
SODA: a Service-On-Demand Architecture for Application Service Hosting
Utility Platforms

Xuxian Jiang, Dongyan Xu
Department of Computer Sciences

Purdue University, West Lafayette, IN 47907
�jiangx, dxu�@cs.purdue.edu

Abstract

The Grid is realizing the vision of providing computation
as utility: computation jobs can be scheduled on-demand
in Grid hosts based on available computation capacity. In
this paper, we study another emerging usage of Grid utility:
the hosting of application services. Different from a compu-
tation job, an application service such as e-Laboratory or
on-line shopping has longer lifetime, and performs multiple
jobs requested by its clients. A service Hosting Utility
Platform (HUP) is formed by a set of servers in the Grid,
and multiple application services will be hosted on the HUP.

We present the design and implementation of SODA, a
Service-On-Demand Architecture that enables on-demand
creation of application services on a HUP. With SODA, an
application service will be created in the form of a set of
virtual service nodes; each node is a virtual machine which
is physically a ‘slice’ of a real host in the HUP. SODA
involves both OS and middleware level techniques, and has
the following salient capabilities: (1) on-demand service
priming: the image of an application service as well as
the OS on which it runs will be created on-demand and
bootstrapped automatically; (2) better service isolation:
services sharing the same HUP host are isolated with
respect to administration, faults, attacks, and resources; (3)
integrated service request management: for each service, a
service switch will be created to direct client requests to ap-
propriate virtual service nodes. Moreover, the application
service provider can replace the default request switching
policy with a service-specific policy.

1 Introduction

The Grid is realizing the vision of providing computation
as utility. Analogous to water and electricity, computation
resources will be supplied on-demand to a computation
job, and turned off when the job is completed. In this

paper, we focus on another emerging usage of the Grid
utility: the hosting of application services. Different
from a computation job, an application service such as an
e-Laboratory or an on-line business has longer lifetime,
and performs multiple jobs for its clients. However, the
application service provider may not wish to use its own
resources to host the service. On the other hand, the Grid
provides an excellent platform for this purpose: a service
Hosting Utility Platform (HUP) can be formed by a set of
servers in the Grid, and multiple services will be hosted on
the HUP.

To reflect the utility vision, service hosting on a HUP
should be on-demand. In other words, an application
service should be dynamically created and automatically
bootstrapped (and torn down), at the provider’s request.
For example, a bioinformatics institute wishes to provide
a genome matching service to the research community,
without using its limited IT resources. It can make a service
creation call to a HUP, and the entire image of the genome
matching service will be downloaded to and bootstrapped
in the HUP. In addition, staff of the bioinformatics institute
should be able to perform service monitoring and manage-
ment, as if the service were hosted locally. To realize this
picture, we need to address the following challenges.

The first challenge is the virtualization of services1 and
the isolation between them. Although sharing the same
HUP, each service should appear to its provider as running
in a dedicated environment, or more specifically, in a set
of virtual service nodes: each node is a virtual machine
which is physically a ‘slice’ of a real server in the HUP.
Between services, isolation is desirable with respect to (1)
administration - a service provider should have adminis-
trator privilege, but only within its own service; (2) fault
and attack handling: a crash or security breach of one
service should not affect other services running in the same
HUP host; and (3) resources: resource allocation should be

1For the rest of the paper, a service means an application service if not
otherwise specified.

Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing (HPDC’03)

1082-8907/03 $17.00 © 2003 IEEE

guaranteed for each service, or more specifically, for the
HUP host ‘slices’ that form the corresponding set of virtual
service nodes.

The second challenge is the on-demand creation of
services. Service providers should be able to make service
creation requests, and images of application services will
be transported to the HUP and get installed. Furthermore,
to achieve service isolation described in the previous para-
graph, each virtual service node will involve not only the
service software, but also a virtual (guest) OS environment
upon which the service software runs. It is challenging
to enable automatic bootstrapping of both the service and
the guest OS on top of the host OS in a HUP host.
Unfortunately, current active service techniques [5, 34] are
not adequate to handle such an ‘active virtual machine’
scenario.

In this paper, we present the design and implementation
of SODA, a Service-On-Demand Architecture that enables
the hosting of application services on HUPs. SODA inte-
grates existing and novel techniques at both OS and middle-
ware levels. The salient capabilities of SODA include: (1)
on-demand service priming: the image of a service as well
as its guest OS is created on-demand and bootstrapped au-
tomatically; (2) better service isolation: services sharing the
same HUP host are isolated with respect to administration,
fault/attack handling, and resources; (3) integrated service
request management: for each service, a service switch will
be created to direct client requests to appropriate virtual
service nodes. Moreover, the service provider can replace
the default request switching policy with a service-specific
policy.

The rest of this paper is organized as follows: Section
2 gives an overview of SODA. Section 3 describes key en-
tities of SODA. Section 4 presents SODA implementation.
Section 5 presents the performance of application services
in SODA. Section 6 compares SODA with related work.
Section 7 concludes this paper.

