFN-induced ISRE activity by decreasing the expression of SOCS3.
Interestingly, such decrease in SOCS3 levels was not mediated
by microRNA target gene suppression, but rather by enhanced
methylation at the SOCS3 gene promoter (147).

Alike, the infection of human cells by either Epstein–Barr
virus or Herpes simplex virus (HSV) has been shown to stim-
ulate SOCS3 expression that suppresses type I IFN production
and responses (132, 137). Silencing of SOCS3 using anti-sense
nucleotides significantly hampered replication of HSV-1 (132).

In studies of simian immunodeficiency virus (SIV) infection,
a significant increase in markers of microbial translocation that
correlate with suppressed Th17 responses was found. Elevated
expression of SOCS3 could potentially play a role in suppressing
IL-17 expression during an acute SIV infection (134).

In a SIV/macaque model of HIV-associated dementia, SOCS3
expression correlated with recurrence of viral replication and onset
of CNS disease. SOCS3 expression attenuated the response of
macrophages to IFN-β. Thus, SOCS3 may allow HIV-1 to evade
the protective innate immune response in the CNS by overcom-
ing the inhibitory effect of IFN-β on HIV-1 replication within the
macrophages (135).

BACTERIAL AND PARASITIC INFECTIONS
The role of SOCS3 in the outcome of infection with intracellular
bacteria and parasite has also been studied.

Toxoplasma gondii is an intracellular eukaryotic pathogen that
causes toxoplasmosis, a life-threatening condition, which includes
congenital disease and infection in immunocompromised indi-
viduals. Toxoplasma possesses a secretory organelle called rhoptry.
Infection with T. gondii diminished innate immune responses due
to the inoculation of the rhoptry ROP16 kinase (148). ROP16
activated STAT3, which stimulated SOCS3 expression that in turn
diminished STAT3 activation (84). Socs3fl/fl LysM cre or gp130F/F

mice succumbed to T. gondii infection, and resistance could be
restored by neutralization of IL-6 (68, 84). Diminished IL-12
secretion by SOCS3-deficient DCs was suggested to impair IFN-
γ secretion by antigen-specific T cells, probably contributing to
the increased susceptibility to T. gondii infection of the mutant
mice (68).

Mycobacterium tuberculosis causes the highest mortality to
a single pathogen worldwide. Only 10% of infected individu-
als will manifest active tuberculosis while most apparently con-
trol the infection by an appropriate immune response. Infec-
tion with mycobacteria enhanced the expression of SOCS3 in
phagocytes (149).

We demonstrated a critical role for SOCS3 expression by
myeloid and lymphoid cells in resistance against M. tuberculosis
(74). All Socs3fl/fl LysM cre, Socs3fl/fl lck cre (with SOCS3-deficient T
cells), and gp130F/F mice showed increased susceptibility to infec-
tion with M. tuberculosis. SOCS3 binding to gp130 in myeloid cells
conveyed resistance to M. tuberculosis infection via the regulation
of IL-6/STAT3 signaling. SOCS3 was redundant for mycobacterial
control by macrophages in vitro. Instead, SOCS3 expression in

FIGURE 2 | Role of SOCS3 in the control of infection. (A) During
M. tuberculosis and T. gondii infection, SOCS3 is induced in macrophages
and DCs prevents the IL-6-mediated inhibition of IL-12 secretion, promoting
a CD4+ cell-dependent IFN-γ expression. (B) SOCS3 controls the
development of γδ+T cells. Such control is critical for proper protection
against M. tuberculosis.

infected macrophages and DCs prevented the IL-6-mediated inhi-
bition of IL-12 secretion and contributed to a timely CD4+
cell-dependent IFN-γ expression (Figure 2A).

Interestingly, γδ+ rather than αβ+ T cells accounted for the
susceptibility to infection of Socs3fl/fl lck cre mice. γδ+ T cells’
numbers in SOCS3-deficient mice were increased (independently
of infection) and accounted for the exacerbated susceptibility to
disease of these mutant mice (Figure 2B). Surprisingly, opposed
to αβ γδ+ T cells have been shown to be redundant in protection
of mice against M. tuberculosis. In line with this, severity of tuber-
culosis in humans was inversely associated with the expression of
SOCS3 (146).

Macrophage/neutrophil-specific gp130-deficiency, the over-
expression of soluble gp130 (sgp130) or the administration
of sgp30 did no affect mycobacterial loads or pathology (72,
150). Similarly, Il-6−/− mice have an unimpaired generation
of protective memory responses and control of mycobacterial
growth (151).

Socs3fl/fl lck cre mice showed a worsened disease progression
after infection with Leishmania major, which associated to the
hyper-production of IL-10 and TGF-β (77). On the other hand,
transgenic mice over-expressing the SOCS3 gene in T cells (Lck-
SOCS3 Tg mice) were also susceptible to infection by L. major
due to an increased IL-4 secretion (94), altogether suggesting that
a tight regulation of SOCS3 expression in T cells is crucial for
disease control during infection by L. major.

