
SODA: An Optimizing Scheduler for Large-Scale

Stream-Based Distributed Computer Systems

Joel Wolf1, Nikhil Bansal1, Kirsten Hildrum1, Sujay Parekh1, Deepak Rajan1,
Rohit Wagle1, Kun-Lung Wu1, and Lisa Fleischer2

1 IBM T.J. Watson Research Center, Hawthorne, NY 10532, USA
2 Dartmouth College, Hanover, NH 03755, USA

{jlwolf,nikhil,hildrum,sujay,drajan,rwagle,klwu}@us.ibm.com,
lkf@dartmouth.edu

http://www.ibm.com

Abstract. This paper describes the SODA scheduler for System S , a
highly scalable distributed stream processing system. Unlike traditional
batch applications, streaming applications are open-ended. The system
cannot typically delay the processing of the data. The scheduler must
be able to shift resource allocation dynamically in response to changes
to resource availability, job arrivals and departures, incoming data rates
and so on. The design assumptions of System S , in particular, pose ad-
ditional scheduling challenges. SODA must deal with a highly complex
optimization problem, which must be solved in real-time while main-
taining scalability. SODA relies on a careful problem decomposition, and
intelligent use of both heuristic and exact algorithms. We describe the de-
sign and functionality of SODA, outline the mathematical components,
and describe experiments to show the performance of the scheduler.

Keywords: stream processing, scheduling, admission control, flow bal-
ancing.

1 Introduction

The authors of this paper are involved in an ambitious project, started in 2003,
known as System S [1,2,3,4,5,6]. System S is highly scalable distributed com-
puter system middleware designed to handle complex jobs involving enormous
quantities of streaming data. A prototype of this system has been built and
continues to evolve.

Early examples of distributed stream processing systems have mostly involved
relational databases augmented with streaming operations [7, 8, 9, 10]. In con-
trast, System S supports arbitrarily complex processing, both in terms of the
design of the basic units of computational software, known as processing ele-
ments (PEs), and the way in which these PEs are interconnected via streams.
Additionally, when designing System S a key assumption was that the offered
load would far exceed system capacity much of the time. Therefore it is expected
that the processing nodes in System S will need to be utilized as close to fully

V. Issarny and R. Schantz (Eds.): Middleware 2008, LNCS 5346, pp. 306–325, 2008.
c© IFIP International Federation for Information Processing 2008

http://www.ibm.com

SODA: An Optimizing Scheduler 307

as possible. Scheduling in such a complex, overloaded streaming environment is
challenging problem and requires novel solution techniques.

This overview paper describes the System S scheduler, known as SODA.
(SODA stands for Scheduling Optimizer for Distributed Applications.) We mo-
tivate the design of the scheduler, emphasizing its objectives and functionality.
We describe the four major mathematical components of SODA at a relatively
high level: Space considerations prevent us from giving complete details, but we
refer the interested reader to [11]. We sketch three infrastructure components
which provide critical SODA input. Finally, we describe a number of experiments
which illustrate SODA performance.

1.1 SODA Objectives and Functionality

In contrast with more traditional jobs, stream processing jobs are typically open-
ended. A stream job could in theory continue to execute as long as input data are
available. As a result, standard scheduling metrics involving completion times
and/or makespan are no longer relevant. Figure 1(a) shows the data flow graph of
a typical System S stream processing job. The PEs of the job are the nodes in the
digraph, and streams, in turn, correspond to the directed arcs. Such digraphs are
typically acyclic, as is the case in this figure. Thus, given a topological ordering,
processing of data by the job will proceed from left to right. One can make
a reasonable analogy to a factory assembly line. Raw packets enter in primal
streams at the left. (Primal streams originate externally to systems.) Processing
proceeds through the various PEs along the way, with streams carrying the
progressively more “finished” packets. The final product or products is produced
at the right of the data flow graph, where sink PEs consume the final products
and possibly interface with the external (non-System S) world to deliver these
results. The final streams flowing into the sink PEs are called terminal streams,
and denoted with a star in Figure 1(a). This motivates our choice of objective
function: SODA schedules to maximize a utility-theoretic function based on the
“importance” measured at the terminal streams of the data flow graphs. We will
give a formal definition of importance in Section 3, but it is typically based on
a quantity or quality measure of the stream.

Each PE can only be expected to run satisfactorily if the processing power
allocated to it is within some acceptable range. Thus the overloaded nature of

(a) Original (b) Weight change

LEGEND

PE

Sink PE

Primal
Stream

Stream

Fig. 1. Job Data Flow Graph

308 J. Wolf et al.

System S motivates an important scheduler function: SODA must be prepared
to reject some jobs. Otherwise some PEs may not be given their minimum ac-
ceptable allocations. Some distributed stream processing systems employ load
shedding to deal with momentary processing node overload conditions [12], but
we know of no other actual systems which consider job admission. When the
system is frequently rather than rarely overloaded, shedding load is not enough.
Job admission is essential.

Technically, System S may provide SODA with more than one data flow graph
per job. Each such alternative data flow graph is known as a template. There
might, for example, be a higher and a lower quality template. The natural trade-
off is that the higher quality template would require more processing resources
than the lower quality one. The templates themselves could be very similar or
very different. So an additional and novel function of SODA is the decision of
which template to choose for each admitted job.

Optimizing the allocation of processing resources to the PEs in the chosen
templates of the accepted jobs is extremely difficult for two reasons. The first
reason is the highly interconnected (producer/consumer) nature of the PEs,
potentially even across jobs. These PEs are not independent. The resources al-
located to a PE which produces a stream affects the resources required for the
PE(s) that consume that stream. Flow imbalances can lead on one hand to buffer
overflows (and loss of data), and on the other to under-utilization of processing
nodes. The second reason is again the overloaded nature of System S . In an
underloaded system, flow imbalances simply matter less. A PE can use more of
its allotted resources if needed because the resources are likely to be available.
But in an overloaded system, there is no margin for error. Thus the scheduler
must be parsimonious and carefully balance the allocated resources. We know
of no other schedulers for distributed stream processing systems which perform
this flow balanced resource allocation optimization.

