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Abstract

Model-free deep reinforcement learning (RL) al-

gorithms have been demonstrated on a range of

challenging decision making and control tasks.

However, these methods typically suffer from two

major challenges: very high sample complexity

and brittle convergence properties, which necessi-

tate meticulous hyperparameter tuning. Both of

these challenges severely limit the applicability

of such methods to complex, real-world domains.

In this paper, we propose soft actor-critic, an off-

policy actor-critic deep RL algorithm based on the

maximum entropy reinforcement learning frame-

work. In this framework, the actor aims to maxi-

mize expected reward while also maximizing en-

tropy. That is, to succeed at the task while acting

as randomly as possible. Prior deep RL methods

based on this framework have been formulated

as Q-learning methods. By combining off-policy

updates with a stable stochastic actor-critic formu-

lation, our method achieves state-of-the-art per-

formance on a range of continuous control bench-

mark tasks, outperforming prior on-policy and

off-policy methods. Furthermore, we demonstrate

that, in contrast to other off-policy algorithms, our

approach is very stable, achieving very similar

performance across different random seeds.

1. Introduction

Model-free deep reinforcement learning (RL) algorithms

have been applied in a range of challenging domains, from

games (Mnih et al., 2013; Silver et al., 2016) to robotic

control (Schulman et al., 2015). The combination of RL

and high-capacity function approximators such as neural
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networks holds the promise of automating a wide range of

decision making and control tasks, but widespread adoption

of these methods in real-world domains has been hampered

by two major challenges. First, model-free deep RL meth-

ods are notoriously expensive in terms of their sample com-

plexity. Even relatively simple tasks can require millions of

steps of data collection, and complex behaviors with high-

dimensional observations might need substantially more.

Second, these methods are often brittle with respect to their

hyperparameters: learning rates, exploration constants, and

other settings must be set carefully for different problem

settings to achieve good results. Both of these challenges

severely limit the applicability of model-free deep RL to

real-world tasks.

One cause for the poor sample efficiency of deep RL meth-

ods is on-policy learning: some of the most commonly used

deep RL algorithms, such as TRPO (Schulman et al., 2015),

PPO (Schulman et al., 2017b) or A3C (Mnih et al., 2016),

require new samples to be collected for each gradient step.

This quickly becomes extravagantly expensive, as the num-

ber of gradient steps and samples per step needed to learn

an effective policy increases with task complexity. Off-

policy algorithms aim to reuse past experience. This is not

directly feasible with conventional policy gradient formula-

tions, but is relatively straightforward for Q-learning based

methods (Mnih et al., 2015). Unfortunately, the combina-

tion of off-policy learning and high-dimensional, nonlinear

function approximation with neural networks presents a ma-

jor challenge for stability and convergence (Bhatnagar et al.,

2009). This challenge is further exacerbated in continuous

state and action spaces, where a separate actor network is

often used to perform the maximization in Q-learning. A

commonly used algorithm in such settings, deep determinis-

tic policy gradient (DDPG) (Lillicrap et al., 2015), provides

for sample-efficient learning but is notoriously challenging

to use due to its extreme brittleness and hyperparameter

sensitivity (Duan et al., 2016; Henderson et al., 2017).

We explore how to design an efficient and stable model-

free deep RL algorithm for continuous state and action

spaces. To that end, we draw on the maximum entropy

framework, which augments the standard maximum reward
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reinforcement learning objective with an entropy maximiza-

tion term (Ziebart et al., 2008; Toussaint, 2009; Rawlik et al.,

2012; Fox et al., 2016; Haarnoja et al., 2017). Maximum en-

tropy reinforcement learning alters the RL objective, though

the original objective can be recovered using a tempera-

ture parameter (Haarnoja et al., 2017). More importantly,

the maximum entropy formulation provides a substantial

improvement in exploration and robustness: as discussed

by Ziebart (2010), maximum entropy policies are robust

in the face of model and estimation errors, and as demon-

strated by (Haarnoja et al., 2017), they improve exploration

by acquiring diverse behaviors. Prior work has proposed

model-free deep RL algorithms that perform on-policy learn-

ing with entropy maximization (O’Donoghue et al., 2016),

as well as off-policy methods based on soft Q-learning and

its variants (Schulman et al., 2017a; Nachum et al., 2017a;

Haarnoja et al., 2017). However, the on-policy variants suf-

fer from poor sample complexity for the reasons discussed

above, while the off-policy variants require complex approx-

imate inference procedures in continuous action spaces.