2 Overview of SODA

SODA is illustrated in Figure 1. A HUP is formed
by a collection of high-end hosts in the Grid. The HUP
hosts may be connected by a local or wide area network.
Currently, our testbed is in a departmental high-speed LAN.
Customers of the HUP are Application Service Providers
(ASPs). Each HUP host runs a host OS and a SODA
Daemon. For the entire HUP, there is one SODA Agent and
one SODA Master.

2.1 Service Virtualization and Isolation

Before describing the SODA entities, we first define and
justify the virtual service nodes for service virtualization

 Service

S

 Guest OS

SODA
 Daemon

SODA
 Daemon

SODA
 Daemon

GuestOS GuestOS

 Service

S’

Service switch for S Service switch for S’

 SODA Master SODA Agent

GuestOS

 Service

S S’

 Service

Host OS Host OS Host OS

HUP host1 HUP host2 HUP host3

High speed network

Virtual service node

Service requests from clients Service requests from clients

Service creation requests from ASPs

During
service
lifetime

Before
service
creation

Figure 1. Overview of SODA

and isolation. Suppose an ASP requests the creation of
service �. Based on resource requirement specified by the
ASP, SODA will create a set of virtual machines for �. As
shown in Figure 1, each virtual machine is called a virtual
service node, which is physically a ‘slice’ of a HUP host.
Each node runs a guest OS on top of the host OS; while
service � runs on top of the guest OS. Moreover, an IP
address is assigned to each virtual service node so that it
can communicate like a physical server. A service switch
for � is also created by SODA, directing each client request
to one of the virtual service nodes for �.

To explain why there may be multiple virtual service
nodes (each for a different service) on the same HUP
host, we realize that the resource requirement of different
services is highly diverse, while the resource availability
of HUP hosts may not be uniform. Therefore, HUP host
resources may not be fully utilized, if we choose one whole
HUP host as the minimum unit of resource allocation.

For the ‘guest OS/host OS’ structure in each HUP host,
we have the following justifications: (1) Administration
isolation: It is desirable that each ASP has full administrator
privilege within the corresponding virtual service nodes,
so that the ASP can perform service-specific management
tasks such as monitoring and software upgrade. However,
if the administrator privileges of all ASPs are at the same
(host OS) level, access control will become complicated
and may lead to security holes. (2) Fault/attack isolation:
following (1), if all services run at the same host OS level,
any fault or security breach in one service will affect the
host OS and therefore other services. For example, ghttpd
[29] is a light-weight web server run by the root. However,
one known attack to ghttpd is: a malicious packet is sent as
an HTTP request, causing buffer overflow to bind a shell on
a certain port. Then the attacker can remotely log in using

Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing (HPDC’03)

1082-8907/03 $17.00 © 2003 IEEE

the port, and run a remote shell! With SODA, since the root
that runs ghttpd is the root of the guest OS, not the host
OS, the attack will not affect the host OS as well as other
services. (3) Existing OS techniques of resource reservation
and scheduling can only achieve resource isolation. They
are not adequate to achieve service isolation.

2.2 Key Entities in SODA

Functions of key SODA entities are summarized as
follows.

� SODA Agent is a middleware-level entity serving
as the interface between the ASPs and the HUP. It
accepts service creation requests and performs other
administrative tasks such as billing.

� SODA Master is a middleware-level entity coordi-
nating the service creation activities across the HUP.
More specifically, SODA Master determines the set of
virtual service nodes for each service creation request
and coordinates the service priming process.

� SODA Daemon is a system-level entity running in
each HUP host. It performs the downloading of
application service images and the bootstrapping of
virtual service nodes.

� Service switch is an application-level entity created
by SODA for each service. After the service has
been bootstrapped, the service switch will accept client
requests and directs them to appropriate virtual service
nodes.

3 SODA Entities and Operations

In this section, we describe in detail the key SODA
entities and their interactions, by following the creation
of a service. Current limitations of SODA will also be
discussed. To request the hosting of a service �, the ASP
needs to prepare: (1) the image of service �, including
the executables and data files, properly organized in a
file system. The image should be stored in a machine
owned by the ASP; (2) the resource requirement of �.
Currently, the requirement is specified as a tuple� ��� �,
meaning that the hosting of service � requires � machines
of configuration � - � is a tuple indicating the types and
amounts of resources. An example of � is shown in Table
1. The resource requirement specification is the result of
off-line QoS/resource profiling [13], which is out of the
scope of this paper.

Type of resource Amount of resource
CPU 512MHz
Memory 256MB
Disk 1GB
Bandwidth 10Mbps

Table 1. Example of machine configuration�
in resource requirement � ��� �

3.1 SODA Agent

The ASP then makes a service creation request to the
SODA Agent. The request contains the service image loca-
tion as well as the resource requirement. As the interface
between ASPs and the HUP, the SODA Agent authenticates
the ASP and passes the request to the SODA Master. After
the service creation (to be described) is completed, the
SODA Agent will reply to the ASP with information about
the virtual service nodes created for �.

