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Sodium vanadate combined with l-ascorbic acid
delays disease progression, enhances motor
performance, and ameliorates muscle atrophy
and weakness in mice with spinal muscular
atrophy
Huei-Chun Liu1,2, Chen-Hung Ting1*, Hsin-Lan Wen1, Li-Kai Tsai3, Hsiu-Mei Hsieh-Li4, Hung Li1^ and Sue Lin-Chao1*

Abstract

Background: Proximal spinal muscular atrophy (SMA), a neurodegenerative disorder that causes infant mortality,

has no effective treatment. Sodium vanadate has shown potential for the treatment of SMA; however, vanadate-

induced toxicity in vivo remains an obstacle for its clinical application. We evaluated the therapeutic potential of

sodium vanadate combined with a vanadium detoxification agent, L-ascorbic acid, in a SMA mouse model.

Methods: Sodium vanadate (200 μM), L-ascorbic acid (400 μM), or sodium vanadate combined with L-ascorbic

acid (combined treatment) were applied to motor neuron-like NSC34 cells and fibroblasts derived from a healthy

donor and a type II SMA patient to evaluate the cellular viability and the efficacy of each treatment in vitro. For the

in vivo studies, sodium vanadate (20 mg/kg once daily) and L-ascorbic acid (40 mg/kg once daily) alone or in

combination were orally administered daily on postnatal days 1 to 30. Motor performance, pathological studies,

and the effects of each treatment (vehicle, L-ascorbic acid, sodium vanadate, and combined treatment) were

assessed and compared on postnatal days (PNDs) 30 and 90. The Kaplan-Meier method was used to evaluate the

survival rate, with P < 0.05 indicating significance. For other studies, one-way analysis of variance (ANOVA) and

Student’s t test for paired variables were used to measure significant differences (P < 0.05) between values.

Results: Combined treatment protected cells against vanadate-induced cell death with decreasing B cell

lymphoma 2-associated X protein (Bax) levels. A month of combined treatment in mice with late-onset SMA

beginning on postnatal day 1 delayed disease progression, improved motor performance in adulthood, enhanced

survival motor neuron (SMN) levels and motor neuron numbers, reduced muscle atrophy, and decreased Bax levels

in the spinal cord. Most importantly, combined treatment preserved hepatic and renal function and substantially

decreased vanadium accumulation in these organs.

Conclusions: Combined treatment beginning at birth and continuing for 1 month conferred protection against

neuromuscular damage in mice with milder types of SMA. Further, these mice exhibited enhanced motor

performance in adulthood. Therefore, combined treatment could present a feasible treatment option for patients

with late-onset SMA.
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Background
Spinal muscular atrophy (SMA) is an inherited neurode-

generative disease characterized by motor neuron degen-

eration in the anterior horn of the spinal cord that leads to

muscle atrophy and paralysis [1]. SMA is classified into

different types based on the age at onset and disease sever-

ity. Symptoms of type I SMA manifest before 6 months of

age, and patients never achieve the ability to sit. The onset

of type II SMA occurs between 6 and 18 months, and

patients are never able to stand or walk. Patients with type

III SMA present with symptoms after 18 months, and they

are able to walk at some point [2-4]. Two survival motor

neuron (SMN) genes on chromosome 5q13 have been cor-

related with SMA: telomeric SMN1 and centromeric

SMN2. SMA is caused by deletions or loss-of-function

mutations in SMN1 with the retention of SMN2 [5-8],

resulting in production of insufficient full-length SMN

transcripts. SMN2 primarily transcribes exon 7-excluded

mRNA because of a C-to-T transition at position 6 in

exon 7 [9,10] and produces an unstable C-terminally trun-

cated SMN protein. However, patients with SMA present

with varying degrees of severity depending on the number

of SMN2 copies, a finding that has also been replicated in

SMA mouse models [7,11,12], indicating that SMN2 could

serve as the SMA modifier and is therefore a natural target

for SMA therapy [12-16].

Two SMA therapy strategies that target SMN2 to

produce more SMN have been investigated: enhancing

SMN2 promoter activity and correcting SMN2 alternative

splicing. Some compounds have been demonstrated to

activate the SMN2 promoter and/or to change the SMN2

alternative splicing pattern, including histone deacetylase

inhibitors (sodium butyrate, valproic acid (VPA), trichos-

tatin A, suberoylanilide hydroxamic acid, and LBH589),

prolactin, salbutamol, and sodium vanadate (SV) [17-24].

Synthesized antisense oligonucleotides (ASO) have also

been shown to effectively reverse the SMN2 splicing

pattern in vitro and in vivo, and they have displayed pro-

mising efficacy in treating SMA [25-28]. However, many

of these compounds are known to be toxic at high doses,

and their biosafety for human clinical trials remains to be

proven [29,30].

SV is a candidate compound for SMA therapy in vitro

[23,31]. SV and SV derivatives have been effective in treat-

ing diabetes in rodent models [32-34] and are currently in

phase II clinical trials [35]. However, high doses or long-

term administration of vanadium damages organs and

causes reproductive and developmental problems in ani-

mals [36-38]. Chelation therapy that combines vanadium

compounds with chelating agents capable of binding vana-

dium in vivo to reduce poisoning has been one approach

to reducing vanadium toxicity [39-41]. L-ascorbic acid

(L-AA; vitamin C) is a natural vanadium detoxification

agent that has been demonstrated to be safe for human

use [40,42,43]. The interaction between L-AA and SV

occurs under physiological conditions and is known to

decrease vanadium toxicity [44,45].

In the present work, the therapeutic potential of SV in

combination with L-AA (combined treatment) was investi-

gated in a mouse model of late-onset SMA that was

previously used as a preclinical therapeutic testing system

for SMA [26,46]. The results indicate that combining

L-AA with SV does not disrupt the ability of SV to increase

the production of SMN levels but it eliminates SV-induced

cytotoxicity in vitro. Mice with late-onset SMA that

received combined treatment on postnatal days (PNDs)

1 to 30 exhibited delayed disease progression and enhanced

motor activity in adulthood (PND 90). We also found sus-

tained and elevated SMN levels, increased motor neuron

numbers, improved muscle pathology, and reduced Bax

levels in the spinal cords of the adult mice. Importantly,

vanadium accumulation in the kidneys and livers of these

mice was largely reduced, and those organs retained

normal function during development and adulthood.

Therefore, our study provides a potentially feasible and

effective approach to treating patients with late-onset SMA.