In this paper, we demonstrate that we can devise an off-

policy maximum entropy actor-critic algorithm, which we

call soft actor-critic (SAC), which provides for both sample-

efficient learning and stability. This algorithm extends read-

ily to very complex, high-dimensional tasks, such as the

Humanoid benchmark (Duan et al., 2016) with 21 action

dimensions, where off-policy methods such as DDPG typi-

cally struggle to obtain good results (Gu et al., 2016). SAC

also avoids the complexity and potential instability associ-

ated with approximate inference in prior off-policy maxi-

mum entropy algorithms based on soft Q-learning (Haarnoja

et al., 2017). We present a convergence proof for policy

iteration in the maximum entropy framework, and then in-

troduce a new algorithm based on an approximation to this

procedure that can be practically implemented with deep

neural networks, which we call soft actor-critic. We present

empirical results that show that soft actor-critic attains a

substantial improvement in both performance and sample

efficiency over both off-policy and on-policy prior methods.

We also compare to twin delayed deep deterministic (TD3)

policy gradient algorithm (Fujimoto et al., 2018), which is

a concurrent work that proposes a deterministic algorithm

that substantially improves on DDPG.

2. Related Work

Our soft actor-critic algorithm incorporates three key in-

gredients: an actor-critic architecture with separate policy

and value function networks, an off-policy formulation that

enables reuse of previously collected data for efficiency, and

entropy maximization to enable stability and exploration.

We review prior works that draw on some of these ideas in

this section. Actor-critic algorithms are typically derived

starting from policy iteration, which alternates between pol-

icy evaluation—computing the value function for a policy—

and policy improvement—using the value function to obtain

a better policy (Barto et al., 1983; Sutton & Barto, 1998). In

large-scale reinforcement learning problems, it is typically

impractical to run either of these steps to convergence, and

instead the value function and policy are optimized jointly.

In this case, the policy is referred to as the actor, and the

value function as the critic. Many actor-critic algorithms

build on the standard, on-policy policy gradient formulation

to update the actor (Peters & Schaal, 2008), and many of

them also consider the entropy of the policy, but instead of

maximizing the entropy, they use it as an regularizer (Schul-

man et al., 2017b; 2015; Mnih et al., 2016; Gruslys et al.,

2017). On-policy training tends to improve stability but

results in poor sample complexity.

There have been efforts to increase the sample efficiency

while retaining robustness by incorporating off-policy sam-

ples and by using higher order variance reduction tech-

niques (O’Donoghue et al., 2016; Gu et al., 2016). How-

ever, fully off-policy algorithms still attain better effi-

ciency. A particularly popular off-policy actor-critic method,

DDPG (Lillicrap et al., 2015), which is a deep variant of the

deterministic policy gradient (Silver et al., 2014) algorithm,

uses a Q-function estimator to enable off-policy learning,

and a deterministic actor that maximizes this Q-function.

As such, this method can be viewed both as a determinis-

tic actor-critic algorithm and an approximate Q-learning

algorithm. Unfortunately, the interplay between the deter-

ministic actor network and the Q-function typically makes

DDPG extremely difficult to stabilize and brittle to hyperpa-

rameter settings (Duan et al., 2016; Henderson et al., 2017).

As a consequence, it is difficult to extend DDPG to complex,

high-dimensional tasks, and on-policy policy gradient meth-

ods still tend to produce the best results in such settings (Gu

et al., 2016). Our method instead combines off-policy actor-

critic training with a stochastic actor, and further aims to

maximize the entropy of this actor with an entropy maxi-

mization objective. We find that this actually results in a

considerably more stable and scalable algorithm that, in

practice, exceeds both the efficiency and final performance

of DDPG. A similar method can be derived as a zero-step

special case of stochastic value gradients (SVG(0)) (Heess

et al., 2015). However, SVG(0) differs from our method in

that it optimizes the standard maximum expected return ob-

jective, and it does not make use of a separate value network,

which we found to make training more stable.