3.2 SODA Master

Upon receiving the service creation request, the SODA
Master checks if the resource requirement of � can be
satisfied by current HUP resource availability. The SODA
Master collects resource information from SODA Daemons
running in each HUP host. If the resource requirement
cannot be satisfied, a request failure will be reported. Oth-
erwise, service � will be admitted; and the SODA Master
will identify a number of HUP host ‘slices’ to form the set
of virtual service nodes for �. The SODA Master will then
contact the SODA Daemons running in the selected HUP
hosts to initiate the service priming process. After service
priming, the SODA Master will create a service switch for
�.

The SODA Master maps the service resource require-
ment � ��� � to �� (�� � �) virtual service nodes.
Our current implementation assumes that (1) service � is
fully replicated in each virtual service node and (2) the
minimum granularity of each virtual service node is one
machine instance � - in other words, the capacity of one
virtual service node is either one � or a multiple of � .
Our assumptions simplify the resource allocation algorithm
of the SODA Master. However, two problems exist: (1)
resource aggregation: if more than one �s are mapped
to one virtual service node, this node may require less
amount of a certain resource (such as disk space) than in
the multiple �s. (2) the slow-down effect: since each
virtual service node is a virtual machine running on the
host OS, there will be a slow-down in both processing and
network transmission. It is a challenging problem (and
our on-going work) to determine the factors of resource

Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing (HPDC’03)

1082-8907/03 $17.00 © 2003 IEEE

aggregation and slow-down. Before these problems are
solved, we use a conservative estimation of these factors
in the SODA implementation2.

3.3 SODA Daemon

A SODA Daemon is running in each HUP host as a host
OS process. It reports resource availability to the SODA
Master. And it performs service priming, i.e. the creation of
a virtual service node, at the command of the SODA Master.
Upon receiving the command to create a virtual service
node, the SODA Daemon will contact the underlying host
OS and make resource reservations for the virtual service
node. After reserving a ‘slice’ of the HUP host, the SODA
Daemon will download the service image from the location
specified by the ASP (Section 3.1), and bootstrap the virtual
service node (first the guest OS, then the service). Note
that once the service is started, the SODA daemon will not
interfere with the interactions between the virtual service
node and the host OS.

During the bootstrapping, the SODA Daemon will also
assign an IP address to the virtual service node, so that it can
communicate like a real server. In the SODA implementa-
tion, this is enabled by a bridging module running in the
host OS, which acts as a transparent bridge connecting all
virtual service nodes in the HUP host3. The SODA Daemon
will return this IP address to the SODA Master, which will
collect the IP addresses of all virtual service nodes created
for �.

3.4 Service Switch

After the SODA Daemons have finished service priming,
the SODA Master will create a service switch for �, based
on the information returned by the SODA Daemons. Co-
located in one of the virtual service nodes of �, the service
switch will accept and direct each client request to one
of the virtual service nodes. The service switch enforces
a default request switching policy, which can be replaced
with a service-specific policy by the ASP.

Inside the service switch, a service configuration file
is created and maintained by the SODA Master. The file
records (1) the IP address and (2) the relative capacity of
each virtual service node of �. If the ASP decides to
resize the service capacity, the SODA Master will either
adjust the resources in the current virtual service nodes,
or add/remove virtual service node(s). In either case, the
service configuration file will be updated by the SODA
Master to reflect the changes.

2More specifically, we set the slow-down factor to be 1.5 and we
assume no resource aggregation.

3However, if the scarcity of IP addresses becomes a problem, we will
adopt the technique of proxying instead of bridging, so that a virtual service
node can still communicate with a reserved IP address.

Via SODA, service � is now created as the set of virtual
service nodes and the service switch.

3.5 Discussion

The current design of SODA has the following limita-
tions:

� A slow-down is inevitably associated with the guest
OS/host OS structure. As a result, the CPU and
network bandwidth requirement has to be ‘inflated’
during resource allocation. This is the price for service
isolation, especially with respect to service adminis-
tration and fault recovery. With the rapid advances in
high performance processors, such a price is expected
to be more affordable in the near future.

� SODA is not proposed as a solution to service security
or fault tolerance. It only helps to ‘jail’ the impact of
fault or attack within one service instead of ‘saving’
the service. We further note that the service isolation
achieved by SODA is not absolute. For example, if
a service is DDoS-attacked, its service switch will be
inundated with requests, affecting other virtual service
nodes in the same HUP host and therefore violating the
service isolation.

� Currently, SODA only supports fully replicated ser-
vices, i.e. the same service image is mapped to every
virtual service node. However, a more flexible service
image mapping is desirable, in order to accommodate a
wider spectrum of services - for example, a partition-
able service [25] where different service components
are mapped to different virtual service nodes.

� SODA currently focuses on a local HUP rather than
a wide-area HUP. One way to construct a wide-area
HUP is to federate multiple local HUPs, each having
its own SODA Agent and Master. However, we
will need to address challenges including autonomous
management (under different ownership), distributed
monitoring [33], and platform heterogeneity of multi-
ple HUPs.