Methods
Cell culture and chemical treatment

The procedures for culturing NSC34 cells stably expres-

sing SMN2 (SMN2-NSC34) have been described

previously [31]. A dermal biopsy obtained from a patient

with type II SMA (a 39-year-old woman with three copies

of SMN2) was acquired from the Department of Neurol-

ogy, National Taiwan University Hospital, and primary

human dermal fibroblasts (HDFs) were cultured follow-

ing standard procedures [47]. The protocol for the

human study was approved by the Research Ethics

Committee of the National Taiwan University Hospital

(NTUH-REC no. 201011059RB). Control wild-type

(WT) primary HDFs (from a 29-year-old woman) were

purchased from Cell Application Inc. (San Diego, CA,

USA). Primary HDFs were cultured in fibroblast growth

medium (Cell Application Inc.) at 37°C with 5% CO2 in a

humidified incubator. The cells were plated 1 day before

treatment with 400 μM L-AA (Sigma Aldrich, St Louis,

MO, USA), 200 μM SV (Sigma), or 400 μM L-AA and

200 μM SV and harvested at the indicated times.

Cell viability assay

At 1 day before treatment and harvesting, 5 × 105 cells

were plated onto six-well culture plates. Following

treatment the total cell numbers were measured by the

trypan blue exclusion test using the Countess Automated

Cell Counter (Invitrogen, Carlsbad, CA, USA). Cell

viability was evaluated three times for each condition.
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Animal models

SMA-like mice were previously generated via a homozy-

gous knockout of Smn exon 7 with a transgene of human

SMN2 (Smn-/-SMN2+/-) by our laboratory [16]. The mice

model of late-onset SMA (Smn-/-SMN2+/+) used in these

studies had four copies of SMN2 and mice were generated

via an initial breeding with a mouse model of late-onset

SMA [48]. Genotyping was performed as described

previously [30]. SMA mice were maintained on a 12-h

light and 12-h dark schedule in accordance with the princi-

ples of laboratory animal care. The mice were supplied

with sterile water ad libitum and rodent pellets under the

control of the animal facility of the Institute of Molecular

Biology, Academia Sinica, Taiwan. All procedures were

approved by the Academia Sinica Animal Care and Use

Committee, Master Protocol no. RMiIMBLH2008024.

Drug administration

SV and L-AA were dissolved in sterile deionized water.

Vehicle (water), SV (20 mg/kg once daily), L-AA (40 mg/

kg once daily), or SV (20 mg/kg) combined with L-AA

(40 mg/kg) were orally administered on PNDs 1 to 30

using a 24-gauge feeding needle as described previously

[49].

Western blotting

Cell or tissue lysates (20 μg) were prepared for western

blot studies as described previously [31]. Primary antibo-

dies used for western blotting included mouse anti-SMN

(1:5,000; BD Biosciences, San Diego, CA, USA), mouse

anti-b-actin (1:10,000; Sigma), rabbit anti-Bax (1:1,000;

Millipore, Temecula, CA, USA), and rabbit anti-caspase

3 (1:1,000; Cell Signaling, Temecula, CA, USA). Second-

ary antibodies conjugated with horseradish peroxidase

(Millipore) were used at a dilution of 1:5,000.

Ear morphology analysis

Mice were examined from PND 50 to PND 96 and their

ear integrity was determined. The severity of ear morphol-

ogy was assigned a score from 0 to 4, with 0 indicating the

most severe loss of integrity. A score of 4 indicated normal

ear morphology, 3 indicated a red color at the tip, 2 indi-

cated purple and black colorations indicative of necrosis,

and 1 indicated loss of half of the external ear. A score of

0 indicated loss of nearly all of the external ear. Scores

were plotted and analysis of variance (ANOVA) was

applied to determine significance.

Motor activity

Motor functions in the mice were analyzed by a battery of

behavioral tests. In the surface-righting assay, each pup

was placed in a supine position, and the time to turn over

was measured (maximum 30 s) every day on PNDs 1 to 12

[50]. In the geotaxis assay, each mouse was placed on a 30°

incline with its head facing the bottom of the incline.

Success was judged if the mouse was able to reorient itself

180° within 30 s [50]; measurements were taken daily on

PNDs 1 to 12. Hind limb strength was determined by the

tube test. Measurements were taken as a mouse hung by

its hind limbs on the lip of a 50-ml tube [51]. The tube test

was performed daily on PNDs 1 to 12. Locomotion and

exploratory movement were measured in the adult mice by

the open-field test. Each mouse was placed alone in the

corner of an open-field cage (480 × 480 mm2) made of

polyvinyl chloride. The activity of the animal in the open-

field cage was detected for 60 minutes using a video ima-

ging system [52]. Motor function was also measured by the

accelerating rotarod test. Each mouse was evaluated as the

rotation speed increased from 4 to 40 rpm over 5 minutes;

the final score was an average of three trials [53].

Pathological studies

Mice (n = 3 in each group) were perfused with 4% parafor-

maldehyde (PFA). Lumbar spinal cords and tibialis

anterior (TA) muscles were excised, fixed overnight, dehy-

drated using an infiltration machine (Leica Microsystems

Nussloch GmbH, Nussloch, Germany), and embedded in

paraffin. Lumbar spinal cords (4 μm) were serially

sectioned at 50 μm intervals, and muscles (4 μm) were

cross-sectioned at the midpoint. The sections were

mounted on slides and stained with hematoxylin and eosin

(H&E). Images were observed using a Zeiss Axio Observer

Z1 microscope (Carl Zeiss, Jena, Germany) with a 10 ×

objective and analyzed using MetaMorph software (v.7.7.2;

Molecular Devices, Sunnyvale, CA, USA). Using this soft-

ware TA muscle area (> 500 myofibers per mouse) and the

mean motor neuron numbers per section (> 10 sections

per mouse) were determined. For whole-mount immunos-

taining, TA muscles were excised and fixed in 4% PFA

overnight at 4°C. After three washes in 0.1 M phosphate-

buffered saline (PBS)/0.1 M glycine, the muscles were

blocked in blocking buffer (3% bovine serum albumin

(BSA) and 0.5% Triton-X 100 in 0.1 M PBS), followed by

incubation with anti-neurofilament H antibody (diluted to

1:500; Millipore) in blocking solution overnight at 4°C.

The following day, the samples were washed in five

changes of rinse solution (1% BSA and 0.5% Triton-X 100

in 0.1 M PBS) over a period of 5 h and then incubated with

Alexa Fluor 488 donkey anti-rabbit IgG and tetrameth-

ylrhodamine-5-(and 6)-isothiocyanate (TRITC)-conjugated

a-bungarotoxin (a-BTX) (diluted to 1:1,000; Molecular

Probes, Carlsbad, CA, USA). After washing with five

changes of rinse solution over a period of 5 h, muscle sam-

ples were mounted onto slides using fluorescence mount-

ing solution (Invitrogen). Confocal images were captured

using an LSM710 microscope (Carl Zeiss) with a 25 ×

objective lens. Neuromuscular junction (NMJ) area mea-

surements were made using MetaMorph software. For gem
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number counts, fixed primary dermal fibroblasts were

blocked and incubated with anti-SMN antibody as

described previously [31]. Images were obtained using an

LSM META 510 laser-scanning confocal microscope (Carl

Zeiss), and SMN nuclear localization in fibroblasts was

confirmed by 4’,6-diamidino-2-phenylindole (DAPI)

counterstaining.