Finally, SODA assigns the PEs in the chosen templates of the accepted jobs
to processing nodes. Here there is a tradeoff between the load on the processing
nodes and stream traffic on the network. Assigning two PEs connected by a
stream to the same processing node eliminates the contribution of that stream
to network traffic, but may contribute instead to overloading the processing node.
So SODA attempts to achieve a balanced placement that does not overload either
network links or node capacities. In fact, it attempts to minimize a weighted
average of six separate metrics associated with processing loads on the nodes
and traffic on the network links. The assignment problem is made more complex
by the addition of many special constraints imposed by System S . These include,
among many others, hardware constraints for certain PEs and nodes (resource
matching), security and license constraints, constraints that pairs of PEs be
placed together (colocation), or that pairs of PEs be placed on distinct nodes
(exlocation). Of course, many PEs may share a node. SODA attempts to provide
each PE with a fraction of the processing power of any node to which it is
assigned, matching as closely as possible the overall PE flow balancing goals
already computed.

SODA: An Optimizing Scheduler 309

To summarize, the functionality of the SODA scheduler for System S includes:

– Job admission. SODA determines which jobs should be accepted and which
jobs should be rejected.

– Choice of templates. For those jobs which are accepted SODA chooses the
template alternative which is most appropriate for the amount of resources
available.

– PE resource allocation. SODA determines how many resources to allocate
to each PE in the chosen template of an accepted job.

– PE fractional assignment. SODA assigns each PE in the chosen template
of an accepted job to fractions of one or more processing nodes.

Additionally, SODA optimizes two key metrics as it makes its scheduling
decisions:

– Importance. SODA attempts to maximize a utility-theoretic measure of
the “goodness” of the work in the system.

– Resource utilization. SODA attempts to balance the load across all re-
sources (node processing capacity, network bandwidth) in the system by
minimizing a weighted average of metrics that model resource utilization.

1.2 SODA Design Overview

Another original design requirement for System S was the ability to react quickly
in a highly dynamic environment. Data rates may change suddenly and dramati-
cally; new jobs may be submitted; jobs may be canceled. The available resources
may also change: Processing nodes may go offline; new nodes may go online.
Even the notion of what is important may change. The scheduler must be able
to incrementally adjust the set of admitted jobs, the PE resource allocations and
the fractional assignments to accommodate these changes.

For this reason SODA is an epoch-based scheduler. At the beginning of each
epoch, SODA obtains as input a snapshot of the current system state, including
the jobs running on the system and the jobs waiting to be admitted. It then
computes for most of an epoch, finally outputting its scheduling decisions at the
end of the epoch. That is, it produces a list of accepted and rejected jobs. For the
accepted jobs it produces a choice of templates and a set of fractional allocations
of the PEs to processing nodes. Those decisions are enforced by System S during
the following epoch, and the entire process repeats indefinitely. Epoch lengths
are a SODA settable parameter, but epochs on the order of a minute are typical.
This is a reasonable compromise between the staleness of the input data and the
time required for the mathematical components of SODA to make high quality
decisions.

To make the scheduling problem tractable, each SODA epoch is divided into
four mathematical phases. For reasonably sized System S installations they are
solved sequentially. Each of the four phases corresponds to a mathematical op-
timization module. The first two phases are known collectively as the macro
model, while the second two are known as the micro model.

310 J. Wolf et al.

– The macro model chooses the jobs that will be admitted, the templates for
those jobs, and the so-called candidate nodes to which the PEs in those jobs
and templates can be assigned. These candidate nodes are a subset of the
resource matched nodes, chosen to balance system load and simultaneously
respect various constraints (security, licensing, colocation, exlocation and so
on). The point is that candidate node choices made in the macro model are
respected by the subsequent micro model, and this makes the decisions of
the micro model easier and more effective.

– The micro model chooses the fractional allocations of the PEs in the jobs and
templates that have been chosen by the macro model. Fractional allocations
of PEs are 0 for a particular node unless that node has been chosen as a
candidate node by the macro model. For this reason the micro model does
not have to consider the difficult constraints handled in the macro model:
They are satisfied automatically.

Within both the macro and micro model, the first (quantity) phase computes
the resource allocation goals, and the second (where) phase computes the actual
assignments. For this reason the four mathematical phases in SODA are known
as macroQ, macroW, microQ, and microW, respectively. These decouplings make
solving the individual optimization problems more efficient.

The remainder of this paper is organized as follows. In Section 2 we give an
overview of System S . Section 3 contains a glossary of key new terms used by
SODA. Understanding these terms is critical to following the overviews of the
four mathematical components in Section 4. In Section 5 we describe experiments
showing the performance benefits of the SODA scheduler. Section 6 contains a
brief review of related work. Conclusions and future work are given in Section 7.

2 Overview of System S

We briefly describe some key components of System S . Readers are referred to
[4,6] for more details. System S is distributed stream processing middleware, and
its components provide efficient services to enable the simultaneous execution
of multiple stream processing jobs on a large cluster of machines. A functional
prototype of System S exists on a Linux cluster consisting of about 125 nodes
interconnected by a Gigabit switched Ethernet network.

Aside from SODA, key run-time components of System S include the Job
Manager (JMN) and the Stream Processing Core (SPC). The JMN is a frame-
work upon which job management, dispatching and node control are built. The
JMN consists of a central orchestrator, a Master Node Controller (MNC), and
a Resource Manager (RMN). Providing the execution and communication sub-
strate for System S, the SPC consists of four major components: the Dataflow
Graph Manager (DGM), the Data Fabric (DF), the Node Controller (NC), and
the PE Execution Container (PEC). The DGM determines stream connections
among PEs and matches descriptions of output ports with the flow specifications
of input ports. The DF is the distributed data transport component, consisting
of a set of daemons, one on each node. The NC manages PEC agents, and each

SODA: An Optimizing Scheduler 311

PEC manages one or more PEs. The PEC provides a run-time context and acts
as a security barrier, preventing the user-written applications from corrupting
the System S middleware as well as each other.

