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Abstract

Super-resolution optical fluctuation imaging (SOFI) allows one to perform sub-diffraction

fluorescence microscopy of living cells. By analyzing the acquired image sequence with an

advanced correlation method, i.e. a high-order cross-cumulant analysis, super-resolution in

all three spatial dimensions can be achieved. Here we introduce a software tool for a simple

qualitative comparison of SOFI images under simulated conditions considering parameters

of the microscope setup and essential properties of the biological sample. This tool incorpo-

rates SOFI and STORM algorithms, displays and describes the SOFI image processing

steps in a tutorial-like fashion. Fast testing of various parameters simplifies the parameter

optimization prior to experimental work. The performance of the simulation tool is demon-

strated by comparing simulated results with experimentally acquired data.

Introduction

The emergence of sub-diffraction fluorescence microscopy [1–5] has opened the door for

novel insights in the life sciences by imaging features well beyond the diffraction limit [6].

Super-resolved single molecule localization methods such as photoactivation localization

microscopy (PALM) [7] and stochastic optical reconstruction microscopy (STORM) [8] rely

on stochastic emissions of photon bursts produced by independently blinking emitters. PALM

and STORM analyze a sequence of image frames showing sparse sub-sets of emitting labels

such that the emitters can be localized individually. The emitter localizations are then com-

bined into a spatially super-resolved image of the sample.

In contrast to this frame-by-frame localization, super-resolution optical fluctuation imaging

(SOFI) [9, 10] exploits the image sequence as a whole by using higher order statistics, i.e. higher
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order cross-cumulants to analyze the temporal fluctuations of blinking emitters for generating

super-resolved images. The resolution enhancement increases with the growing cumulant

order in all three spatial dimensions [11]. Balanced SOFI (bSOFI), an extension of SOFI, com-

bines the information content of different cumulant orders further and allows one to extract

physically meaningful parameters like density, brightness and blinking frequency of the

observed blinking emitters [12].

Sample preparation for super-resolution imaging and an optimized choice of image acquisi-

tion parameters is often a tedious process requiring experience and several trials before a suit-

able parameter set is found. This work attempts to shorten this task by providing a simulation

tool allowing a qualitative assessment of SOFI under various conditions and to assist the user

to better understand the full chain of processing steps for SOFI. The simulator can be used for

optimizing various experimental parameters such as blinking rate, labeling density, as well as

system parameters of the microscope and camera prior the final imaging.

The SOFI principle

SOFI applies high order nonlinear statistics to exploit the temporal blinking sequence of fluo-

rescent emitters [9, 10]. More precisely, SOFI is based on calculating spatio-temporal cross-

cumulants to obtain a 3D super-resolved, background-free and noise-reduced image using a

conventional widefield microscope. As stated in the work initiated by J. Enderlein [9], the fluc-

tuating emitters should fulfill the following conditions:

1. The markers should switch between at least two optically distinguishable states, e.g. a dark

and a bright state.

2. Each emitter switches between the states repeatedly and independently in a stochastic

manner.

3. The point-spread image of each emitter has to extend over several camera pixels.

The image intensity of a randomly blinking emitter is spatio-temporally correlated with

itself but uncorrelated with neighboring signals. Images of stochastically blinking emitters are

recorded such that the PSF is spread over several camera pixels. As a consequence, the intensi-

ties recorded by each camera pixel over which the PSF spreads are likewise spatio-temporally

correlated.

Fig 1 displays the general SOFI principle. By acquiring a stack of images, a time trace for

each pixel is obtained. These pixel time traces contain all intensity contributions of each sto-

chastically blinking emitter.