Maximum entropy reinforcement learning optimizes poli-

cies to maximize both the expected return and the ex-

pected entropy of the policy. This framework has been

used in many contexts, from inverse reinforcement learn-

ing (Ziebart et al., 2008) to optimal control (Todorov, 2008;

Toussaint, 2009; Rawlik et al., 2012). In guided policy
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search (Levine & Koltun, 2013; Levine et al., 2016), the

maximum entropy distribution is used to guide policy learn-

ing towards high-reward regions. More recently, several

papers have noted the connection between Q-learning and

policy gradient methods in the framework of maximum en-

tropy learning (O’Donoghue et al., 2016; Haarnoja et al.,

2017; Nachum et al., 2017a; Schulman et al., 2017a). While

most of the prior model-free works assume a discrete action

space, Nachum et al. (2017b) approximate the maximum en-

tropy distribution with a Gaussian and Haarnoja et al. (2017)

with a sampling network trained to draw samples from the

optimal policy. Although the soft Q-learning algorithm pro-

posed by Haarnoja et al. (2017) has a value function and

actor network, it is not a true actor-critic algorithm: the

Q-function is estimating the optimal Q-function, and the

actor does not directly affect the Q-function except through

the data distribution. Hence, Haarnoja et al. (2017) moti-

vates the actor network as an approximate sampler, rather

than the actor in an actor-critic algorithm. Crucially, the

convergence of this method hinges on how well this sampler

approximates the true posterior. In contrast, we prove that

our method converges to the optimal policy from a given

policy class, regardless of the policy parameterization. Fur-

thermore, these prior maximum entropy methods generally

do not exceed the performance of state-of-the-art off-policy

algorithms, such as DDPG, when learning from scratch,

though they may have other benefits, such as improved ex-

ploration and ease of fine-tuning. In our experiments, we

demonstrate that our soft actor-critic algorithm does in fact

exceed the performance of prior state-of-the-art off-policy

deep RL methods by a wide margin.

3. Preliminaries

We first introduce notation and summarize the standard and

maximum entropy reinforcement learning frameworks.

3.1. Notation

We address policy learning in continuous action spaces.

We consider an infinite-horizon Markov decision process

(MDP), defined by the tuple (S,A, p, r), where the state

space S and the action space A are continuous, and the

unknown state transition probability p : S × S × A →
[0, ∞) represents the probability density of the next state

st+1 ∈ S given the current state st ∈ S and action at ∈ A.

The environment emits a bounded reward r : S × A →
[rmin, rmax] on each transition. We will use ρπ(st) and

ρπ(st,at) to denote the state and state-action marginals of

the trajectory distribution induced by a policy π(at|st).

3.2. Maximum Entropy Reinforcement Learning

Standard RL maximizes the expected sum of rewards
∑

t E(st,at)∼ρπ [r(st,at)]. We will consider a more gen-

eral maximum entropy objective (see e.g. Ziebart (2010)),

which favors stochastic policies by augmenting the objective

with the expected entropy of the policy over ρπ(st):

J(π) =

T
∑

t=0

E(st,at)∼ρπ [r(st,at) + αH(π( · |st))] . (1)

The temperature parameter α determines the relative im-

portance of the entropy term against the reward, and thus

controls the stochasticity of the optimal policy. The maxi-

mum entropy objective differs from the standard maximum

expected reward objective used in conventional reinforce-

ment learning, though the conventional objective can be

recovered in the limit as α→ 0. For the rest of this paper,

we will omit writing the temperature explicitly, as it can

always be subsumed into the reward by scaling it by α−1.

This objective has a number of conceptual and practical

advantages. First, the policy is incentivized to explore more

widely, while giving up on clearly unpromising avenues.