Each job can be described by one or more data flow graphs, as shown in
Figure 1(a). The nodes in the directed graph correspond to the PEs, and the arcs
to the streams. (One stream may show up as several arcs with the same source.)
The PEs consume and produce data streams through their input and output
ports, respectively. These data flow graphs are defined in a job configuration
file, and specify how different PEs are to be connected via flow specifications.
Stream connections are created between input and output ports based on a
publish-subscribe model. System S dynamically determines the PE connections
at run-time by matching stream data types with flow specifications. This allows
PEs to discover new streams that match their flow specifications whenever such
streams become available, allowing an application designer to avoid hard-wiring
PE connections.

3 Glossary of Key New SODA Terms

SODA employs a number of terms that have very specific meanings to the sched-
uler. We list these below, with explicit definitions. The first two items, the value
function and weight, are the key components of the third item, importance. Im-
portance, in turn, is the metric that SODA tries to maximize. The fourth item,
the resource function (RF), is the atomic unit by which we iteratively compute
this notion of importance. Finally, rank, the fifth item, is an orthogonal notion
to importance: It is a priority metric assigned to each job; the lower the better.
Jobs which produce little importance but have a low rank may get done instead
of jobs which have more importance but have a higher rank.

Each derived stream produced by a potential System S job has a value function
associated with it. This is an arbitrary non-negative real-valued function. The
domain of this function might typically be the projected rate of the stream. Or
it might instead be a stream quality measure, such as projected goodput. In
theory it could be a cross product of a variety of quantity, quality and even
other “goodness” measures. The definition is intentionally general, though early
SODA instances have employed rate-based value functions. Also note that value
functions which are 0 everywhere will typically predominate: Although the notion
is also intentionally general we expect to see non-trivial value functions mostly
on terminal streams of various jobs. These are, of course, the “end products” of
System S work, and one would thus naturally want to measure goodness there.

Each derived stream produced by a potential System S job also has a weight
associated with it. This is a non-negative real number. Non-trivial weights will
also typically be quite sparse, as the weight may as well be 0 unless the stream
also has a non-zero value function. Weights are automatically assigned based on
job topology unless explicitly set by the user.

Each derived stream produced by a potential System S job has an importance
which is the product of the weight and the value function. Importance is therefore
a function of the rate or quality of the stream, which in turn depends on the

312 J. Wolf et al.

resources allocated to all the upstream PEs – those PEs which helped to produce
the stream. The summation of this importance over all derived streams is the
overall importance being produced by System S , and this is what SODA attempts
to maximize. (Again, a large majority of streams will typically not contribute
to this importance metric.) Consider Figure 1 again. In Figure 1(a), all starred
streams have positive weights. But in Figure 1(b) the second weight has been
changed to 0. It follows that the 2 PEs immediately upstream of that weight
cannot do work which contributes to overall importance. SODA will therefore
not allocate resources to them. (Other PEs, further upstream, do useful work
in support of streams with positive weights. They may get fewer resources than
they would in the previous figure, but not necessarily none.) Weights are thus
an easy “knob” to turn on and off portions of a job and also a way to adjust
relative importance.

If importance is the metric to be maximized, the natural question is how to
compute it. The first part of the answer is as follows: Each derived stream s in
System S (and by approximate terminology the PE that produces that stream)
has an RF associated with it. The RF is multidimensional. If there are n input
streams to the producer PE, then the RF has n + 1 input parameters. There is
one parameter for each of the input streams, each with the same domain as the
value function. These measure the goodness of the respective input streams. The
final input dimension is the (computational) resources which may be allocated
to the PE, in millions of instructions per second (mips). The output of this
function is again in terms of the same domain, and measures the goodness of
stream s. See, for example, Figure 2. Assuming the domain to be rate-based, the
RF for stream s4 takes 4 parameters as input. The first three are the rates of
streams s1 through s3, and the fourth is the mips allocated to PE 4. The output
is the rate of stream s4. The RF needs to be learned over time by a SODA
infrastructure component known as the Resource Function Learner (RFL). The
RFL component provides crucial input data for SODA and is the subject of
continuing research.

The second part of computing importance involves iteratively traversing the
data flow graphs from “left” to “right”, ending in a final value function calcu-
lation. Consider Figure 3. By topologically sorting [13] a directed acyclic graph,
we can apply ready list scheduling [14] to compute the importance for stream
s5. In the figure three RF s are initially ready because they are fed by primal

s4

s1

s2

s3

PE 1

PE 2

PE 3

PE 4

Fig. 2. The resource function for s4 takes the mips of PE 4 and rates of s1, s2, and s3

as input

SODA: An Optimizing Scheduler 313

s1 s4 s5

s2
s3P

rim
al

st
re

am
s

(a) PE layout

(mips1, mips2, mips3, mips4, mips5) → (rate1, rate2, rate3, mips4, mips5) → (rate3, rate4, mips5) → rate5 → R

RFs 1,2,3

RF 4

RF 5

Value function

(b) Calculating importance

Fig. 3. Calculation of Importance

streams. So we obtain the rates at streams s1 through s3. Then an additional
RF becomes ready (because its inputs have been computed), and we obtain the
rate at stream s4. Next we compute the rate at stream s5. Finally we apply the
weighted value function at s5 to obtain importance. (SODA can also handle data
flow graphs with cycles, but we omit details.)

Each job in System S has a rank, a positive integer which is used to deter-
mine whether the job should be run at all. The importance, on the other hand,
determines the amount of resources to be allocated to each job that will be run.
A lower job rank is better than a higher one. SODA admits jobs such that there
is a specific job rank for which the following holds: All jobs with lower ranks
are admitted, and all jobs with higher ranks are not admitted. Jobs with that
rank may or may not be admitted, depending on the available resources and
the importance associated with the (streams of the) jobs themselves. We call
this property rank-legality. (This statement is a slight simplification, since one
needs to account for inter-job dependencies.) Figure 4 shows job admission in
two different load conditions. Each of the alternatives is rank-legal.