Iðr; tÞ ¼
X

M

k¼1

�kUðr� rkÞskðtÞ þ bðrÞ ð1Þ

where I(r, t) denotes the intensity time trace at position r, �k the brightness, rk the position and

sk(t) normalized temporal fluctuations of the kth-emitter. U(r) is the PSF and b represents a sta-

tionary background. For each pixel, the nth order cumulant is calculated for a better discrimina-

tion of emitters inside the PSF volume. Cumulants provide a correlative measure exhibiting the

fundamental additivity property stating that the cumulant of the sum is the sum of cumulants,

i.e. the cumulant analysis disentangles the emission patterns of closely spaced emitters [13]. By
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applying the nth order cumulant to the Eq (1), we obtain

knfIðr; tÞgðtÞ ¼ kn

X

M

k¼1

�kUðr� rkÞskðtÞ þ bðrÞ
( )

ðtÞ

¼
X

M

k¼1

knf�kUðr� rkÞskðtÞgðtÞ þ knfbðrÞgðtÞ

¼
X

M

k¼1

�
n
kU

nðr� rkÞknfskðtÞgðtÞ:

ð2Þ

For an nth order cumulant, the PSF is raised to the nth power. In consequence, the spatial reso-

lution is improved by a factor of
ffiffiffi

n
p

[9]. Therefore, increasing the cumulant order yields an

image with an enhanced spatial resolution. Since a multiplication in the spatial domain corre-

sponds to a convolution in the spatial frequency domain, the cut-off frequency ofUn(r) is in prin-

ciple n-times higher than that ofU(r). Consequently, by applying deconvolution and a

subsequent rescaling, the cumulant image exhibits up to an n-fold resolution improvement [10].

An nth order cumulant does not contain lower order correlation contributions which would

hamper the resolution enhancement [9]. As an additional characteristic of cumulants, any

non-fluctuating background is strongly suppressed. Additionally, SOFI processing, which relies

on cross-cumulants, reduces uncorrelated noise [9, 10].

Materials and Methods

Sample preparation

Prior to transfection, HeLa [14] cells (American Type Culture Collection, ATCC CCL2) were

incubated at 37°C with 5% CO2 using Minimum Essential Medium with Earles salts, L-gluta-

mine, sodium bicarbonate complemented with 10% fetal bovine serum, 1× penicilin-strepto-

mycin, 1× GlutaMAX, 1× MEM Non-Essential Amino Acids Solution (LifeTechnologies

products). 4-well Nunc Lab-Tek II Chambered Coverglass (Thermo Fisher Scientific) was used

as a chamber for the HeLa cells. Live HeLa cells were transfected with a pMD-Vim-Dreiklang

plasmid using FuGENE 6 transfection reagent (Promega) and images were acquired at room

temperature.

Microscope setup

The microscope setup comprised a 60× water-immersion objective with a numerical aperture

of 1.2 (UPLSAPO 60XW, Olympus), a green DPSS laser (MLL-FN-532, 800mW, Roithner

Lasertechnik) for excitation and a 405nm diode laser (iBeam smart, 405 120mW, Toptica) for

reactivation and tuning the blinking rate. 3D multiplane imaging was performed with a cus-

tom-built microscope setup presented in [11]. We used three 50:50 beam splitters (BS013,

Thorlabs) and two sCMOS cameras (ORCA Flash 4.0, Hamamatsu). For 2D imaging, we used

Fig 1. The SOFI principle in a one dimensional example. (a) 1D profile is taken from the input image sequence of two
blinking emitters. (b) Corresponding 1D intensity time traces. (c) 2nd order cross-cumulants calculated from the intensity time
traces for all time lags. In practice, mainly the zero-time lag (τ = 0) is used. Using cross-cumulants, the interleaving pixels are
also calculated. Note that the 2nd order cross-cumulant is equivalent to cross-correlation. (d) The widefield image (the
temporal average of intensity time traces). (e) The 2nd order cross-cumulants for τ = 0. (f) The resulting 2D SOFI images up to
the 4th cumulant order after flattening and linearization.

doi:10.1371/journal.pone.0161602.g001
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an additional 365nm illumination from a LED to tune the switching kinetics of the fluorescent

protein Dreiklang [15] and an EMCCD camera (Andor iXon DU 897).

Results

The SOFI simulation tool

We developed an simulation tool equipped with a graphical user interface (GUI). The micro-

scope settings and the fluorescent sample can be investigated prior the experimental work. For

more details about the GUI in Fig 2, please refer to the S1 Appendix. The software written in

MATLAB is freely available together with a user manual at the website [16].