The purpose of this paper is to demonstrate the architec-
ture of SODA and its prototype implementation, rather than
the final design and implementation. Therefore, we do not
present solutions to the above limitations which are part of
our on-going work.

4 SODA Implementation

In this Section, we present the implementation of a
SODA prototype. Some initial performance of SODA will

Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing (HPDC’03)

1082-8907/03 $17.00 © 2003 IEEE

also be presented. There are currently two HUP hosts in our
testbed, coded seattle and tacoma, respectively. seattle is a
Dell PowerEdge server with a 2.6GHz Intel Xeon processor
and 2GB RAM, while tacoma is a Dell desktop PC with
a 1.8GHz Intel Pentium 4 processor and 768MB RAM. In
addition, there are a number of laptop and desktop PCs
running as the SODA Agent, SODA Master, and service
clients. All machines are connected by a 100Mbps LAN.

4.1 SODA API

SODA provides APIs for service creation, tear-down,
and resizing. The SODA Agent accepts these calls and
passes them to the SODA Master after proper authentica-
tion. SODA service creation allows the ASP to specify
service name, location of service image, and resource re-
quirement � ��� � (Section 3). SODA service teardown
allows the ASP to request the tear-down of a service.
SODA service resizing may be called by the ASP to resize
the service capacity based on a new resource requirement
� ������ �.

4.2 Host OS and Guest OS

Currently, SODA supports Linux as the host OS of each
HUP host. For the guest OS, we leverage and extend an
open source project called UML [18], or User-Mode Linux.
Unlike other virtual machine techniques such as VMWare
[3, 35], a UML runs directly in the unmodified user space
of the host OS; and processes within a UML (the guest
OS) will be executed in the virtual service node exactly
the same way as they would be executed in a native Linux
machine. A special thread is created to intercept the system
calls made by all process threads of the UML, and redirect
them into the host OS kernel. Meanwhile, the host OS
has a separate kernel space, eliminating any security impact
caused by the individual UMLs.

The original UML only provides limited support for
resource isolation: For memory, a memory usage limit
can be specified as a parameter when a UML is started.
Then the memory consumption of the corresponding virtual
service node (both the UML and the service) will not exceed
this limit. However, the original UML does not support
the isolation of other resources such as CPU and network
bandwidth. To solve this problem, we enhance the Linux
host OS with the following:

� CPU isolation We have implemented a coarse-grain
CPU proportional sharing scheduler, which enforces
the CPU share allocated to each virtual service node.
The CPU share is determined by the SODA Master
when the corresponding service is admitted. Within
one virtual service node, all processes bear the same

user (service) id. The CPU scheduler in the host
OS then enforces proportional CPU sharing among all
processes, based on their userids. Performance of CPU
isolation will be presented in Section 5.

� Network bandwidth isolation We are implementing a
traffic shaper inside the Linux host OS, which enforces
the outbound bandwidth share allocated to each virtual
service node. Recall that each virtual service node
has its own IP address. Therefore, the traffic shaper
achieves bandwidth isolation based on the IP addresses
of outgoing packets generated by different virtual
service nodes.

4.3 On-Demand Service Priming

The original UML system does not support on-demand
and automatic service priming. Therefore, we implement
the SODA Master and SODA Daemon to perform this task.

Active service image downloading The first step of
service priming is to download the service image from the
specified location. We assume that the ASP has properly
packaged the service image (including the executable and
the data files) using RPM, so that it is organized into a file
system with one root. After receiving the service priming
command from the SODA Master, the SODA Daemon on
each selected HUP host will download the service image
using HTTP/1.1. The downloading time depends on the
network connection between the service image repository
and the HUP host. We have measured the downloading time
for service images of different sizes within the 100Mbps
LAN. As expected, the downloading time grows linearly
with the size of the service image.

Automatic bootstrapping of virtual service node The
second step of service priming is the bootstrapping of
UML (guest OS) and the application service. To achieve
fast bootstrapping, the SODA Daemon first performs a
customization of the Linux system services to be started in
the UML. SODA Daemon tailors the root file system of the
UML4 by retaining only the Linux system services (in the
/etc/ directory) required by the application service; it also
checks their dependencies to ensure that only the necessary
libraries are included. The customized root file system
is light-weight and reconfigurable - in many cases it can
be mounted in RAM disk for fast bootstrapping. Finally,
the SODA Daemon executes a command (provided by the
UML system) to start the UML; the UML then starts the
application service.

To demonstrate the highly efficient bootstrapping of
virtual service nodes in SODA, we measure the boot-
strapping time using four different application services as

4Note that the application service image is also part of the root file
system.

Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing (HPDC’03)

1082-8907/03 $17.00 © 2003 IEEE

App. service Linux configuration Image size Time (seattle) Time (tacoma)
�� rootfs base 1.0 29.3MB 3.0 sec. 4.0 sec.
��� root fs tomrtbt 1.7.205 15MB 2.0 sec. 3.0 sec.
���� root fs lfs 4.0 400MB 4.0 sec. 16.0 sec.
��� root fs.rh-7.2-server.pristine.20021012 253MB 22.0 sec. 42.0 sec.