ADMITTED

REJECTED

?

2

1

3

4

5

6

ADMITTED

REJECTED

?

Light Load Heavy Load

Fig. 4. Rank-Legal Job Admission

314 J. Wolf et al.

4 SODA Mathematical Components

In this section we describe, at a relatively high (qualitative) level, the four major
mathematical components of SODA. Space limitations prevent a full exposition,
but the interested reader is referred to [11] for complete details. The basic func-
tionality of the components is as follows.

– macroQ decides which jobs to admit, which templates to choose, and the
processing power goals for each PE in those jobs and templates.

– macroW computes the candidate processing nodes for the PEs given to it by
macroQ.

– microQ, revises the processing power goals for the PEs in light of the candi-
date node decisions made by macroW.

– microW computes the fractional allocations of the PEs to the processing
nodes based on the output of macroW and microQ.

Each SODA component has an internal deadline. Remember that SODA has
slightly less than one epoch to solve the macroQ, macroW, microQ and microW
problems. So the SODA scheduler itself has a scheduler.

4.1 macroQ

The macro quantity model, macroQ, finds a set of jobs to admit during the next
epoch. For each admitted job it chooses a template from among the alternatives
given to it. The jobs have ranks, and the jobs that are chosen by macroQ must
respect the rank-legality constraint. Required jobs must be admitted. Minimum
and maximum PE mips constraints must also be respected. The goal of the
macroQ model is to maximize the projected importance of the streams produced
by the admitted jobs and chosen templates. There is a total amount of processing
power in the system, namely the sum of the power of all the processing nodes.

Thus macroQ becomes a resource allocation problem (RAP) [15]. We solve
a discrete version of the RAP. So we divide the total processing power of the
system into units of equal sized resolution. Also assume a specific rank-legal set
of jobs and templates. The data flow graphs of these jobs and templates may be
interconnected, and we form a digraph by gluing them together appropriately.
macroQ is a divide and conquer algorithm, and the division is based on the
partitioning of this digraph into weak components.

So consider for the moment one such component. The corresponding discrete
RAP within the PEs of that component can then be solved. Note that the ob-
jective function can be regarded as a “black box”, calculated by iterative RF
compositions followed by a weighted value function calculation, as noted in Sec-
tion 3. This RAP can be solved by a scheme known as Non-Serial Dynamic
Programming (NSDP) [15]. As part of the solution we obtain the optimal im-
portance for each level of resolution up to the total resources in the system.

Having performed this NSDP on each component we now consider the prob-
lem of optimizing over all components. The good news here is that the problem
is a separable RAP. Separability here means that each summand is a function of

SODA: An Optimizing Scheduler 315

a single decision variable, and such resource allocation problems are inherently
easier to solve. In fact, if the component importance functions happen to be
concave the problem can be solved by fast algorithms due to Fox or Galil and
Megiddo. If the component importance functions, on the other hand, are not
concave, the problem may still be solved by dynamic programming. See [15] for
details on all of these algorithms. It turns out that concavity is not an uncommon
condition for our component importance functions. So macroQ tests each com-
ponent for concavity and employs the fastest combinations of these algorithms
depending on the results.

At the end of this step we have computed the optimal mips allocations for
each PE. But this can be regarded as just the inner loop of a three step nested
process. In the central loop we evaluate all rank-legal templates. In the outer
loop we evaluate successively finer resolution granularities.

The evaluation of all rank-legal templates is obviously exponential [13] in na-
ture, though most jobs, in fact, only have a single template. The rank-legality
constraints adds another exponential term, but these calculations can be stream-
lined, depending on the macroQ deadline.

The resolution granularity loop is simple in nature: macroQ starts with a
coarse resolution to obtain a quick solution. Then it uses the time already spent
to estimate the finest resolution it believes it can solve in the time remaining,
subject to a reasonable minimum mips value. It outputs the best importance
found, typically the finer resolution.

4.2 macroW

The macro where model, macroW, inputs from macroQ the set of resource alloca-
tion goals for PEs in chosen templates of admitted jobs, as well as the estimates
of stream traffic between pairs of those PEs. The goal of macroW is to find a
balanced allocation of these PEs to candidate nodes. Recall that these candi-
date nodes are a subset of the resource matched nodes, and that these choices
will be respected by the micro model. These candidate nodes need to respect
a large number of constraints, including several types of security and licensing
constraints, memory, colocation and exlocation, limits on the maximum PEs per
node, maximum degrees of parallelism for each PE, fixed PEs, and incremental
constraints.

To balance between the processing node and the bandwidth usage, macroW
minimizes a weighted average of six separate metrics: These consist of the av-
erage and maximum estimated utilizations of the processing nodes, the average
and maximum projected bandwidth of any network link, and the average and
maximum projected utilization of any processing node’s network interface.

macroW uses a two-pronged approach. First, the problem is modeled as a
mixed-integer optimization program [16], and solved using a state-of-the-art
commercial software CPLEX [17]. But the structure of the problem lends it-
self to a local search heuristic. So we have also developed a submodule of
macroW, known as miniW, to do local search on the space of PE candidate node

316 J. Wolf et al.

assignments. This serves as a back-up to the macroW solution, and as a post-
processing heuristic to the “exact” solution provided by CPLEX.

In fact this heuristic has several advantages:

– Fault-tolerance: In case the CPLEX-based solution fails, the heuristic pro-
vides a backup solution.

– Robustness: For large problem instances, integer programming may be slow
and not converge by the macroW deadline. Thus, an alternative that always
produces a (possibly sub-optimal) solution quickly is crucial.

– Accuracy: Traffic components of the linear programming (LP) formulation
are inherently quadratic in nature, and this results in weak LP relaxations
being used by our CPLEX-based macroW. For large problem instances some
of these non-linearities are ignored for smaller streams. A good solution to a
more accurate model may be better than an exact solution to a less accurate
one.