Hepatic and renal function test

Blood samples were collected from the facial vein of the

mice using a lancet. The samples were then mixed with

ethylenediaminetetra-acetic acid (EDTA). The solution

was then centrifuged for 30 minutes at 4,700 g. The

serum samples from each group of mice were analyzed

using a DRI-CHEM clinical chemistry analyzer (FDC

3500; FujiFilm Medical Co, Tokyo, Japan) for glutamate

oxaloacetate transaminase (GOT), glutamate pyruvate

transaminase (GPT), blood urea nitrogen (BUN), and

creatinine (CRE).

Determination of vanadium

To investigate vanadium levels in tissue, snap-frozen

kidney and liver tissues and blood were weighed and

homogenized in 3 ml HNO3. The lysates were heated to

200°C within 15 minutes and then maintained at 200°C

for 25 minutes using the ultra-high throughput micro-

wave digestion system (MARSXpress; CEM Corporation,

Matthews, NC, USA). After cooling, vanadium levels

were determined by inductively coupled plasma mass

spectrometry (ICP-MS) (X-Series II; Thermo Fisher

Scientific Inc., Waltham, MA, USA).

Statistical analyses

The findings were confirmed by at least three indepen-

dent experiments. Data were analyzed using Prism 5

software (GraphPad Software Inc., San Diego, CA,

USA). Statistical significance was determined by Stu-

dent’s t test or one-way analysis of variance (Tukey’s

test). P < 0.05 was considered statistically significant.

Results
Effect of L-AA combined with SV on SMN expression

closely mimics SV alone

To examine whether L-AA disrupts the efficacy of SV,

SMN protein levels in SMN2-NSC34 cells [31] were evalu-

ated after treatment with SV (200 μM), SV (200 μM) com-

bined with L-AA (400 μM), and L-AA alone (400 μM).

Western blotting confirmed that L-AA treatment alone

had no effect on SMN protein levels (Figure 1A, upper

panel, and B). SV treatment (Figure 1A, middle panel, and

C) as well as combined treatment (Figure 1A, lower panel,

and D) effectively increased SMN levels from 4 to 16 h

(n = 3; Figure 1A). While no statistically significant change

was observed in the cells receiving combined treatment at

the 24 h time point, it is possible that L-AA may accelerate

the metabolism of SV, and thus reduce the drug’s stability.

To extend these results to a clinically relevant model, we

isolated HDFs from a type II SMA patient. The expression

level of SMN protein in fibroblasts obtained from an SMA

patient was approximately 59.2% of the amount observed

in cells from a healthy donor (Additional file 1). The SMN

protein level was restored by SV alone or combined

treatment (n = 3, Figure 1I, upper panel, and L) and no

change in SMN expression was observed following L-AA

treatment alone in the fibroblasts derived from the SMA

or healthy donors. These results demonstrate that SMN2-

NSC34 cells receiving L-AA in addition to SV had a simi-

lar pattern of SMN-production compared to cells receiv-

ing only SV. In fibroblasts derived from healthy and SMA

donors, both combined treatment and SV treatment alone

resulted in increases of SMN expression. Therefore, L-AA

has minimal to no negative impact on the efficacy of SV

induction of SMN protein expression.

L-AA protects cells against SV-induced cytotoxicity

SV treatment-induced cytotoxicity has been well docu-

mented [54,55]. To determine whether L-AA protects

cells against SV-induced cell death, we assessed the viabi-

lity of SMN2-NSC34 cells as well as WT and SMA

patient-derived HDFs following treatment with SV

(200 μM) in combination with L-AA (400 μM). We

further determined whether L-AA protects SMN2-NSC34

cells and WT and SMA HDFs against SV-induced death

by trypan blue exclusion staining (Figure 1E-G). The viabi-

lity of SV-treated cells significantly decreased from 8 to 24

h in all cell types (n = 3 in each group) (Figure 1E-G, mid-

dle; Additional files 2, 3 and 4). By contrast, both NSC34

cells and HDFs that received combined treatment dis-

played no obvious signs of cell death from 8 to 24 h and

exhibited improved viability compared with SV-treated

cells as measured by trypan blue staining (Figure 1E-G,

right; Additional files 2, 3 and 4). L-AA alone did not

affect cell viability (Figure 1E-G, left). In addition, we

found that SV-treatment resulted in increased proapopto-

tic Bax expression compared to L-AA treatment in

SMN2-NSC34 cells (1.75 ± 0.11 vs 1.06 ± 0.16, P < 0.05),

WT HDFs (1.29 ± 0.02 vs 0.92 ± 0.01, P < 0.001), and

SMA HDFs (1.23 ± 0.01 vs 0.90 ± 0.02, P < 0.001) (Figure

1H, I, K, M). In contrast, combined treatment resulted in

significantly lower Bax expression compared to SV treat-

ment in SMN2-NSC34 cells (0.90 ± 0.06 vs 1.75 ± 0.11, P

< 0.01), WT HDFs (1.05 ± 0.02 vs 1.29 ± 0.02, P < 0.01)

and SMA HDFs (1.08 ± 0.04 vs 1.23 ± 0.01, P < 0.05)

(Figure 1H, I, K, M). These results demonstrate that L-AA

protected both NSC34 cells and HDFs against SV-induced

toxicity.

Further, the degree of functional SMN recovery was

determined by staining nuclear Gemini bodies/gems in
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WT and SMA HDFs following SV and L-AA treatment

(Figure 2A, indicated by arrows). In the nucleus, SMN

accumulates in nuclear bodies called ‘Gems’ (gemini of

coiled bodies). They frequently overlap with Cajal bodies,

which contain many factors involved in transcription

and processing of nuclear RNAs [56]. Importantly,

although their function remains unclear, gem number

has been shown to correlate with disease severity, with

type I SMA patients exhibiting few or no gems [57].