Fig 2. Screenshot of the main menu of the SOFI simulation tool. The user can specify the fluorophore distribution, various parameters of the
fluorophores, camera and optics. For more details, see S1 Appendix.

doi:10.1371/journal.pone.0161602.g002
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Simulated data sets

The simulation starts by generating randomly placed emitters given by user-defined parame-

ters such as the spatial density and spatial distributions. For each emitter, the blinking behav-

iour is modelled as a time-continuous Markovian process with an average blinking rate of

k ¼ 1

tonþtoff
. For the experiments, we further describe the blinking rate by the on-time ratio

defined as

ron ¼
ton

toff
ð3Þ

The contribution v(x, y) of each fluorophore is given as [17]

vðx; yjx̂; ŷ; ŝxyÞ ¼ IxIy ð4Þ

Ix ¼ 1

2
erf

x � x̂ þ 1

2
ffiffiffi

2
p

ŝxy

 !

� 1

2
erf

x � x̂ � 1

2
ffiffiffi

2
p

ŝxy

 !

Iy ¼ 1

2
erf

y � ŷ þ 1

2
ffiffiffi

2
p

ŝxy

 !

� 1

2
erf

y � ŷ � 1

2
ffiffiffi

2
p

ŝxy

 !

where ðx̂; ŷÞ describe the position related to the discrete pixel grid, i.e. within a circle of radius

3ŝxy. The PSF is assumed to be a symmetric 2D Gaussian with a standard deviation ŝxy deter-

mined by user-defined parameters (numerical aperture, camera pixel size and wavelength).

The time varying brightness is generated for each blinking fluorophore. The signal per frame is

obtained by summing contributions of all fluorophores at that time point. This procedure is

performed frame by frame for simulating an acquired image stack. The simulation allows to

add a background. Each pixel intensity is subjected to an additive Poissonian noise contribu-

tion. The light intensity per pixel is converted to an electric charge according to the quantum

efficiency and gain of the camera setting. This electrical charge is modelled by a Gamma distri-

bution Γ (k, g). Its shape k is given by the number of photons registered by each camera pixel

and g is the camera gain. Finally, Gaussian noise with a standard deviation related to dark

noise is added.

The program also includes a parameter which sets the characteristic time during which the

fluorophore stays emissive before bleaching (the average bleaching time). The simulation mod-

els overall bleaching composed of switching fatigue and classical bleaching via excited states.

Under constant illumination, as typically applied in SOFI, photo-switching and fluorescence

excitation are proportional, such that our model describes the photo-bleaching satisfactorily

well. The average bleaching time can be estimated from an experiment by an exponential fit to

the plotted average fluorescence per frame. In contrast to the simulation, an initial transient

can be present in a measurement until the fluorophores reached the dynamic switching equilib-

rium. The average fluorescence should then fade approximately exponentially towards an even-

tual background value.

In the simulation, all emitters exhibit the same on-state lifetime τon and off-state lifetime

τoff. However in practice, the blinking statistics may spatially vary across the biological sample

in a sample dependent yet uncontrollable manner.

Implemented algorithms

The simulation tool incorporates SOFI and bSOFI algorithms [12]. Fig 3 shows the principle of

the calculation of spatio-temporal cross-cumulants. By using spatial cross-cumulants, virtual
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PLOS ONE | DOI:10.1371/journal.pone.0161602 September 1, 2016 6 / 13



pixels can be calculated in between the physical camera pixels leading to an image with a finer

sampling grid [10]. A subsequent flattening operation corrects for differences in brightness

between the physical pixels and virtual pixels of raw cumulants. The cumulant analysis leads to

a nonlinear response to the brightness of fluorophores. The bSOFI algorithm introduces a line-

arization step for rescaling and linearizing the brightness response.