We describe the phases of miniW briefly.
First, a preprocessing phase shrinks the problem size. In particular, PEs with

fixed candidate node assignments are removed, and appropriate bookkeeping
is performed to reduce the remaining processing power of the relevant nodes.
Likewise, streams whose PEs are fixed are removed, and the bandwidth on the
relevant network links are reduced. Processing nodes which are down or fully
utilized are removed from the problem as well. The reduced problem is often of
much smaller size than the original, yielding significant time savings.

Next, the initialization phase provides a first feasible solution. There are sev-
eral algorithms implemented here. In one example, streams are sorted based on
traffic, and processing nodes sorted in terms of available load. Then, the PEs
in these streams are mapped to the nodes, while ensuring feasibility. Another
example is a round-robin approach: First, PEs from previous epochs are as-
signed to their previous candidate nodes. (This avoids incremental movement
constraints as much as possible.) The remaining PEs are assigned to candidate
nodes in round-robin fashion, again ensuring feasibility. A round-robin approach
attempts to ensures that no processing node is overly loaded in terms of number
of allocated PEs. All these solutions are compared with the solution obtained
via CPLEX, and the best solution is used as a starting point for the next phase.

In the local improvement phase, miniW attempts to iteratively improve the
solution by a variety of techniques. It may move a single PE from one candidate
node to another, provided that move is feasible and the objective function de-
creases. (In the neighborhood search literature this is traditionally called a 1-opt
move.) The algorithm may try swapping the candidate nodes of two PEs. (This
is a 2-opt move.) It may assign two PEs connected by a stream to the same can-
didate node. (This is also a 2-opt move.) This reduces traffic, but increases node
utilization. Finally, it may swap all the PEs on a pair of candidate nodes. Each
of these techniques can be helped by judicious orderings of the PEs, streams and
processing nodes. The idea is to calculate how important each is to the overall
solution, and sort by those metrics. For instance, PEs are ordered by decreas-
ing mips requirements, decreasing traffic requirements, or exclusivity. Processing

SODA: An Optimizing Scheduler 317

nodes are ordered by decreasing load. Streams are ordered by decreasing traffic
requirements, or by decreasing allocation goals of the corresponding PEs.

Finally, there may be a perturbation phase. miniW is designed to run until it
reaches its deadline or cannot improve the solution. So if the local improvement
phase reaches a locally optimal solution, miniW will perturb that solution, insist-
ing on feasibility but ignoring the fact that the solution does not improve. The
same techniques as the local improvement phase are employed, with the hope
of escaping the local minimum. The process then continues until the macroW
deadline is reached.

4.3 microQ

The role of microQ, the micro quantity model, is to adjust the PE processing
allocation goals from macroQ based on the PE candidate nodes determined in
macroW. Recall that macroQ knows only the total resources available in System
S , not information on the individual processing nodes. Only macroW considers
the processing node information. So microQ effectively corrects problems that
may arise from the decoupling of the macro model into two sequential problems.

The PEs are grouped into (weak) components, as per macroQ. The desired
resource allocation for a particular PE depends on the overall allocation of mips
to the component that contains it. This connection is described via pacing con-
straints that specify, for each level of allocation of mips to the component, the
proportion of these mips that should be allocated to each PE. For each com-
ponent, we use macroQ to determine a piecewise-linear, concave function which
approximately maps the resources allocated to the component to importance.
The goal is to allocate resources to components to maximize total importance,
satisfying the component-PE pacing constraints.

Since this problem is nonlinear, we do not solve it directly. Instead, we take
an iterative approach, as follows: We estimate the resource allocation for each
component. This determines a set of linear pacing constraints to enforce. Now,
the problem can be solved as an LP that is actually a network flow problem [16]
with these additional pacing constraints. If any component in the solution falls
into a linear segments other than the one assumed, we impose the “revised”
pacing constraints, and re-solve. The final solution is obtained when the process
converges, or when the time allotted to microQ runs out.

4.4 microW

The goal of microW, the micro where model, is to make actual fractional assign-
ments of PEs to processing nodes. The idea is to match as closely as possible
the overall processing power goals computed for each PE by the microQ model,
while meeting various constraints on incremental movement and node changes,
fixed PEs, legal fractional allocations and so on. One constraint, for example,
limits the cumulative amount change in fractional assignment values from the
previous epoch. Another does so on a per PE basis, and a third on the number
of processing nodes that can be modified during the current epoch.

318 J. Wolf et al.

The microW problem is solved via suitably modified techniques borrowed
from the network flow literature [16]. We build and maintain a directed graph
with three types of nodes:

– On the left side the nodes are the under-allocated PEs, ordered from most
under-allocated to least under-allocated.

– In the middle the nodes are the processing nodes themselves.
– On the right side the nodes are the over-allocated PEs, ordered from least

over-allocated to most over-allocated.

Directed arcs in this digraph exist if it is possible to push flow for a particular
PE from one node of the digraph to another. The microW algorithm can be
described as a doubly nested loop. The outer loop is performed on the under-
allocated PEs, from most under-allocated to least under-allocated. The inner
loop is performed on the over-allocated PEs, from most over-allocated to least
over-allocated. A shortest path is chosen between the under-allocated PE and the
over-allocated PE, and the maximal feasible flow is pushed along this path. After
each successful flow push we perform the relevant bookkeeping and maintenance,
adjusting the constraints, recomputing the under- and over-allocated PEs and
incrementally reconstructing the directed graph. If there are no under- or over-
allocated PEs microW ends with a perfect solution. The microW scheme also
ends if flow push failures occur through an iteration of the entire doubly nested
loops or if microW reaches its deadline.

5 Experimental Evaluation

5.1 Methodology

We evaluate SODA in the context of two qualitatively different System S ap-
plications: LSD [1], and DAC [6]. The LSD application is a large application
intended to process high incoming data rates. It is composed of 104 jobs and 737
PEs. The LSD PEs are generally lightweight, but because the final job graph is
large and highly connected, producing a flow-balanced schedule is difficult. The
DAC application is smaller but provides scheduling challenges because its PEs
have a wide range of processing requirements. It consists of six jobs and 51 PEs.
For the experiments, the jobs corresponding to each application are submitted
to the System S cluster, where they are run for ten minutes to collect relevant
data. For both these applications, SODA takes less than a minute to compute a
solution.