Fewer SMA HDFs contained nuclear gems than WT

Figure 1 L-Ascorbic acid (L-AA) eliminates sodium vanadate (SV)-induced cytotoxicity. (A) Western blots showing survival motor neuron

(SMN) expression in SMN2-NSC34 cells treated with 400 μM L-AA, 200 μM SV, or SV combined with L-AA at different time points. b-Actin was

used as an internal control. (B-D) Quantification of SMN protein expression in (A). (E-G) Quantification of the viability of SMN2-NSC34 cells (E)

and human dermal fibroblasts (HDFs) (F, G) treated with L-AA, SV or SV combined with L-AA. (H, I) Western blots showing SMN and B cell

lymphoma 2-associated X protein (Bax) expression in SMN2-NSC34 cells (H) and HDFs (I) treated with vehicle, L-AA, SV or SV combined with L-

AA. b-Actin was used as an internal control. (J, K) Quantification of SMN and Bax expression in (H). (L, M) Quantification of SMN and Bax

expression in (I). The experiment was repeated at least three times, and the mean ± SEM was calculated. Statistical comparisons were performed

by one-way analysis of variance (ANOVA) (E-G) and Student’s t test (B-D, and J-M).*P < 0.05, **P < 0.01, and ***P < 0.001.
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Figure 2 Combined treatment restores survival motor neuron (SMN) nuclear body gems in fibroblasts of a spinal muscular atrophy

(SMA) patient. (A) Immunocytochemical analysis of the nuclear SMN body gems in wild-type (WT) and SMA human dermal fibroblasts (HDFs)

treated with L-ascorbic acid (L-AA), sodium vanadate (SV) or L-AA combined with SV. SMN was stained with an SMN antibody (red, indicated by

arrows). 4’,6-Diamidino-2-phenylindole (DAPI) was used for nuclei staining. Bar: 50 μm. (B) The percentage of nuclei with gems (left) and the

number of gems per 100 nuclei (right) in WT and SMA cells after different treatments were evaluated by immunocytochemical analysis. The

mean ± SEM was calculated. *P < 0.01, **P < 0.01, and ***P < 0.001, Student’s t test. NS = not significant.
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HDFs (45 ± 4% vs 71 ± 1%; P < 0.01; Figure 2B, left). After

combined treatment, the number of SMA HDFs contain-

ing nuclear gems was significantly increased (64 ± 3%, P <

0.05 compared with L-AA-treated SMA HDF; Figure 2B,

left). In addition, SMA HDFs treated with L-AA had fewer

nuclear gems per cell than L-AA-treated WT HDFs (right;

120 ± 13 gems/100 nuclei vs 197 ± 12 gems/100 nuclei, P

< 0.001; Figure 2B). By contrast, SV-treated SMA HDFs

had an increased number of gems, although the values did

not reach statistical significance (148 ± 14 gems/100

nuclei; Figure 2B, right). Of note, SMA HDFs subjected to

combined treatment exhibited more gems than SV-treated

SMA HDFs (195 ± 13 gems/100 nuclei vs 148 ± 14 gems/

100 nuclei, P < 0.001; Figure 2B, right). These results indi-

cate that combined treatment exhibits greater in vitro

therapeutic efficacy than SV treatment alone.

L-AA eliminates SV-induced toxicity in vivo

To investigate whether combined treatment has beneficial

effects in vivo, L-AA and SV were orally administered

alone or in combination from PNDs 1 to 30 to mice with

late-onset SMA, which have been used previously [26,58]

as a preclinical therapeutic testing system for SMA

(Figure 3A). The therapeutic timeframe (PNDs 1 to 30)

was designed based on several studies showing that early

intervention (before PND 5) can target neurons in

Figure 3 L-Ascorbic acid (L-AA) protects against sodium vanadate (SV)-induced toxicity in a mouse model of late-onset spinal muscular

atrophy (SMA). (A) Schematic indicating the treatment regimens used in this study. (B) The mean body weight progression of the wild-type (WT)

mice (n = 10, black squares) and the SMA mice that received vehicle (n = 25, pink solid triangles), SV (n = 30, green open triangles), L-AA (n = 30, blue

solid circles) and SV combined with L-AA (n = 36, red open circles) treatment. Note that SV treatment reduced the rate of body weight gain.

(C) Survival analysis of mice that received different treatments. Note that by postnatal day (PND) 25, most of the mice that had received daily SV

administration had died.
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sufficient numbers to confer a lifespan extension [59-61].

Additionally, systemic administration of antisense oligonu-

cleotides (ASO) targeting an SMN2 intronic splicing silen-

cer on PND 1 dramatically prolongs the lifespan of SMA

mice, even though inclusion of exon 7 significantly

decreased after PND 30 [28], suggesting that transiently

increasing SMN protein levels during the first few weeks

has beneficial effects on long-term survival of SMA mice.

Further, temporal restoration of SMN levels from birth to

PND 28 in SMA mice with inducible SMN expression

resulted in no phenotype or abnormal NMJs [62]. There-

fore, the drugs were administered from PNDs 1 to 30. Our

dose-response studies showed that an SV dosage of 30 mg/

kg, but not 15 mg/kg, combined with L-AA causes lethality

in mice (Additional file 5); therefore, a dosage of 20 mg/kg

SV was selected for this study. Body weight was evaluated

daily from PND 1 to PND 44, and the data revealed that

SV treatment significantly slowed body weight gain (n =

30; Figure 3B). By PND 5, animals that received SV treat-

ment were significantly underweight (2.08 ± 0.15 g) com-

pared with those that received L-AA treatment (2.69 ±

0.10 g, n = 30), combined treatment (2.72 ± 0.10 g, n = 36),

and vehicle treatment (2.64 ± 0.08 g, n = 25, P < 0.001;

Figure 3B). It is notable that mice that received combined

treatment did not exhibit the dramatically reduced weight

gain seen in mice treated with SV alone (Figure 3B). In

addition, 15 of 30 mice administered SV died before PND

6 (Figure 3C). The mice that received combined treatment

had a survival rate similar to that of the mice that received

vehicle or L-AA treatment (Figure 3C). These results pro-

vide further evidence that L-AA eliminates SV-induced

toxicity in the mice with late-onset SMA.

Combined treatment delays disease progression in mice

with late-onset SMA

Distal necrosis observed in patients with SMA has also

been identified in the mouse model of late-onset SMA

[16,63,64]. Tail and ear necrosis have been shown to cor-

relate with disease severity in mice with late-onset SMA,

making them good indicators of the efficacy of therapeutic

candidate compounds [27]. The tail length and ear integ-

rity of mice from different treatment groups were mea-

sured every other day from PND 7 to PND 39 and from

PND 50 to PND 96, respectively. The result illustrated

that the SMA mice that received vehicle and L-AA treat-

ment developed tail necrosis between PND 17 and PND

19, whereas combined treatment delayed tail necrosis until

PNDs 19 to 21 (Figure 4A, B). The tails of mice that

received vehicle and L-AA treatment were completely lost

between PNDs 29 and 33, whereas those of mice that

received combined treatment were completely lost

between PNDs 37 and 39 (Figure 4B). The mice that

received combined treatment displayed a significant delay

(n = 30) in tail loss compared with those that received

vehicle (n = 25) or L-AA (n = 36) treatment (Figure 4B).