The simulation tool also incorporates a basic STORM algorithm [18] consisting of segmen-

tation of each frame and subsequent localization of single molecules using Gaussian fitting

methods. The image segments of a frame are generated by first applying a Laplacian of a Gauss-

ian filter in order to reduce noise and to enhance the single emitter pattern (including a back-

ground subtraction). Once the image is segmented, a fitting procedure is performed on the raw

data. An unweighted least-squares optimization based on the Levenberg-Marquardt algorithm

estimates the amplitude, position, width, and background signal for each molecule. The initial

position used to initialize Gaussian fit is determined by estimating the center of gravity of each

image segment. Finally, estimates of width and amplitude deviating significantly from their

Fig 3. SOFI algorithm, cross-cumulant calculation. The nth order cross-cumulant κn of a pixel δ is calculated as a weighted sum over all
partitions of a setG of n pixels. The position of pixel δ is given by the geometrical mean of the n pixels withinG. By using different sets of n pixels,
the nth order cross-cumulant of an arbitrary large pixel grid can be calculated. Formulas are shown for any n and sketches for n = 4.

doi:10.1371/journal.pone.0161602.g003
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expected values are discarded and a super-resolved STORM image is generated. The simulation

tool also provides FALCON [19], an algorithm for STORM which combines a sparsity-pro-

moting formulation with a Taylor approximation of the PSF for high-density imaging.

Simulation examples

We simulated various specific situations: standard conditions (i.e. conditions under which

STORM is able to resolve individual emitters), short acquisition time, short off-state lifetime of

the emitters, low signal-to-noise ratio (SNR), and high-labelling density. Reversibly photo-

switchable fluorescent proteins have on-off duty cycles in the order of 0.1 in contrast to organic

dyes with on-off duty cycles much smaller (≲ 0.01) [20]. Fig 4 shows the results for widefield,

bSOFI, and FALCON STORM. For these simulations, we assumed fluorescent proteins and we

set the on-time ratio to 0.1. Regarding the various conditions, bSOFI gave reliable results and

seems to be well suited for photoswitchable proteins. The dark-state lifetime does not need to

exceed the on-state lifetime and only needs to be on the order of the frame exposure time,

which is in agreement with previous findings [18].

Fig 5 shows simulated structures such as filaments labelled with a relatively high density of

emitters of 1000/μm2. In the case of a sufficiently long off-state life time of the emitters (on-

time ratio ≲ 0.01), strong signals, and high number of frames (�10000), STORM provides a

high resolution enhancement, whereas SOFI can be useful even if these conditions are not met.

The simulations reveal a good performance for bSOFI even in the case of a short off state life-

time of the blinking molecules and a relatively short acquisition time.

The deconvolution step in bSOFI helps to exploit the maximum potential resolution

improvement given by the order of the cumulant analysis, but it comes at the price of introduc-

ing common deconvolution artifacts. Deconvolution may cause ringing artifacts due to conver-

sion of a discontinuous signal into Fourier space. These ringing artifacts appear mostly along

sharp edges or points. For sufficiently high signals (SNR approx. 20dB), the artifacts have very

low values and can be neglected. With increasing order of the SOFI analysis, resolution

improvement also increases, but the SNR of super-resolved images decreases. This effect limits

the highest resolution achievable in practice. The short acquisition case represents unfavorable

conditions for the 7th order bSOFI shown in Fig 4. In that case, it is better to use a lower order

SOFI analysis. Fig 6 shows bSOFI images of different orders. For lower order bSOFI images,

the ringing artifacts are less pronounced and the two points in the top right corner are properly

separated. Both STORM and SOFI have a range of optimal conditions. Our simulation tool can

be used to quickly check various conditions and the effect on the output super-resolved images.

Experimentally acquired images of live HeLa cells compared to
simulations

We performed an experiment comparing simulated data to experimentally acquired data.

Parameters of the experimentally acquired images were measured and used to set the simula-

tion parameters in the GUI. The measured parameters (shown in Fig 7) were the peak signal

(Ipeak), the peak signal to background ratio (S/B), molecular on-time ratio Eq (3) of Dreiklang

fluorescent protein, and molecular density.