We compare the SODA PE placement decisions to three other approaches:

– Random (RAND): PEs are assigned to nodes uniformly at random. In
expectation, each processing node hosts the same number of PEs, but in
fact, the number of PEs hosted by a node may vary quite a bit.

– Round-robin (RR): PEs are processed sequentially and each PE is as-
signed to a node with the minimum PEs assigned so far. This is a very naive
load balancing of PEs across the nodes.

SODA: An Optimizing Scheduler 319

– Expert (EXP): The application developers for LSD and DAC decide on
the number of nodes and an allocation of PEs to nodes based on both their
knowledge of the application as well as several trial-and-error runs where
all PEs are resource matched to specific nodes. These placements are often
tested in underloaded test environments, and cannot be expected to scale
to overloaded environments. But they offer a reasonable measure of perfor-
mance, one that must at least be matched, even in overloaded settings, by
the scheduler.

These three schemes only perform PE placement–they do not address admission
control, template choice or PE fractional allocations.

We evaluate each scheduler using the following metrics:

– Ingest rate: This is a measure of how much data (in Mbps) could be processed
by the system. It is intended as a measure of the system’s “effective capacity”,
and should be correlated to importance.

– Importance: The importance of a job is measured at the sink PEs as a
quantity-based metric that depends on the data rates at the sink PEs. In our
experiments, the streams into the sinks have unit weights and identity value
functions, while all other streams have zero weights and value functions. As
a result, the importance of a job is measured by the data rate flowing into
its sink PEs.

– Stream affinity: One way to measure the quality of the placement is in terms
of the traffic load on the system. We compute the amount of traffic that is
sent between PEs on the same node divided by the total traffic. The higher
this quantity, the better, since PEs which share a stream should be put on
the same node (or nearby) to minimize network utilization.

These metrics are computed from the raw system metrics such as CPU usage
per PE and traffic consumed and produced by each PE.

In the experiments below, we test the scheduler performance under different
resource conditions ranging from under-provisioned to over-provisioned, which
is achieved by varying the number of nodes made available to the scheduler.
This allows us to see how the performance will change as the raw system ca-
pacity changes, and also which scheduler is better at achieving higher system
utilizations and better effective system capacity. We perform three runs for each
combination of scheduler and node pool size, and analyze the average across
these runs.

5.2 Results

The carefully constructed EXP placements use 82 nodes for LSD and 30 nodes
for DAC. SODA uses far fewer nodes yet achieves a higher quality placement
than EXP. In particular, SODA performs favorably with as few as 30 nodes
for LSD and 9 nodes for DAC, 36% and 30% of the number of nodes used in
the expert placement, respectively. To compare with these, we also present the
results for RAND and RR for two scenarios: 30 and 70 nodes for LSD, and 9 and

320 J. Wolf et al.

0

200

400

600

800

1000

1200

1400

SODA RR RAND RR RAND EXP

30 70 82

Placement Approach / Nodes

I
n

g
e
s
t

R
a
te

 (
M

b
p

s
)

(a) LSD

0

5

10

15

20

25

30

35

SODA RR RAND RR RAND EXP

9 29 30

Placement Approach / Nodes

I
n

g
e
s
t

R
a
te

 (
M

b
p

s
)

(b) DAC

Fig. 5. Ingest rate: LSD and DAC

29 nodes for DAC. These allow us to compare their performance with SODA’s
placement at one end of the spectrum (less nodes), and with EXP at the other
end (more nodes).

Figure 5 compares the ingestion rates of SODA, EXP, RR, and RAND. From
the figure, we see that SODA is able to ingest as much traffic as EXP with
far fewer nodes (30) for LSD. For DAC, SODA outperforms EXP by over 50%
with just 9 nodes. This is largely because EXP seeks to ensure that all PEs
receive sufficient MIPS. As a result, the PEs are spread across many more nodes
than they need to be, while SODA recognizes that nine nodes is enough and
so saves on traffic. For a given node pool size, the SODA-computed placement
also consistently ingests more traffic than RAND or RR. The performance of
both RR and RAND is, not surprisingly, poorer than EXP. For instance, with
70 nodes for LSD, RR is able to ingest 25% less traffic than EXP, and with 29
nodes for DAC, RR is able to ingest 15% less traffic than EXP.

One of the metrics that SODA tries to maximize is the importance. Figure 6
presents the importance of DAC, as optimized by SODA in macroQ; recall from
Section 3 that in our case this corresponds to the net traffic flowing into the sink
PEs. Here, we see that SODA matches the performance of EXP in spite of using
a third of the nodes. On the other hand, RR and RAND perform more than 10%
worse than EXP, even when using 29 nodes. In particular, RR achieves only 84%
of the traffic rates at the sinks attained by EXP and SODA.

Another goal of SODA is to ensure the network and nodes are not overloaded.
The effect of the schedulers in terms of two system metrics is shown in Figure 7,
which plots the stream affinity and maximum load for LSD and DAC. Stream
affinity is the fraction of traffic that is sent on streams that have both source and
destination PEs on the same node; higher is better. The load is indicated by the
maximum CPU utilization across the nodes in the cluster; lower is better. From
the figure, we see that SODA increases the intra-node traffic fraction without
significantly increasing the maximum node load.