Furthermore, to characterize the degree of ear necrosis,

five scores were given during each pathogenic stage

(Figure 4C). The vehicle-treated (n = 10) and L-AA-trea-

ted mice (n = 15) developed ear necrosis along the edge of

the ear at approximately PND 56.55 ± 1.55 and PND

59.20 ± 1.47, respectively. Of note, the mice that received

combined treatment (n = 17) exhibited a significant delay

in the development of ear necrosis until PND 68.00 ± 2.54

(Figure 4D, E). Approximately 11.8% (2/17) of mice with

late-onset SMA that received combined treatment

retained almost complete ear pinna throughout the course

of measurement (Figure 4D, mice are shown on PND 90).

These data indicate that combined treatment effectively

delayed disease progression in the mouse model of late-

onset SMA.

Early combined treatment improves motor function in

mice with late-onset SMA into adulthood

As early drug administration has been demonstrated to

benefit SMA therapy, whether combined treatment has

beneficial effects on the motor activity of mice with late-

onset SMA was further investigated. The motor functions

of young mice were evaluated from PND 2 to PND 12 by

the surface righting assay, tube test, and negative geotaxis

assay. The different groups of mice exhibited no significant

differences in the tested parameters, indicating that mice

with late-onset SMA have normal motor functions at ear-

lier developmental stages (Additional file 6). The motor

functions of the adult (PND 90) mice that received treat-

ment between PNDs 1 and 30 were further evaluated by

the open-field and rotarod tests. The open-field test

revealed no significant differences in the total distance

traveled, indicating no difference in general activity or will-

ingness to explore among the groups (Figure 5A). In addi-

tion, rearing events, which occur less frequently in the

SMA mouse model [3,50], occurred more frequently in

the mice that received combined treatment (combined

treatment: 59.20 ± 7.40 events/10 minutes, n = 10; vehicle:

44.90 ± 4.79 events/10 minutes, n = 10; L-AA: 47.90 ±

5.41 events/10 minutes, n = 10), although the differences

did not reach statistical significance (Figure 5B). The loco-

motor activities of each group were also analyzed by the

accelerating rotarod test. The mice that received combined

treatment stayed on the rotating cylinder longer than

those that received vehicle or L-AA treatment (combined

treatment: 171.30 ± 8.47 s; vehicle: 124.90 ± 11.56 s;

L-AA: 129.80 ± 12.02 s; n = 10 in each group, P < 0.05;

Figure 5C). These results indicate that the mice that

received combined treatment had improved motor perfor-

mance. Taken together, these results indicate that com-

bined treatment at early developmental stages is sufficient
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Figure 4 Combined treatment delays the onset of spinal muscular atrophy (SMA) phenotype. (A) Images of the mice that received

different treatments on postnatal days (PNDs) 16 and 23. Note that mice that received combined treatment had longer tails. (B) Plot showing

the tail lengths of wild-type mice (n = 10, black triangles) and mice with late-onset SMA that received vehicle (n = 25, green triangles), L-

ascorbic acid (L-AA) (n = 30, blue circles) or combined (n = 36, red circles) treatment. The SMA groups are shown in a magnified figure to the

right. Lengths were measured every other day from PND 7 to PND 39. A trend of delayed onset of tail necrosis was observed in the mice that

received combined treatment. The combined treatment significantly delayed tail loss according to one-way analysis of variance (ANOVA). (C) Ear

integrity was scored on a scale of 0 to 4. (D) PND 90 mice that had received different treatments. Note that the mice that received combined

treatment retained ear integrity longer. (E) The plot represents the mean score of ear integrity for wild-type mice (n = 10, black triangles) and

mice with late-onset SMA mice that received vehicle (n = 10, green solid triangles), L-AA (n = 15, blue solid circles) or combined (n = 17, red

open circles) treatment. *P < 0.05 compared with the L-AA-treated group; **P < 0.01 compared with the vehicle-treated group, one-way ANOVA.
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to improve the motor activity of mice with late-onset SMA

in adulthood.

Combined treatment displays motor neuron protective

effects and reduces muscle atrophy in mice with

late-onset SMA

The improved motor performance in the adult mice led us

to further assess the potential therapeutic effects underly-

ing combined treatment during development. Spinal cord

and brain tissue samples were obtained at PNDs 3, 5, 7, 9

and 30 days from mice treated from PND 1 as well as

from adult mice (PND 90) that received treatment from

birth through PND 30. SMN expression was then assayed

by western blotting. The results demonstrated that the

SMA mice that received combined treatment had relative

increases in SMN levels in the brain and spinal cord (n =

4 in both groups) compared with the mice that received

L-AA treatment (Figure 6A-D). Pathological studies were

then conducted to further investigate the therapeutic

effects of combined treatment in mice. The motor neuron

numbers in the WT mice and mice with late-onset SMA

that received treatment for 1 month were evaluated by

histology (Figure 6E-H). The result indicated that the

young mice with late-onset SMA that received combined

treatment for 1 month had significantly higher motor neu-

ron numbers than those that received L-AA or vehicle

treatment (19.95 ± 0.34 vs 17.65 ± 0.20 and 17.55 ± 0.19,

P < 0.001; Figure 6F). Moreover, the adult mice with late-

onset SMA that received combined treatment exhibited

higher motor neuron numbers than those that received L-

AA or vehicle treatment (20.00 ± 0.34 vs 17.33 ± 0.28 and

17.10 ± 0.23, P < 0.001; Figure 6H).

Additionally, TA muscles were dissected from the WT

mice and mice with late-onset SMA on PNDs 30 and 90,

and the TA muscle mass-to-body weight ratio, TA muscle

area, and NMJ area in TA muscle were determined. The

result revealed that the PND 30 and 90 mice with late-

onset SMA that received vehicle or L-AA treatment had

Figure 5 Combined treatment improves motor function in adult mice with late-onset spinal muscular atrophy (SMA). (A) Distance

traveled in the open-field test during a 60-minute period. No significant differences were observed among the treatment groups. (B) The

frequency of rearing events in the first 10 minutes of the 60-minute experiment to examine this behavior independent of habituation. Mice that

received combined treatment generally exhibited more rearing events, but this difference did not reach significance. (C) Average latency to fall

from the rotarod for mice in response to different treatments. *P < 0.05, one-way analysis of variance (ANOVA). In all motor function tests, each

circle, square or triangle represents an individual adult mouse (postnatal day (PND) 90).
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significantly lower TA muscle-to-body weight ratios than

the WT mice (n = 3 in each group, P < 0.01; Figure 7A,

B). The TA muscle-to-body weight ratio was recovered in

the mice with late-onset SMA that received combined

treatment (P < 0.01; Figure 7A, B), indicating that

combined treatment prevented muscle atrophy in those

mice. In addition, histological studies revealed a decrease

in the TA muscle area in the PND 30 and 90 mice with

Figure 6 Combined treatment increases survival motor neuron (SMN) expression and motor neuron numbers in mice with late-onset

spinal muscular atrophy (SMA). (A, C) Western blots showing SMN expression in the brain (A) and spinal cord (C) in mice with late-onset