Fig 7a, 7b and 7c shows experimentally acquired images of Dreiklang-labelled vimentin net-

works in HeLa cells. By decreasing the 405nm illumination intensity, and increasing the

365nm intensity at the same time, the on-time ratios of Dreiklang can be tuned. The estimated

on-time ratios in the acquired image sequences were 0.02, 0.05, and 0.2 accordingly. On-time

ratios of Dreiklang were measured in live cells using a procedure described in [11]. An average

image from each acquired image stack was calculated and thresholded by an iterative threshold

SOFI Simulation Tool

PLOS ONE | DOI:10.1371/journal.pone.0161602 September 1, 2016 8 / 13



selection method [21] in order to generate signal and background masks. The estimated SNRs

and signal-to-background ratios (S/Bs) were measured from the average images according to

the procedure described in [22] and used as simulation parameters. Under normal conditions

in cells, we assume a few hundreds to thousand Dreiklang per micrometer of fiber length. For

this simulation example, we set the density to 600 fluorescent proteins per micrometer. Num-

ber of frames of the simulated image sequence was set to 1000. Fig 7a, 7b, 7d and 7e shows two

situations which lead to high quality images, and Fig 7c and 7f shows a situation which resulted

in low quality images.

Fig 4. Simulation examples.Widefield, SOFI and FALCON STORM images with the generated emitter distributions for different imaging conditions.
Standard conditions represent a scenario in which the simulator displays comparable performance for FALCON and SOFI in terms of resolution
enhancement. All following experimental scenarios deviate from the standard conditions as follows: Short off-state lifetime, the sample is composed of
emitters with fast off-switching kinetics; Short acquisition time, the super-resolution images are generated from an image sequence of only 600 frames; low
SNR, the number of photons emitted per switching event per emitter is low which results in low signal-to-noise ratios (8 dB). Emitters shown in the left
column are enlarged for the visualization purposes. All parameters of the standard conditions can be found in the S1 Appendix and on our project website
[16].

doi:10.1371/journal.pone.0161602.g004
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Fig 5. High-labelling density simulations.Widefield, SOFI and FALCON STORM images of the simulated structures labelled with a relatively high
density of emitters (1000/μm2) Standard conditions represent a scenario well suited for STORM. in the case of Short acquisition time, the super-resolution
images are generated from an image sequence of only 1000 frames. Short acquisition time and higher on-time ratio represent a situation with very high
density of activated emitters per frame which makes it challenging for STORM algorithms. Emitters shown in the left column are enlarged for the
visualization purposes. All parameters of the standard conditions can be found in the S1 Appendix and on our project website [16].

doi:10.1371/journal.pone.0161602.g005

Fig 6. Balanced SOFI (bSOFI) images of different orders for the test case with only 600 input frames.With increasing order of the SOFI analysis,
resolution improvement also increases, but higher orders generally require more input frames in order to avoid apparent artifacts.

doi:10.1371/journal.pone.0161602.g006
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Conclusions

We developed a novel software for modeling the imaging procedure of super-resolution optical

fluctuation imaging. The software is equipped with a user friendly graphical interface which

allows the user to generate simulated image stacks and calculate SOFI and STORM super-reso-

lution images. The processing steps of SOFI are visualized and explained in a tutorial-like way.

We compared simulated results with experimentally acquired data of living HeLa cells express-

ing vimentin-Dreiklang. We demonstrated that the software is able to predict, through simula-

tion, the image quality. The software allows the user to quickly test numerous image

acquisition settings prior to experimental work. For more information about the software, see

S1 Appendix.

Supporting Information

S1 Appendix. User Manual. Documentation for installing and using the software.

(PDF)

Fig 7. Experimental data compared to simulations. (a)-(d) 2nd order bSOFI images computed from experimental data. (e)-(h) 2nd order bSOFI images
computed from simulated data. Table below the figure shows the parameters estimated from experimental data and used for the simulations. S/B and Ipeak
denote respectively the signal-to-background ratio and the intensity peak of the average images. Density for simulation was set to 600 fluorescent proteins
per micrometer.

doi:10.1371/journal.pone.0161602.g007
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S2 Appendix. Software package. Zip file which includes the software package. The software is

written in MATLAB, equipped with graphical user interface and freely available together with

a user manual also at [16].
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