Table 2. Service bootstrapping time for four different application services

Directive IP address Port number Capacity
BackEnd 128.10.9.125 8080 2
BackEnd 128.10.9.126 8080 1

Table 3. A sample service configuration file
created by the SODA Master after service
priming

shown in Table 2: they differ in the number and type of
Linux system services needed. Each of �� , ��� and ����

requires a tailored (and different) subset of Linux system
services, while ��� requires a full-blown Linux server (rh-
7.2-server-pristine). The bootstrapping time on both HUP
hosts is very short, compared with the worst-case of ��� .
Note that the bootstrapping time is not solely dependent on
the service image size, it is more dependent on the number
and type of Linux services needed.

Dynamic configuration for internetworking To enable
internetworking for virtual service nodes, each SODA Dae-
mon maintains a pool of IP addresses to be assigned to
the virtual service nodes running in this HUP host. For
different HUP hosts, their pools of IP addresses must be
disjoint. After assigning an IP address to a UML (i.e. virtual
service node), the SODA Daemon will notify the bridging
module inside the host OS (Section 3.3) of the new ‘UML-
IP’ mapping, so that the bridging module will correctly
forward packets from/to the new virtual service node.

Service request switching and service resizing After
the virtual service nodes are created, the SODA Master will
create a service switch which contains a service configu-
ration file. A sample service configuration file is shown in
Table 3. It records the IP address, port number, and capacity
of each virtual service node. The capacity is relative to the
number of machine instances � (in � ��� �) mapped
to this virtual service node. In Table 3, the resource
requirement of the service is � ��� �, and is provided
by two virtual service nodes with capacity of 2� and � ,
respectively.

5 Application Service Performance in SODA

In this section, we present the performance of application
services created in SODA. The first service (�� in Table
2) is a simple web content service which provides a static
dataset to clients. To illustrate service isolation, the second
service (��� in Table 2) is deliberately a ‘dangerous’ service
called honeypot [1]: it provides a vulnerable ‘victim’ server
to be attacked by malicious clients. Such an attack emula-
tion service is useful to the understanding and prevention of
attacks in the real world. The two services are created in the
two HUP hosts (Figure 2): the web content service has two
virtual service nodes: the one in seattle has twice as much
capacity as the one in tacoma. The honeypot service has
one virtual service node in seattle.

SODA

 Daemon

Web content service switch

 Host OS

 UML UML

 Web

 Daemon

 SODA
 UML

 Web
 honeypot

tacoma seattle

 SODA Master

Service requests from clients

 Host OS

Figure 2. Creation of web content service and
honeypot service in the SODA testbed

Attack isolation In this experiment, the honeypot ser-
vice is constantly attacked and crashed. However, the web
content service is not affected. Figure 3 is a screenshot
of HUP host seattle showing their co-existence: The two
windows correspond to the two virtual service nodes (left:
web content service, right: honeypot service). The ‘ps -
ef’ commands are executed under their own guest OSes

Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing (HPDC’03)

1082-8907/03 $17.00 © 2003 IEEE

Figure 3. Screenshot showing the co-existence of virtual service nodes for the web content service
(left) and for the honeypot service (right)

(UMLs). More specifically, an httpd (httpd 19 5) daemon is
running for the web content service; while a ghttpd (ghttpd-
1.4) daemon is running as the current ‘victim’ server in
honeypot5.

Service request switching and load balancing We
use the web content service to demonstrate service load
balancing achieved by the service switch. The request
switching policy is weighted round-robin, with the weights
reflecting the capacity of the two virtual service nodes in
seattle and tacoma, respectively. We measure the average
request response time achieved by each virtual service node;
and the measurement is repeated under six different dataset
sizes. The requests are generated by machines in the same
LAN using siege, an HTTP request generation program;
and we reduce the request arrival rate with the increase in
dataset size. We observe that the requests served by the
node in seattle is approximately twice as many as those
served by the node in tacoma. More importantly, the request
response time achieved by the two nodes are approximately
the same, as shown in Figure 4. The results show that
by enforcing an appropriate request switching policy, the
service switch will achieve load balancing among virtual
service nodes for a service.

Note that the web content service is only a simple
example. For a more complex service, the ASP may need to
replace the default request switching policy with a service-
specific policy. Thanks to the service isolation in SODA,
even if the service-specific policy is ill-behaving, it will not
affect other services hosted in the HUP.

5As described in Section 2.1, ghttpd server contains a remotely
exploitable buffer overflow which allows an attacker to gain ghttpd’s
privilege.