Thus, SOCS3 seems to be detrimental for controlling viral
infections by impairing proper type I IFN in viral defense. On
the other hand, SOCS3 enables suitable IL-12 secretion by DCs for
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bacterial parasite control. However, a tight regulation of SOCS3
expression in T cells is critical for determining the outcome of
infection.

SOCS3 IN NON-HEMATOPOIETIC CELLS
Suppressor of cytokine signaling-3 plays important physiologi-
cal roles in non-hematopoietic cells such as neurons, muscle cells,
hepatocytes, fibroblasts, and adipocytes. For example, SOCS3 con-
trols neurite outgrowth in dorsal root ganglia, insulin resistance
in adipocytes, and is associated with age-related blunted muscle
stem cell responses (152–154).

During inflammation, SOCS3 is expressed in epithelial and
lamina propria cells in the colon of mice with intestinal bowel dis-
ease, in human ulcerative colitis and Crohn’s disease patients (155),
and in synovial fibroblasts of RA patients (96). In human ather-
osclerotic lesions, vascular smooth muscle cells and macrophage
expressed SOCS3 (156). The over-expression of SOCS3 in T cells
reduced IL-17 and accelerated atherosclerosis whereas the in vivo
treatment with anti-sense oligodeoxynucleotides targeting SOCS3
exacerbated the atherosclerotic process in ApoE−/− mice (78).

These findings are consistent with the idea that IL-6-related
cytokines promote while SOCS3 prevents chronic disease progres-
sion. However, no dogmas can be concluded since a pathogenetic
involvement of SOCS3 has also been shown: in obesity, chronic
JAK–STAT3 activation in the CNS by increased circulating leptin
levels lead to the development of leptin resistance, whereas in the
peripheral organs chronic IL-6-induced STAT3 activation impairs
insulin action (157). Leptin is secreted from adipocytes propor-
tionally to the amount of fat stored in the white adipose tissue and
acts on a group of neurons of the hypothalamus to suppress food
intake and to increase energy expenditure (158). In obesity, expan-
sion of white adipose tissue increases leptin levels, but the protein
does not convey its biological effects. SOCS3 expression in the CNS
is largely increased in obesity. SOCS3 binds to the leptin receptor
and thereby limits leptin action (35, 36, 159). Mice lacking SOCS3
in this particular population of neurons are protected from the
development of diet-induced obesity and maintain central leptin
sensitivity (66, 85, 160).

In agreement with these results, circulating levels of cytokines
including IL-6 and TNF-α impair insulin signaling in peripheral
organs. IL-6 increases SOCS3 levels in adipose tissues, muscle
cells, and hepatocytes. Mice with deficient SOCS3 expression in
adipose tissues were protected against the development of obesity-
associated insulin resistance (67). As indicated above, SOCS3
impairs insulin action by binding to the insulin receptor or the
IRS-1 and IRS-2 leading to their ubiquitination and degradation
or by inhibition of receptor tyrosine phosphorylation (44, 113).

IL-6-related cytokines are induced by and play a protective
role in the injured myocardium. Mice with a SOCS3 deletion
in cardiomyocytes showed higher activation of STAT3, AKT, and
ERK1/2 pathways, and reduced mitochondrial damage, oxidative
stress, and inflammation resulting in the prevention of myocardial
injury (161).

PHARMACOLOGICAL TARGETING OF SOCS3
The multiple effects of SOCS3 in different cell lines and experi-
mental models call for thorough investigations to clarify its main

mechanisms and targets. Strategies increasing SOCS3 expression
or mimicking its consequences (i.e., hampering STAT3 activa-
tion) might be appropriate for immune-prophylaxis or -therapy
of several infectious or inflammatory diseases. In line with this,
in some inflammation models, SOCS3 over-expression mitigates
inflammatory arthritis induced by antigen/IL-1β or collagen, as
well as acute inflammation induced by staphylococcal entero-
toxin B and LPS (90, 97, 162). On the other hand, when STAT3
plays a protective role for tissue injury, such as in ConA-induced
hepatitis, deletion of SOCS3 is anti-inflammatory. As described
above, SOCS3 deficiency in macrophages protects mice from LPS-
shock because of the enhanced anti-inflammatory effect of STAT3
(80). The down-modulation of SOCS3 expression in CD4+ T
cells might be effective in preventing the development of allergic
asthma (76).

Therapeutic trials using SOCS3-specific anti-sense oligonu-
cleotides, small hairpin RNAs, or cell-penetrating SOCS3 proteins,
have been performed (97, 132, 163). However, to our knowledge
the use of small molecules to specifically target SOCS3 have not
been reported.

On the other hand, several inhibitors of STAT3, modulat-
ing either upstream positive or negative regulators, regulating
RNA (DN-STAT3, anti-sense RNA, siRNA) and micro RNA, or
small molecules targeting STAT3 at different domains have been
approached (164, 165) principally to target constitutive STAT3
activation, which is associated with various human cancers and
commonly suggests poor prognosis (166), although attempts to
use it in infections or inflammation have not been done. Such
inhibitors could also be used in some of the inflammatory or
infectious diseases described above to regulate SOCS3 effects.
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