SMA that received L-ascorbic acid (L-AA) or combined (n = 4 in each group) treatment. b-Actin was used as an internal control. (B, D)

Quantification of SMN protein expression in (A, C). The mean ± SEM was calculated. (E, G) Histological staining of lumbar spinal cord samples on

postnatal days (PNDs) 30 (E) and 90 (G) for the wild-type (WT) mice and mice with late-onset SMA that had received different treatments. Scale

bar: 100 μm (E and G, upper panel); 50 μm (E and G, lower panel). (F, H) Quantification of motor neuron numbers in the spinal cords obtained

from (E) and (G) (n = 3, 40 sections for each group were quantified). The mean ± SEM was calculated. ***P < 0.001, Student’s t test.
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Figure 7 Combined treatment improves muscle pathology in mice with late-onset spinal muscular atrophy (SMA). (A, B) The tibialis

anterior (TA) muscle weight-to-body weight ratio in mice with late-onset SMA in response to different treatments on postnatal days (PNDs) 30 and 90

(n = 3 in each group). The mean ± SEM was calculated. **P < 0.01 and ***P < 0.001, Student’s t test. NS = not significant. (C) Histological assessment

of hematoxylin and eosin (H&E)-stained TA muscle from PND 30 (upper panel) and 90 (lower panel) wild-type (WT) mice or mice with late-onset SMA

that received different treatments. Scale bar: 50 μm. (D) Quantification of the muscle area (μm2) in the PND 30 (left) and 90 (right) mice (n = 3, >500

myofibers for each group were quantified) obtained in (C). The mean ± SEM was calculated. **P < 0.01 and ***P < 0.001, Student’s t test. NS = not

significant. (E) Staining with the axonal marker neurofilament H (green) and neuromuscular junction (NMJ) marker a-bungarotoxin (a-BTX) (red)

revealed NMJs in the treated PND 30 and 90 WT or SMA mice (n = 3). Bar: 50 μm. (F) Quantification of the NMJ area (μm2) in the PND 30 (left) and 90

(right) mice in each group obtained in (E). The mean ± SEM was calculated. **P < 0.01 and ***P < 0.001, Student’s t test. NS = not significant.
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late-onset SMA compared with the WT mice (n = 3 in

each group, P < 0.001; Figure 7C, D). By contrast, an

improved TA muscle area was observed in the mice with

late-onset SMA that received combined treatment

(P < 0.001; Figure 7C, D). Immunohistochemical studies

also revealed a significantly decreased NMJ area in the

PND 30 and 90 mice with late-onset SMA compared with

the WT mice (n = 3 in each group, P < 0.001; Figure 7E, F).

The mice with late-onset SMA that received combined

treatment exhibited an improvement in the NMJ area on

PND 30 but displayed no significant differences on PND 90

(P < 0.05; Figure 7E, F). Collectively, these findings demon-

strate that early and constant intervention with combined

treatment for 1 month is sufficient to protect mice with

late-onset SMA against motor neuron death and to reduce

muscle atrophy.

Combined treatment decreases Bax levels during

development of mice with late-onset SMA

Evidence from several studies also revealed abnormal Bax

expression in the SMA mouse model and indicated that

abolishing Bax expression improved motor neuron survi-

val [65]. SV also induces Bax in vitro; however, the com-

bined treatment eliminates Bax upregulation (Figure 1H, I,

K, M). We therefore examined Bax levels in the WT mice

and mice with late-onset SMA that received vehicle, L-AA

or combined treatment. The results of western blotting

were consistent with those of the cell line studies, indicat-

ing significantly higher Bax levels in the mice with

late-onset SMA on PNDs 15 (1.42 ± 0.07-fold, P < 0.01),

30 (1.56 ± 0.05-fold, P < 0.01), and 90 (2.14 ± 0.14-fold,

P < 0.01) compared to the WT mice (n = 3 in each group;

Figure 8A, B, D, E, G, H). However, the mice that received

combined treatment had significantly lower Bax levels in

their spinal cords than those that received L-AA or vehicle

treatment on PNDs 15 (combined treatment: 1.17 ± 0.01;

L-AA: 1.50 ± 0.06 (P < 0.01 vs combined treatment); vehi-

cle: 1.42 ± 0.07 (P < 0.05 vs combined treatment)), 30

(combined treatment: 1.31 ± 0.05; L-AA: 1.71 ± 0.02

(P < 0.01 vs combined treatment); vehicle: 1.56 ± 0.05

(P < 0.05 vs combined treatment)), and 90 (combined

treatment: 1.55 ± 0.14; L-AA: 2.46 ± 0.27 (P < 0.05 vs

combined treatment); vehicle: 2.14 ± 0.14 (P < 0.05 vs

combined treatment)). Regardless of treatment, the mice

with late-onset SMA exhibited higher Bax levels (1.17-fold

to 2.46-fold) than the WT mice (n = 3 in each group;

Figure 8A, B, D, E, G, H). These results indicate that com-

bined treatment may protect motor neuron cells from

death caused by decreased Bax expression in vivo. We also

examined caspase 3 expression on PNDs 15, 30, and 90;

however, no significant differences were observed

(Figure 8A, C, D, F, G, I).

Combined treatment does not affect hepatic and renal

functions in mice with late-onset SMA

Toxicity in the liver and kidneys is the principal concern

limiting the clinical application of vanadium [32,38]. To

evaluate the safety, feasibility, and practicality of combined

therapy for SMA treatment (PNDs 1 to 30), the hepatic

and renal functions of SMA mice that received L-AA

alone and in combination with SV were examined on

PNDs 30 and 90. The results revealed no dramatic differ-

ences in the levels of GOT or GPT, which reflect hepatic

function, or BUN or CRE, which reflect renal function,

between the WT mice and mice with late-onset SMA that

received treatment (Table 1). Importantly, all values in the

mice with late-onset SMA that received combined treat-

ment were within the reference range, indicating that the

combined treatment causes no obvious organ toxicity. In

addition, vanadium accumulation in the liver and kidneys

was determined on PNDs 6, 30 and 90. The mice with

late-onset SMA that received SV alone exhibited vana-

dium accumulation in the liver (2.11 ± 0.18 μg/g) and kid-

neys (3.89 ± 0.60 μg/g) on PND 6 (Table 2), and most of

them died before PND 30 (Figure 3C). However,

combined treatment significantly reduced vanadium accu-

mulation in the liver (0.59 ± 0.01 μg/g, n = 3) and kidneys

(1.37 ± 0.26 μg/g, n = 3) compared with SV treatment on

PND 6. Further, vanadium accumulation in the adult mice

that received combined treatment declined to very low

levels by PND 90 (liver: 0.08 ± 0.04 μg/g, n = 3; kidneys:

0.07 ± 0.02 μg/g, n = 3; Table 2). Taken together, these

data indicate that although vanadium is still detectable in

the organs of SMA mice that receive combined treatment,

L-AA limits its accumulation and preserves hepatic and

renal function.