0

2

4

6

8

10

12

14

16

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07

A
ve

ra
ge

 r
eq

ue
st

 r
es

po
ns

e
tim

e
(s

ec
s)

Dataset size (bytes)

virtual service node in seattle
virtual service node in tacoma

Figure 4. Average request response time of
the web content service achieved by the two
virtual service nodes in seattle and tacoma, re-
spectively - the former serves approximately
twice as many requests as the latter, under
each dataset size

Resource isolation To demonstrate the resource (CPU)
isolation achieved by SODA, another experiment is per-
formed: we create two additional virtual service nodes
comp and log in tacoma, besides the one for web content
service (web). comp performs computation-intensive jobs
with infinite loop of dummy arithmetic operations. log
performs logging via continuous disk writes. Each of the
three virtual service nodes (web, comp and log) is allocated
an equal share of the CPU. However, their loads are higher
than their respective shares. Under this loaded condition,
we measure the actual CPU shares of the three virtual

Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing (HPDC’03)

1082-8907/03 $17.00 © 2003 IEEE

service nodes, as shown in Figure 5. Figure 5(a) shows
the CPU shares (versus time) when the host OS is the
unmodified Linux; while Figure 5(b) shows the CPU shares
when the host OS is our enhanced Linux with the CPU
proportional sharing scheduler. We observe that the ‘equal-
share’ isolation between the virtual service nodes is better
enforced by our enhanced host OS.

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350

C
P

U
 S

ha
re

(%
)

Time (second)

web
comp

log

(a) Host OS: unmodified Linux

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350

C
P

U
 S

ha
re

(%
)

Time (second)

web
comp

log

(b) Host OS: Linux with our CPU sharing scheduler

Figure 5. CPU shares (versus time) of the
three virtual service nodes web, comp and log

Slow-down effect Finally, we measure the processing
and transmission slow-down due to the guest OS/host OS
structure. We first go to the ‘source’ of slow-down: the
system calls. Table 4 compares the time (in clock cycles)
to complete a system call in a UML and in the host OS.
The results indicate that the guest OS/host OS structure
does incur significant overhead in system call handling.
We then measure the application-level slow-down using the
web content service: Under the same service load6, we run

6The service load in this experiment is lighter than in the previous

System call in UML in host OS
dup2 27276 1208
getpid 26648 1064
geteuid 26904 1084
mmap 27864 1208
mmap munmap 27044 1200
gettimeofday 37004 1368

Table 4. Measuring slow-down at system call
level (clock cycles)

the web content service in three different scenarios: (1) in
one virtual service node with service switch; (2) directly on
the host OS with service switch; and (3) directly on the host
OS without service switch. In all three scenarios, there is no
other service load in the system. The request response time
is compared in Figure 6. We again observe a slow-down
incurred by the virtual service node. However, the slow-
down factor is much lower than the one indicated in Table
4; and it remains approximately the same under different
dataset sizes. Although this experiment suggests that the
slow-down factor is quite acceptable at the application level,
more extensive experiments are needed before a general
conclusion can be drawn.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07

A
ve

ra
ge

 r
eq

ue
st

 r
es

po
ns

e
tim

e
(s

ec
s)

Dataset size (bytes)

virtual service node w/ switch
directly on host OS w/ switch

directly on host OS w/o switch

Figure 6. Measuring slow-down at application
level (request response time)

6 Related Work

The Grid reflects the philosophy of utility computing.
A number of projects have proposed the usage of Grid
resources as computation utility, such as Globus [22],
Condor [19], Legion [24], NetSolve [7], Harness [27] and
Cactus [4]. Meanwhile, the Grid resources can also be used
as a data storage and management utility, such as in the

experiments.

Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing (HPDC’03)

1082-8907/03 $17.00 © 2003 IEEE

Storage Resource Broker [9], NeST [10], the Data Grid
[14], and OceanStore [26]. Industry efforts parallel those
of the academia, such as Oceano [6] at IBM and Planetary
Computing [2] at HP. In this paper, we focus on application
service hosting as another emerging usage of Grid utility.

Recently, the vision of integrating Grid and Web service
concepts and technologies has been proposed as the Open
Grid Services Architecture (OGSA) [22, 23]. With efforts
in OGSA implementation and standardization, application
services are expected to be widely deployed and achieve
higher interoperability. While OGSA addresses higher level
issues such as service description, discovery and composi-
tion; our work focuses on underlying issues such as service
hosting and isolation, complementing the OGSA efforts.

SODA is related to active or on-demand services. In ac-
tive services, the executable of a service can be dynamically
downloaded and started where it is needed (for example,
to perform QoS adaptation or to handle increasing load).
Examples include the Berkeley Active Service Framework
[5], WebOS [34], Darwin [12] and the Adaptive Service
Grid [36]. Different from active services, SODA supports
on-demand creation of both services and guest OSes on top
of which the services will run. As a result, services created
by SODA enjoy better isolation.

Resource isolation has been realized by existing tech-
niques of resource reservation, allocation, and scheduling,
such as those in QLinux [32], Resource Kernel [30], GARA
[21], and Virtual Services [31]. Resources such as CPU,
bandwidth, and memory can be reserved and allocated to
different processes, users, or service classes; and the alloca-
tion is enforced by various resource scheduling algorithms.
Resource partitioning is also proposed for server clusters
[8] and overlay networks [11], where slices of resources
in multiple hosts are reserved for different applications or
services. However, these works do not address other aspects
of isolation such as administration and fault handling; nor
do they support on-demand service creation.