Second, the policy can capture multiple modes of near-

optimal behavior. In problem settings where multiple ac-

tions seem equally attractive, the policy will commit equal

probability mass to those actions. Lastly, prior work has ob-

served improved exploration with this objective (Haarnoja

et al., 2017; Schulman et al., 2017a), and in our experi-

ments, we observe that it considerably improves learning

speed over state-of-art methods that optimize the conven-

tional RL objective function. We can extend the objective to

infinite horizon problems by introducing a discount factor γ

to ensure that the sum of expected rewards and entropies is

finite. Writing down the maximum entropy objective for the

infinite horizon discounted case is more involved (Thomas,

2014) and is deferred to Appendix A.

Prior methods have proposed directly solving for the op-

timal Q-function, from which the optimal policy can be

recovered (Ziebart et al., 2008; Fox et al., 2016; Haarnoja

et al., 2017). We will discuss how we can devise a soft

actor-critic algorithm through a policy iteration formulation,

where we instead evaluate the Q-function of the current

policy and update the policy through an off-policy gradient

update. Though such algorithms have previously been pro-

posed for conventional reinforcement learning, our method

is, to our knowledge, the first off-policy actor-critic method

in the maximum entropy reinforcement learning framework.

4. From Soft Policy Iteration to Soft

Actor-Critic

Our off-policy soft actor-critic algorithm can be derived

starting from a maximum entropy variant of the policy it-

eration method. We will first present this derivation, verify

that the corresponding algorithm converges to the optimal

policy from its density class, and then present a practical
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deep reinforcement learning algorithm based on this theory.

4.1. Derivation of Soft Policy Iteration

We will begin by deriving soft policy iteration, a general al-

gorithm for learning optimal maximum entropy policies that

alternates between policy evaluation and policy improve-

ment in the maximum entropy framework. Our derivation

is based on a tabular setting, to enable theoretical analysis

and convergence guarantees, and we extend this method

into the general continuous setting in the next section. We

will show that soft policy iteration converges to the optimal

policy within a set of policies which might correspond, for

instance, to a set of parameterized densities.

In the policy evaluation step of soft policy iteration, we

wish to compute the value of a policy π according to the

maximum entropy objective in Equation 1. For a fixed

policy, the soft Q-value can be computed iteratively, starting

from any function Q : S ×A → R and repeatedly applying

a modified Bellman backup operator T π given by

T πQ(st,at) , r(st,at) + γ Est+1∼p [V (st+1)] , (2)

where

V (st) = Eat∼π [Q(st,at)− log π(at|st)] (3)

is the soft state value function. We can obtain the soft value

function for any policy π by repeatedly applying T π as

formalized below.

Lemma 1 (Soft Policy Evaluation). Consider the soft Bell-

man backup operator T π in Equation 2 and a mapping

Q0 : S×A → R with |A| <∞, and defineQk+1 = T πQk.

Then the sequence Qk will converge to the soft Q-value of

π as k →∞.

Proof. See Appendix B.1.

In the policy improvement step, we update the policy to-

wards the exponential of the new Q-function. This particular

choice of update can be guaranteed to result in an improved

policy in terms of its soft value. Since in practice we prefer

policies that are tractable, we will additionally restrict the

policy to some set of policies Π, which can correspond, for

example, to a parameterized family of distributions such as

Gaussians. To account for the constraint that π ∈ Π, we

project the improved policy into the desired set of policies.

While in principle we could choose any projection, it will

turn out to be convenient to use the information projection

defined in terms of the Kullback-Leibler divergence. In the

other words, in the policy improvement step, for each state,

we update the policy according to

πnew = arg min
π′∈Π

DKL

(

π′( · |st)

∥

∥

∥

∥

exp (Qπold(st, · ))

Zπold(st)

)

.

(4)

The partition function Zπold(st) normalizes the distribution,

and while it is intractable in general, it does not contribute to

the gradient with respect to the new policy and can thus be

ignored, as noted in the next section. For this projection, we

can show that the new, projected policy has a higher value

than the old policy with respect to the objective in Equa-

tion 1. We formalize this result in Lemma 2.

Lemma 2 (Soft Policy Improvement). Let πold ∈ Π and let

πnew be the optimizer of the minimization problem defined

in Equation 4. Then Qπnew(st,at) ≥ Qπold(st,at) for all

(st,at) ∈ S ×A with |A| <∞.

Proof. See Appendix B.2.