Discussion
In the present study, we show that L-AA largely

decreases vanadium toxicity both in vitro and in vivo

and that administration of SV combined with L-AA

delays disease progression, improves motor activities

and muscle pathology, and protects spinal motor

neurons in a mouse model of late-onset SMA.

Early intervention with combined treatment provides

long-term efficacy in mice with late-onset SMA

Several reports indicated that SMA mice that received

treatment before disease onset exhibited a satisfactory

recovery of SMN levels [17,20,22,27,28,66], an improve-

ment in SMA symptoms [17,20,22,27,28,66], and rescue of

the SMA-like phenotype [28,66]. Based on these results,

SMA mice received combined treatment for 1 month

beginning on PND 1. The initial results revealed improved

SMN levels in the brains and spinal cords of the mice that
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received combined treatment relative to those of the mice

that received L-AA alone (Figure 6A-D). In addition,

combined treatment improved the motor performance of

the adult mice with late-onset SMA (Figure 5C), most

probably because of a protective effect on motor neurons

(Figure 6E-H) and an improvement in muscle pathology

(Figure 7) due to the recovery of SMN levels. These

findings are consistent with the fact that SMN is required

Figure 8 Combined treatment decreases B-cell lymphoma 2-associated X protein (Bax) expression in the spinal cord of mice with late-

onset spinal muscular atrophy (SMA). (A, D, G) Western blots showing Bax and caspase 3 expression in spinal cord samples from wild-type

(WT) mice or mice with late-onset SMA on postnatal days (PNDs) 15 (A), 30 (D) and 90 (G) that received vehicle, L-ascorbic acid (L-AA) or L-AA

combined with sodium vanadate (SV) (n = 3 in each group). (B, C, E, F, H, I) Quantification of the western blot results in (A), (D) and (G). The

mean ± SEM was calculated. *P < 0.05, **P < 0.01 and ***P < 0.001, Student’s t test.
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for normal development and that early treatment resulting

in sufficient SMN levels improves the prognosis in SMA

models. While early treatment has been shown to be

essential to mitigating disease severity in mice with early-

onset SMA, whether early drug intervention is also neces-

sary for mice with late-onset SMA has not been estab-

lished. Hua et al. reported that early (E15) ASO injection

in mice with late-onset SMA [26] dramatically reduced

the disease severity and improved motor function, indicat-

ing that early treatment is also beneficial in late-onset

SMA. However, most cases of type II and III SMA are not

diagnosed in the earlier stages of the disease, making it

necessary to evaluate the efficacy of later interventions in

the late-onset SMA model. In this study, we did not evalu-

ate whether combined treatment administered to mice

with late-onset SMA near or after the onset of symptoms

could achieve ideal therapeutic effects. However, there has

been some evidence that other drugs such as SV that

correct the SMN2 alternative splicing may be therapeutic

even when administered later in the disease progression.

Some reports have indicated that type II SMA patients

that receive VPA for 6 months at disease onset showed

significant increases in muscle strength and function

[67,68]. Additionally, some type II and III SMA patients

who received salbutamol treatment for 6 months at

disease onset also showed an increase of muscle strength

[69]. These findings therefore support the possibility that

combined L-AA and SV treatment applied at later stages

of late-onset SMA may be beneficial and present a promis-

ing avenue for further study. However, the efficacy of later

interventions with combined treatment should be further

investigated. SV treatment (20 mg/kg once daily) alone

caused substantially reduced weight gain and mortality

before PND 6 in mice (Figure 3). Decreasing the SV

dosage to 15 mg/kg prevented lethality but still resulted in

a reduced growth rate in juvenile mice (Additional file 5).

By contrast, the mice that received combined treatment

displayed normal growth rates with no obvious hepatic or

renal damage (Figure 3 and Table 1) and reduced vana-

dium accumulation in the liver and kidneys on PND 30

(Table 2) that decreased to very low levels in the adult

mice after drug therapy ended. The effects of SV on the

liver or kidneys are of particular concern because of their

involvement in the excretory mechanism [43,44]. In addi-

tion, a report indicated that the daily tolerance of vana-

dium ranges from 10 to 60 μg/day in humans [70].

However, the average basal and normative vanadium

requirement has been difficult to ascertain. Data acquired

from deprivation studies in animals indicated that 2 to 25

ng/day vanadium often induced no significant clinical

effects, and many diets supply approximately 15 to 30 μg

of vanadium daily, suggesting that dietary intake of

Table 1 Hepatic and renal function in wild-type (WT) mice and vehicle-treated, sodium vanadate (SV)-treated, L-ascorbic

acid (L-AA)-treated, and L-AA+SV-treated spinal muscular atrophy (SMA) mice

Groups GOT (U/I) GPT (U/I) BUN (mg/dl) CRE (mg/dl)

Reference range 54 to 298 17 to 77 8 to 33 0.2 to 0.9

Postnatal day 30

WT 55.67 ± 10.20 35.67 ± 6.67 19.82 ± 0.56 < 0.20

SMA (vehicle) 93.69 ± 20.28 30.16 ± 2.64 22.22 ± 0.77 0.23 ± 0.02

SMA (L-AA) 129.62 ± 33.65 31.15 ± 2.14 23.98 ± 0.91 0.26 ± 0.02

SMA (L-AA+SV) 119.87 ± 28.25 31.27 ± 2.99 22.80 ± 1.01 0.21 ± 0.03

Postnatal day 90

WT 125.40 ± 30.09 57.60 ± 7.63 24.38 ± 2.65 < 0.20

SMA (vehicle) 107.05 ± 18.45 42.20 ± 4.19 22.27 ± 0.90 < 0.20

SMA (L-AA) 169.54 ± 19.09 37.69 ± 2.96 24.32 ± 0.65 < 0.20

SMA (L-AA+SV) 143.50 ± 20.66 39.62 ± 3.85 25.17 ± 1.30 < 0.20

Results were determined in at least five mice in each group, and the mean ± SEM was calculated. BUN = blood urea nitrogen; CRE = creatinine; GOT = glutamate

oxaloacetate transaminase; GPT = glutamate pyruvate transaminase.