The concept of virtual machines has been proposed and
realized. Examples include Berkeley NOW [17] and High
Performance Virtual Machines (HPVM) [15, 16]. Their
goal is to aggregate the computing power of commodity
machines (interconnected using high-performance commu-
nication techniques) and create a virtual high-performance
supercomputer. On the other hand, our work involves the
partition of physical servers into multiple virtual service
nodes to host different services, each running on a guest
OS. Recently, host and network virtualization has received
tremendous attention: Denali [37] is a isolation kernel
providing isolation between Internet services on shared
hardware. SODA shares the same goal. In addition, SODA
enables on-demand service priming and integrated service
request switching among multiple virtual service nodes.
The Cluster-On-Demand system [28] enables on-demand

creation of virtual clusters. However, each cluster node
is a real machine primed with a host OS based on bare
hardware; while each virtual service node created by SODA
is a virtual machine primed with guest OS and application
service, based on the host OS. Finally, Virtuoso [20] re-
alizes Grid computing in virtual machines, paralleling our
efforts in service hosting in virtual service nodes. [20]
also provides a view on resource management and virtual
networking under virtual machines.

7 Conclusion

We have presented the design and implementation of
SODA, a Service-On-Demand Architecture for hosting util-
ity platforms. With SODA, ASPs can outsource application
service hosting by calling the SODA APIs, yet they are
able to perform service monitoring and administration as
if the services were hosted in-house. SODA involves
both OS and middleware level techniques. Our initial
experiments show that SODA achieves highly efficient on-
demand service priming and satisfactory service isolation.
We plan to expand our testbed and perform more extensive
performance evaluation of SODA.

8 Acknowledgments

We would like to thank the anonymous referees for their
constructive comments and suggestions. This work was
supported in part by a grant from the e-Enterprise Center
at Discovery Park, Purdue University.

References

[1] honeynet. http://www.honeynet.org.
[2] Planetary Computing, HP Labs.

http://www.hpl.hp.com/news/2001/oct-dec/planetary.html.
[3] VMWare. http://www.vmware.com.
[4] G. Allen, T. Dramlitsch, I. Foster, N. Karonis, M. Ripeanu,

E. Seidel, and B. Toonen. Supporting Efficient Execution in
Heterogeneous Distributed Computing Environments with
Cactus and Globus. Proceedings of Supercomputing 2001,
Nov. 2001.

[5] E. Amir, S. McCanne, and R. Katz. An active service frame-
work and its application to real-time multimedia transcod-
ing. Proceedings of ACM SIGCOMM ’98, Sept. 1998.

[6] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, and
M. Kalantar. Oceano: SLA based Management of a
Computing Utility. Proceedings of IFIP/IEEE Intl. Symp.
on Integrated Network Management, May 2001.

[7] D. Arnold, H. Casanova, and J. Dongarra. Innovation of
the NetSolve Grid Computing System. Concurrency and
Computation: Practice and Experience, 2003.

Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing (HPDC’03)

1082-8907/03 $17.00 © 2003 IEEE

[8] M. Aron, P. Druschel, and W. Zwaenepoel. Cluster Re-
serves: A Mechanism for Resource Management in Cluster-
based Network Servers. Proceedings of the ACM SIGMET-
RICS 2000, June 2000.

[9] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC
Storage Resource Broker. Proceedings of IBM CASCON’98,
Nov. 1998.

[10] J. Bent, V. Venkataramani, N. Leroy, A. Roy, J. Stanley,
A. Arpaci-Dusseau, R. Arpaci-Dusseau, and M. Livny. Flex-
ibility, Manageability, and Performance in a Grid Storage
Appliance. Proceedings of IEEE HPDC-11, July 2002.

[11] R. Braynard, D. Kostic, A. Rodriguez, J. Chase, and A. Vah-
dat. Opus: an Overlay Peer Utility Service. Proceedings of
IEEE OPENARCH 2002, July 2002.

[12] P. Chandra, Y. Chu, A. Fisher, J. Gao, C. Kosak, E. Ng,
P. Steenkiste, E. Takahashi, and H. Zhang. Darwin: Cus-
tomizable Resource Management for Value-Added Network
Services. IEEE Network, 15(1), 2001.

[13] F. Chang, A. Itzkovitz, and V. Karamcheti. User-level
Resource-Constrained Sandboxing. Proceedings of the 4th
USENIX Windows Systems Symposium, Aug. 2000.

[14] A. Chervenak, I. Foster, C. S. C. Kesselman, and S. Tuecke.
The Data Grid: Towards an Architecture for the Distributed
Management and Analysis of Large Scientific Data Sets.
Proceedings NetStore’99, Oct. 1999.