Considering traffic, with 30 nodes, the SODA placement for LSD sends less
than 30% of the traffic over the network (over 70% on the same node); compared
to 66% for EXP with 82 nodes. In addition to helping reduce network congestion,

SODA: An Optimizing Scheduler 321

0

0.1

0.2

0.3

0.4

0.5

0.6

SODA RR RAND RR RAND EXP

9 29 30

Placement Approach / Nodes

I
m

p
o

r
ta

n
c
e
 (

M
b

p
s
)

Fig. 6. Importance: DAC

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

SODA RR RAND RR RAND EXP

30 70 82

L
o

a
d

 &
 T

ra
ff

ic
 F

ra
ct

io
n

Placement Approach / Nodes

Intra-node
Traffic Fraction
Max Node
Utilization

(a) LSD

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

SODA RR RAND RR RAND EXP

9 29 30

L
o

a
d

 &
 T

ra
ff

ic
 F

ra
ct

io
n

Placement Approach / Nodes

Intra-node
Traffic Fraction
Max Node
Utilization

(b) DAC

Fig. 7. Placement tradeoffs: LSD and DAC

this also contributes to the stronger throughput results obtained by SODA, since
the overhead of sending data to a PE on the same node is lower. Naturally, RAND
and RR fare poorly on this metric since they do not use stream information in
their placement algorithm, and in fact are susceptible to exceeding the network
capacity. In particular, for the case of LSD with 30 nodes, SODA is able to
achieve much higher stream affinity (70%) than RAND and RR (less than 10%)
with the comparable maximum loads (around 50%). For DAC, with 9 nodes,
SODA places 20% more of the traffic on the same node, even though the max-
imum load is comparable to EXP, resulting in a significantly larger ingest rate.

Now considering load, we see that with DAC, RR and RAND do rather poorly
with 9 nodes, by causing some nodes to be highly loaded. This is because the
DAC PEs have dramatically different CPU requirements. In contrast, SODA
balances the PEs across the nodes, thereby resulting in a much lower load, only
slightly higher than the EXP with larger number of nodes. For LSD, the PEs
are much more uniform, so RR and RAND perform satisfactorily in this metric.
SODA results in a slightly higher load, but due to the higher intra-node traffic
and more balanced placement, it is nevertheless able to achieve a higher ingest
rate. Further, this maximum utilization of 52% is not in the problematic range.

322 J. Wolf et al.

In all our experiments, we observe that SODA requires significantly fewer
nodes, and utilizes much less network capacity to perform as well, if not better
than, a carefully constructed expert placement. Furthermore, we see that naive
approaches like RAND and RR perform worse than SODA in general. This
illustrates the strength of the scheduler, and its ability to schedule effectively in
overloaded systems.

6 Related Work

Stream processing systems have been an active area of research in recent years.
Example systems include Borealis [7], TelegraphCQ [8], STREAM [9], Aurora
and Medusa [10]. These systems process voluminous quantities of incoming
stream data, typically performing relational operations such as joins and selec-
tions on them. In contrast, System S is much more general, allowing arbitrarily
complex operators, including relational ones.

Most of these stream processing systems are designed to be run on more than
one node, and thus there has also been work on scheduling and load-balancing
the operators. While these scheduling approaches have some of the flavor of the
work we present here, none targets our problem exactly. We describe some of
these related approaches here.

The FIT algorithm [12] is a load-shedding algorithm which intelligently drops
load. Determining where best to drop load can be quite a complex problem, since
dropping at a particular operator has an effect on the downstream operators,
sometimes an unintended one. In some cases, shedding load on a particular
operator increases the resources for other operators on that node, and so could
increase load at nodes downstream. FIT cleverly addresses this problem in a
distributed way, but without a global notion of importance. The SODA scheduler
provides this same functionality as part of its resource allocation and scheduling,
and does so in a way that takes into account the processing graph for a job and
the total system objectives.

Xing et al. [18, 19] addresses the problem of variance in stream rates. Both
papers describe a way to distribute the load so that changes in input rate have
a smaller chance of overloading the system. However, they do not address the
case when the system is overloaded, and make no decisions about job admission.

Pietzuch et al. [20] provides a scheduling algorithm for a wide-area network
that places operators so as to minimize network latency. In the local area net-
work that we address, bandwidth, not network latency, is the main concern. In
addition, their work does not address the problem of job admission. Lakshmanan
et al. [21] also addresses scheduling to minimize latency.

The STREAM project [22] has goals somewhat similar to those presented
in this paper. Their system handles queries in an SQL-like language. When
resources are tight, they revise queries by dropping packets and/or changing
internal parameters.

Xia et al. [23] address the admission control problem in a hypothetical stream
processing system. Their model assumes a linear processing graph. In other

SODA: An Optimizing Scheduler 323

words, the input stream is processed, successively, by a series of operators. Thus,
no operator takes input from more than one source stream.

7 Conclusions and Future Work

In this paper we have introduced SODA, a scheduler for very large-scale dis-
tributed stream processing applications. This scheduler is implemented and run-
ning as a component in the System S project. We have shown that SODA is
practical, novel, and effective, scheduling as well as or better than expert place-
ment but using well under half the nodes. While schedulers of other stream
processing systems have some features of SODA, SODA is unique in that in
addition to allocating processing to nodes, it also controls job admission and
weights the resources given to the admitted jobs. This overview paper provides
an introduction to the problem, high level descriptions of the solution, and an
experimental analysis which demonstrates SODA’s performance.

One of the more novel features of SODA scheduler is that it can schedule
itself as a separate PE. The value function for SODA would measure the effect
of additional processing resources on solution quality. Giving more resources to
SODA would make the solution quality better at the possible expense of giving
other work in the system more resources. We plan to create a SODA PE which
can be scheduled in the near future.

Note that the notion of SODA scheduling itself is very different from the
notion in Section 4 that SODA has a scheduler. We plan to improve this SODA
scheduler as well.

Though System S is oriented towards streaming applications, traditional work
will invariably be performed as well. So we have created (but not yet integrated)
a scheduler for the more traditional sorts of jobs that invariably are needed in
any system.

For very large problem instances we expect to design a variant of SODA in
which epochs are arranged in a two level temporal hierarchy. In this case, the
macro model will run in a macro epoch, and the micro model will run in a micro
epoch. There will be a number of micro epochs in each macro epoch, allowing the
computationally expensive macro models more time for their optimization. (We
have not yet seen problem instances in which this approach would be necessary.)
For truly large problems we have a design, not yet fully coded, to partition
the work in SODA, allowing for vast scaling, though potentially at some loss of
accuracy.