Table 2 Accumulation of vanadium (μg/g) in the liver,

kidneys, and blood of vehicle-treated, sodium vanadate

(SV)-treated, L-ascorbic acid (L-AA)-treated, and L-AA+SV-

treated spinal muscular atrophy (SMA) mice

Groups Liver Kidney Blood

Postnatal day 6:

SMA (vehicle) ND ND

SMA (SV) 2.11 ± 0.18 3.89 ± 0.60

SMA (L-AA) ND ND

SMA (L-AA+SV) 0.59 ± 0.01 *** 1.37 ± 0.26 *

Postnatal day 30:

SMA (vehicle) ND ND ND

SMA (L-AA) ND ND ND

SMA (L-AA+SV) 0.22 ± 0.02 0.22 ± 0.04 0.07 ± 0.01

Postnatal day 90:

SMA (vehicle) ND ND ND

SMA (L-AA) ND ND ND

SMA (L-AA+SV) 0.08 ± 0.04 0.07 ± 0.02 0.02 ± 0.01

Results are reported as means of three mice in each group ± SEM. *P < 0.05

and ***P < 0.001 relative to SV. ND = not detectable (< 0.202 ng/g).
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vanadium of approximately 10 μg/day is safe [71]. More-

over, the addition of L-AA dramatically reduces

SV-induced toxicity in vitro and in vivo (Figures 1 and 3).

L-AA has very low toxicity, and the minimum dietary

requirement in humans is generally 40 to 100 mg/day,

however, concentrations of up to 100-fold higher have

been shown to be within a safe range [72]. Therefore,

combined treatment provides a novel and useful strategy

for SMA therapy in the near future.

Combined treatment results in reduced Bax levels and

attenuated motor neuron death

Motor neuron loss has been found in the lumbar spinal

cord in all types of SMA [73]. Inhibition of neuronal apop-

tosis is one potential strategy for SMA therapy [18,58,65].

The proapoptotic protein Bax is involved in neuron death

after trophic factor deprivation and during development

[74] and is induced by SV treatment [54,55]. Abolishing

Bax-dependent apoptosis prolongs lifespan in a mouse

model of type I SMA [65], indicating that Bax may play a

deleterious role in SMA pathogenesis. Although SV

enhances SMN2 expression [31], the toxic effect of SV on

cells (especially NSC34 cells and HDFs) in this study

(Figure 1E-G) is a major obstacle to the application of

vanadium-related compounds in SMA therapy. L-AA pro-

tects cells against SV-induced cell death (Figures 1E-G

and 8). The levels of Bax, but not of caspase 3, were signif-

icantly downregulated in cells (Figure 1H, I, K, M) and

animals (Figure 8) that received combined treatment, indi-

cating that L-AA protects motor neurons from death

caused by decreased Bax expression through a Bax-depen-

dent mechanism. However, the Bax level remained higher

in the mice with late-onset SMA that received combined

treatment than in the WT mice (Figure 8). It is possible

that L-AA only functions to eliminate SV-induced Bax

levels but fails to reverse SMA pathogenesis. In addition,

we attributed the reduced Bax levels observed in the mice

that received combined treatment (Figure 8) to SMN

induction.

Future perspectives of combined treatment

Vanadate is a small compound that can pass through the

blood-brain barrier. It moves through the circulatory sys-

tem and enters the metabolic pathways [75]. The vanadate

derivatives bis(ethylmaltolato)oxovanadium(IV) and bis

(maltolato)oxovanadium(IV) are insulin-mimetic agents

currently being investigated in phase II clinical trials for

type II diabetes [35]. Those drugs may present novel

opportunities for SMA therapy in the near future.

Although some reports indicated that vanadate is not

toxic when administered orally [32], the effects of vana-

dium accumulation in organs and the toxic effects of long-

term administration of vanadate-based compounds need

to be carefully investigated. Also, the optimal timing of

combined treatment (that is, when to begin and the dura-

tion), in addition to the optimal time for additional

courses of drug administration, also need to be established.

Furthermore, L-AA appears to be an ideal chelating agent

to combine with vanadium compounds. However, other

chelating agents that are effective in combination with

vanadium compounds are being investigated in a diabetic

model. The ingestion of a tea decoction with vanadium

results in reduced vanadium accumulation in most tissues

[76], and when administered orally over 14 months, this

combination induces long-term glycemic stability without

obvious organ toxicity [77]. The development of improved

chelating agents with strong antioxidant properties that

are readily biodegradable, cost effective, and stable within

a wide pH range would boost the safety and efficacy of

vanadium for SMA treatment.

Conclusions
Our work demonstrates that early treatment with vana-

date combined with L-AA has considerable potential for

treating patients with late-onset type II/III SMA.

Furthermore, the development of a vanadate derivative

and the usage of vanadium compounds in combination

with chelating agents are other feasible strategies for

SMA therapy.

Additional material

Additional file 1: Type II spinal muscular atrophy (SMA) patient-

derived human dermal fibroblasts (HDFs) exhibit decreased survival

motor neuron (SMN) levels. (A) Western blot analysis of HDF samples

from a wild-type (WT) and SMA patient. b-Actin was used as an internal

control. (B) Quantitation of the western blot results in (A). At least three

independent experiments were carried out and the mean ± SEM was

calculated. ***P < 0.001, t test.

Additional file 2: L-Ascorbic acid (L-AA) reduces sodium vanadate

(SV)-induced SMN2-NSC34 cell death. Quantification of the viability of

SMN2-NSC34 cells (Figure 1E) treated with L-AA, SV or SV combined with

L-AA.

Additional file 3: L-Ascorbic acid (L-AA) reduces sodium vanadate

(SV)-induced wild-type human dermal fibroblasts (WT-HDF) death.

Quantification of the viability of WT-HDFs (Figure 1F) treated with L-AA,

SV or SV combined with L-AA.

Additional file 4: L-Ascorbic acid (L-AA) reduces sodium vanadate

(SV)-induced spinal muscular atrophy human dermal fibroblast

(SMA-HDF) death. Quantification of the viability of SMA-HDFs (Figure

1G) treated with L-AA, SV or SV combined with L-AA.

Additional file 5: Determination of the lethal dose of combined

treatment in type III spinal muscular atrophy (SMA) mice. The

survival rates of mice that received L-ascorbic acid (L-AA), sodium

vanadate (SV) alone and combined treatment were determined.

Additional file 6: Combined treatment does not improve motor

function at an early age in type III spinal muscular atrophy (SMA)

mice. (A-D) Motor functions were determined by surface righting assay

(A), tube test (B) and negative geotaxis assay (C and D). Each group of

mice showed no significant difference.
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