The full soft policy iteration algorithm alternates between

the soft policy evaluation and the soft policy improvement

steps, and it will provably converge to the optimal maxi-

mum entropy policy among the policies in Π (Theorem 1).

Although this algorithm will provably find the optimal solu-

tion, we can perform it in its exact form only in the tabular

case. Therefore, we will next approximate the algorithm for

continuous domains, where we need to rely on a function

approximator to represent the Q-values, and running the

two steps until convergence would be computationally too

expensive. The approximation gives rise to a new practical

algorithm, called soft actor-critic.

Theorem 1 (Soft Policy Iteration). Repeated application of

soft policy evaluation and soft policy improvement from any

π ∈ Π converges to a policy π∗ such that Qπ
∗

(st,at) ≥
Qπ(st,at) for all π ∈ Π and (st,at) ∈ S × A, assuming

|A| <∞.

Proof. See Appendix B.3.

4.2. Soft Actor-Critic

As discussed above, large continuous domains require us to

derive a practical approximation to soft policy iteration. To

that end, we will use function approximators for both the

Q-function and the policy, and instead of running evaluation

and improvement to convergence, alternate between opti-

mizing both networks with stochastic gradient descent. We

will consider a parameterized state value function Vψ(st),
soft Q-function Qθ(st,at), and a tractable policy πφ(at|st).
The parameters of these networks are ψ, θ, and φ. For

example, the value functions can be modeled as expressive

neural networks, and the policy as a Gaussian with mean

and covariance given by neural networks. We will next

derive update rules for these parameter vectors.

The state value function approximates the soft value. There

is no need in principle to include a separate function approx-

imator for the state value, since it is related to the Q-function

and policy according to Equation 3. This quantity can be
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estimated from a single action sample from the current pol-

icy without introducing a bias, but in practice, including a

separate function approximator for the soft value can stabi-

lize training and is convenient to train simultaneously with

the other networks. The soft value function is trained to

minimize the squared residual error

JV (ψ) = Est∼D

[

1
2

(

Vψ(st)− Eat∼πφ
[Qθ(st,at)− log πφ(at|st)]

)2
]

(5)

where D is the distribution of previously sampled states and

actions, or a replay buffer. The gradient of Equation 5 can

be estimated with an unbiased estimator

∇̂ψJV (ψ) = ∇ψVψ(st) (Vψ(st)−Qθ(st,at) + log πφ(at|st)) ,

(6)

where the actions are sampled according to the current pol-

icy, instead of the replay buffer. The soft Q-function param-

eters can be trained to minimize the soft Bellman residual

JQ(θ) = E(st,at)∼D

[

1

2

(

Qθ(st,at)− Q̂(st,at)
)2

]

,

(7)

with

Q̂(st,at) = r(st,at) + γ Est+1∼p

[

Vψ̄(st+1)
]

, (8)

which again can be optimized with stochastic gradients

∇̂θJQ(θ) = ∇θQθ(at, st)
(

Qθ(st,at)− r(st,at)− γVψ̄(st+1)
)

.

(9)

The update makes use of a target value network Vψ̄ , where

ψ̄ can be an exponentially moving average of the value

network weights, which has been shown to stabilize train-

ing (Mnih et al., 2015). Alternatively, we can update the

target weights to match the current value function weights

periodically (see Appendix E). Finally, the policy param-

eters can be learned by directly minimizing the expected

KL-divergence in Equation 4:

Jπ(φ) = Est∼D

[

DKL

(

πφ( · |st)

∥

∥

∥

∥

exp (Qθ(st, · ))

Zθ(st)

)]

.

(10)

There are several options for minimizing Jπ. A typical

solution for policy gradient methods is to use the likelihood

ratio gradient estimator (Williams, 1992), which does not

require backpropagating the gradient through the policy and

the target density networks. However, in our case, the target

density is the Q-function, which is represented by a neural

network an can be differentiated, and it is thus convenient

to apply the reparameterization trick instead, resulting in a

lower variance estimator. To that end, we reparameterize

the policy using a neural network transformation

at = fφ(ǫt; st), (11)

Algorithm 1 Soft Actor-Critic

Initialize parameter vectors ψ, ψ̄, θ, φ.