[15] A. Chien, M. Lauria, R. Pennington, M. Showerman, G. Ian-
nello, M. Buchanan, K. Connelly, L. Giannini, G. Koenig,
S. Krishnamurthy, Q. Liu, S. Pakin, and G. Sampemane.
Design and Evaluation of an HPVM-based Windows NT
Supercomputer. Journal of High-Performance Computing
Applications, 13(3), 1999.

[16] A. Chien, S. Pakin, M. Lauria, M. Buchanan, K. Hane,
L. Giannini, and J. Prusakova. High Performance Virtual
Machines (HPVM): Clusters with Supercomputing APIs
and Performance. Proceedings of the Eighth SIAM Confer-
ence on Parallel Processing for Scientific Computing, Mar.
1997.

[17] D. Culler, A. Arpaci-Dusseau, R. Arpaci-Dusseau, B. Chun,
S. Lumetta, A. Mainwaring, R. Martin, C. Yoshikawa, and
F. Wong. Parallel Computing on the Berkeley NOW. Pro-
ceedings of the 9th Joint Symposium on Parallel Processing,
June 1997.

[18] J. Dike. User Mode Linux. http://user-mode-
linux.sourceforge.net.

[19] D. Epema, M. Livny, R. van Dantzig, X. Evers, and
J. Pruyne. A Worldwide Flock of Condors: Load Sharing
among Workstation Clusters. Future Generation Computer
Systems, 12, 1996.

[20] R. Figueiredo, P. Dinda, and J. Fortes. A Case for Grid
Computing on Virtual Machines. Proceedings of IEEE
ICDCS 2003, to appear, May 2003.

[21] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt,
and A. Roy. A Distributed Resource Management Architec-
ture that Supports Advance Reservations and Co-Allocation.
Proceedings of IEEE IWQoS’99, June 1999.

[22] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The
Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration. Open Grid Service
Infrastructure WG, Global Grid Forum, June 2002.

[23] D. Gannon, R. Bramley, G. Fox, S. Smallen, A. Rossi,
R. Ananthakrishnan, F. Bertrand, K. Chiu, M. Far-
rellee, M. Govindaraju, S. Krishnan, L. Ramakrishnan,
Y. Simmhan, A. Slominski, Y. Ma, C. Olariu, and N. Rey-
Cenvaz. Programming the Grid: Distributed Software
Components, P2P and Grid Web Services for Scientific
Applications. Cluster Computing, 5(3), 2002.

[24] A. Grimshaw, A. Ferrari, F. Knabe, and M. Humphrey.
Legion: An Operating System for Wide-Area Computing.
IEEE Computer, 32(5), 1999.

[25] A. Ivan, J. Harman, M. Allen, and V. Karamcheti. Parti-
tionable Services: A Framework for Seamlessly Adapting
Distributed Applications to Heterogeneous Environments.
Proceedings of the IEEE HPDC-11, July 2002.

[26] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. OceanStore: An Ar-
chitecture for Global-Scale Persistent Storage. Proceedings
of ASPLOS 2000, Nov. 2000.

[27] M. Migliardi and V. Sunderam. Heterogeneous Distributed
Virtual Machines in the Harness Metacomputing Frame-
work. Proceedings of IEEE HCW’99, Apr. 1999.

[28] J. Moore and J. Chase. Cluster On Demand. Duke University
Technical Report CS-2002-07, May 2002.

[29] G. Owen. ghttpd. http://gaztek.sourceforge.net/ghttpd.
[30] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa. Re-

source Kernels: A Resource-Centric Approach to Real-Time
Systems. Proceedings of the SPIE/ACM Conference on
Multimedia Computing and Networking, Jan. 1998.

[31] J. Reumann, A. Mehra, K. Shin, and D. Kandlur. Virtual
Services: A New Abstraction for Server Consolidation.
Proceedings of USENIX 2000 Annual Technical Conference,
June 2000.

[32] V. Sundaram, A. Chandra, P. Goyal, and P. Shenoy. Ap-
plication Performance in the QLinux Multimedia Operating
System. Proceedings of the Eighth ACM Conference on
Multimedia, Nov. 2000.

[33] B. Tierney, B. Crowley, D. Gunter, M. Holding, J. Lee, and
M. Thompson. A Monitoring Sensor Management System
for Grid Environments. Proceedings of IEEE HPDC-9, Aug.
2000.

[34] A. Vahdat, T. Anderson, M. Dahlin, D. Culler, E. Belani,
P. Eastham, and C. Yoshikawa. WebOS: Operating System
Services For Wide Area Applications. Proceedings of IEEE
HPDC-7, July 1998.

[35] C. Waldspurger. Memory Resource Management in
VMware ESX Server. Proceedings of USENIX OSDI 2002,
Dec. 2002.

[36] J. Weissman and B. Lee. The Service Grid: Supporting
Scalable Heterogeneous Services in Wide-Area Networks.
Proceedings of IEEE SAINT 2001, Jan. 2001.

[37] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and
Performance in the Denali Isolation Kernel. Proceedings
of USENIX OSDI 2002, Dec. 2002.

Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing (HPDC’03)

1082-8907/03 $17.00 © 2003 IEEE