System S was built for a traditional packet-based network. But there is actu-
ally great affinity between System S and circuit switching architectures: Com-
munication between PEs is long-lived, on the order of multiple minutes or more.
Optical Circuit Switches (OCS) provide all of the benefits of circuit switching
and make the bandwidth of the system more flexible. We have developed (and
are continuing to refine) an extension to SODA that allows it to make link assign-
ments (defining the network topology) at the same time it performs its traditional
role of making PE candidate assignments. A lab prototype has been built.

324 J. Wolf et al.

References

1. Amini, L., Andrade, H., Bhagwan, R., Eskesen, F., King, R., Selo, P., Park, Y.,
Venkatramani, C.: SPC: A distributed, scalable platform for data mining. In: In-
ternational Workshop on Data Mining Standards, Services and Platforms (2006)

2. Douglis, F., Palmer, J., Richards, E., Tao, D., Tetzlaff, W., Tracey, J., Yin, J.:
Position: Short object lifetimes require a delete-optimized storage system. In: ACM
SIGOPS European Workshop (2004)

3. Hildrum, K., Douglis, F., Wolf, J., Yu, P.S., Fleischer, L., Katta, A.: Storage op-
timization for large-scale stream processing systems. In: ACM Transactions on
Storage (2008)

4. Jain, N., Amini, L., Andrade, H., King, R., Park, Y., Selo, P., Venkatramani, C.:
Design, implementation and evaluation of the linear road benchmark on the stream
processing core. In: ACM SIGMOD International Conference on Management of
Data (2006)

5. Jacques-Silva, G., Challenger, J., Degenaro, L., Giles, J., Wagle, R.: Towards au-
tonomic fault recovery in System-S. In: International Conference on Autonomic
Computing (2007)

6. Wu, K.-L., Yu, P.S., Gedik, B., Hildrum, K.W., Aggarwal, C.C., Bouillet, E., Fan,
W., George, D.A., Gu, X., Luo, G., Wang, H.: Challenges and experience in pro-
totyping a multi-modal stream analytic and monitoring application on System S.
In: International Conference on Very Large Data Bases (2007)

7. Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang,
J.H., Lindner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y.,
Zdonik, S.: The design of the Borealis stream processing engine. In: Conference on
Innovative Data Systems Research (2005)

8. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M.,
Hong, W., Krishnamurthy, S., Madden, S.R., Raman, V., Reiss, F., Shah, M.A.:
TelegraphCQ: Continuous dataflow processing for an uncertain world. In: Confer-
ence on Innovative Data Systems Research (2003)

9. Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Motwani, R., Nishizawa,
I., Srivastava, U., Thomas, D., Varma, R., Widom, J.: STREAM: The Stanford
stream data manager. IEEE Data Engineering Bulletin 26 (2003)

10. Zdonik, S., Stonebraker, M., Cherniack, M., Cetintemel, U., Balazinska, M., Bal-
akrishnan, H.: The Aurora and Medusa projects. IEEE Data Engineering Bul-
letin 26(1) (2003)

11. Wolf, J., Bansal, N., Hildrum, K., Parekh, S., Rajan, D., Wagle, R., Wu, K.L.,
Fleischer, L.: Scheduling optimizer for distributed applications: A reference paper.
Technical Report 24453, IBM Research Report (2007)

12. Tatbul, N., Çetintemel, U., Zdonik, S.: Staying fit: Efficient load shedding tech-
niques for distributed stream processing. In: International Conference on Very
Large Data Bases, pp. 159–170 (2007)

13. Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. McGraw-Hill,
New York (1985)

14. Blazewicz, J., Ecker, K., Schmidt, G., Weglarz, J.: Scheduling in Computer and
Manufacturing Systems. Springer, Heidelberg (1993)

15. Ibaraki, T., Katoh, N.: Resource Allocation Problems. MIT Press, Cambridge
(1988)

16. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. John
Wiley and Sons, New York (1988)

SODA: An Optimizing Scheduler 325

17. ILOG: CPLEX, http://www.ilog.com/products/cplex
18. Xing, Y., Hwang, J.H., Çetintemel, U., Zdonik, S.: Providing resiliency to load

variations in distributed stream processing. In: International Conference on Very
Large Data Bases, VLDB Endowment, pp. 775–786 (2006)

19. Xing, Y., Zdonik, S., Hwang, J.H.: Dynamic load distribution in the Borealis stream
processor. In: IEEE International Conference on Data Engineering, Washington,
DC, USA, pp. 791–802. IEEE Computer Society, Los Alamitos (2005)

20. Pietzuch, P., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer, M.:
Network-aware operator placement for stream-processing systems. In: IEEE Inter-
national Conference on Data Engineering, Washington, DC, USA. IEEE Computer
Society, Los Alamitos (2006)

21. Lakshmanan, G.T., Strom, R.E.: Biologically-Inspired Distributed Middleware
Management for Stream Processing Systems. In: Issarny, V., Schantz, R. (eds.)
Middleware 2008. LNCS, vol. 5346, pp. 223–242. Springer, Heidelberg (2008)

22. Motwani, R., Widom, J., Arasu, A., Babcokc, B., Babu, S., Datar, M., Manku,
G., Olston, C., Rosenstein, J., Varma, R.: Query processing, approximation, and
resource management in a data stream management system. In: Conference on
Innovative Data Systems Research (2003)

23. Xia, C.H., Towsley, D., Zhang, C.: Distributed resource management and admission
control of stream processing systems with max utility. In: ICDCS 2007: Proceedings
of the 27th International Conference on Distributed Computing Systems (2007)

http://www.ilog.com/products/cplex

	SODA: An Optimizing Scheduler for Large-Scale Stream-Based Distributed Computer Systems
	Introduction
	$SODA$ Objectives and Functionality
	$SODA$ Design Overview

	Overview of $System S$
	Glossary of Key New $SODA$ Terms
	$SODA$ Mathematical Components
	$macroQ$
	$macroW$
	$microQ$
	$microW$

	Experimental Evaluation
	Methodology
	Results

	Related Work
	Conclusions and Future Work
	References