for each iteration do

for each environment step do

at ∼ πφ(at|st)
st+1 ∼ p(st+1|st,at)
D ← D ∪ {(st,at, r(st,at), st+1)}

end for

for each gradient step do

ψ ← ψ − λV ∇̂ψJV (ψ)

θi ← θi − λQ∇̂θiJQ(θi) for i ∈ {1, 2}

φ← φ− λπ∇̂φJπ(φ)
ψ̄ ← τψ + (1− τ)ψ̄

end for

end for

where ǫt is an input noise vector, sampled from some fixed

distribution, such as a spherical Gaussian. We can now

rewrite the objective in Equation 10 as

Jπ(φ) = Est∼D,ǫt∼N [log πφ(fφ(ǫt; st)|st)−Qθ(st, fφ(ǫt; st))] ,

(12)

where πφ is defined implicitly in terms of fφ, and we have

noted that the partition function is independent of φ and can

thus be omitted. We can approximate the gradient of Equa-

tion 12 with

∇̂φJπ(φ) = ∇φ log πφ(at|st)

+ (∇at
log πφ(at|st)−∇at

Q(st,at))∇φfφ(ǫt; st),
(13)

where at is evaluated at fφ(ǫt; st). This unbiased gradient

estimator extends the DDPG style policy gradients (Lillicrap

et al., 2015) to any tractable stochastic policy.

Our algorithm also makes use of two Q-functions to mitigate

positive bias in the policy improvement step that is known to

degrade performance of value based methods (Hasselt, 2010;

Fujimoto et al., 2018). In particular, we parameterize two Q-

functions, with parameters θi, and train them independently

to optimize JQ(θi). We then use the minimum of the the

Q-functions for the value gradient in Equation 6 and pol-

icy gradient in Equation 13, as proposed by Fujimoto et al.

(2018). Although our algorithm can learn challenging tasks,

including a 21-dimensional Humanoid, using just a single

Q-function, we found two Q-functions significantly speed

up training, especially on harder tasks. The complete algo-

rithm is described in Algorithm 1. The method alternates

between collecting experience from the environment with

the current policy and updating the function approximators

using the stochastic gradients from batches sampled from a

replay buffer. In practice, we take a single environment step

followed by one or several gradient steps (see Appendix D



Soft Actor-Critic

0.0 0.2 0.4 0.6 0.8 1.0
million steps

0

1000

2000

3000

4000
av
er
ag
e
re
tu
rn

Hopper-v1

(a) Hopper-v1

0.0 0.2 0.4 0.6 0.8 1.0
million steps

0

1000

2000

3000

4000

5000

6000

av
er
ag
e
re
tu
rn

Walker2d-v1

(b) Walker2d-v1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
million steps

0

5000

10000

15000

av
er
ag
e
re
tu
rn

HalfCheetah-v1

(c) HalfCheetah-v1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
million steps

0

2000

4000

6000

av
er
ag
e
re
tu
rn

Ant-v1

(d) Ant-v1

0 2 4 6 8 10
million steps

0

2000

4000

6000

8000

av
er
ag
e
re
tu
rn

Humanoid-v1

(e) Humanoid-v1

0 2 4 6 8 10
million steps

0

2000

4000

6000

av
er
ag
e
re
tu
rn

Humanoid (rllab)

SAC

DDPG

PPO

SQL

TD3 (concurrent)

(f) Humanoid (rllab)

Figure 1. Training curves on continuous control benchmarks. Soft actor-critic (yellow) performs consistently across all tasks and

outperforming both on-policy and off-policy methods in the most challenging tasks.

for all hyperparameter). Using off-policy data from a replay

buffer is feasible because both value estimators and the pol-

icy can be trained entirely on off-policy data. The algorithm

is agnostic to the parameterization of the policy, as long as

it can be evaluated for any arbitrary state-action tuple.

5. Experiments

The goal of our experimental evaluation is to understand

how the sample complexity and stability of our method

compares with prior off-policy and on-policy deep rein-

forcement learning algorithms. We compare our method

to prior techniques on a range of challenging continuous

control tasks from the OpenAI gym benchmark suite (Brock-

man et al., 2016) and also on the rllab implementation of

the Humanoid task (Duan et al., 2016). Although the easier

tasks can be solved by a wide range of different algorithms,

the more complex benchmarks, such as the 21-dimensional

Humanoid (rllab), are exceptionally difficult to solve with

off-policy algorithms (Duan et al., 2016). The stability of

the algorithm also plays a large role in performance: eas-

ier tasks make it more practical to tune hyperparameters

to achieve good results, while the already narrow basins of

effective hyperparameters become prohibitively small for

the more sensitive algorithms on the hardest benchmarks,

leading to poor performance (Gu et al., 2016).

We compare our method to deep deterministic policy gra-

dient (DDPG) (Lillicrap et al., 2015), an algorithm that

is regarded as one of the more efficient off-policy deep

RL methods (Duan et al., 2016); proximal policy optimiza-

tion (PPO) (Schulman et al., 2017b), a stable and effective

on-policy policy gradient algorithm; and soft Q-learning

(SQL) (Haarnoja et al., 2017), a recent off-policy algorithm

for learning maximum entropy policies. Our SQL imple-

mentation also includes two Q-functions, which we found

to improve its performance in most environments. We addi-

tionally compare to twin delayed deep deterministic policy

gradient algorithm (TD3) (Fujimoto et al., 2018), using

the author-provided implementation. This is an extension

to DDPG, proposed concurrently to our method, that first

applied the double Q-learning trick to continuous control

along with other improvements. We have included trust re-

gion path consistency learning (Trust-PCL) (Nachum et al.,

2017b) and two other variants of SAC in Appendix E. We

turned off the exploration noise for evaluation for DDPG

and PPO. For maximum entropy algorithms, which do not

explicitly inject exploration noise, we either evaluated with

the exploration noise (SQL) or use the mean action (SAC).

The source code of our SAC implementation1 and videos2

are available online.

1github.com/haarnoja/sac
2sites.google.com/view/soft-actor-critic

http://github.com/haarnoja/sac
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5.1. Comparative Evaluation

Figure 1 shows the total average return of evaluation rollouts

during training for DDPG, PPO, and TD3. We train five

different instances of each algorithm with different random

seeds, with each performing one evaluation rollout every

1000 environment steps. The solid curves corresponds to the

mean and the shaded region to the minimum and maximum

returns over the five trials.

The results show that, overall, SAC performs comparably

to the baseline methods on the easier tasks and outperforms

them on the harder tasks with a large margin, both in terms

of learning speed and the final performance. For example,

DDPG fails to make any progress on Ant-v1, Humanoid-

v1, and Humanoid (rllab), a result that is corroborated by

prior work (Gu et al., 2016; Duan et al., 2016). SAC also

learns considerably faster than PPO as a consequence of

the large batch sizes PPO needs to learn stably on more

high-dimensional and complex tasks. Another maximum

entropy RL algorithm, SQL, can also learn all tasks, but it

is slower than SAC and has worse asymptotic performance.

The quantitative results attained by SAC in our experiments

also compare very favorably to results reported by other

methods in prior work (Duan et al., 2016; Gu et al., 2016;

Henderson et al., 2017), indicating that both the sample

efficiency and final performance of SAC on these benchmark

tasks exceeds the state of the art. All hyperparameters used

in this experiment for SAC are listed in Appendix D.

5.2. Ablation Study

The results in the previous section suggest that algorithms

based on the maximum entropy principle can outperform

conventional RL methods on challenging tasks such as the

humanoid tasks. In this section, we further examine which

particular components of SAC are important for good perfor-

mance. We also examine how sensitive SAC is to some of

the most important hyperparameters, namely reward scaling

and target value update smoothing constant.

Stochastic vs. deterministic policy. Soft actor-critic

learns stochastic policies via a maximum entropy objec-

tive. The entropy appears in both the policy and value

function. In the policy, it prevents premature convergence of

the policy variance (Equation 10). In the value function, it

encourages exploration by increasing the value of regions of

state space that lead to high-entropy behavior (Equation 5).

To compare how the stochasticity of the policy and entropy

maximization affects the performance, we compare to a

deterministic variant of SAC that does not maximize the en-

tropy and that closely resembles DDPG, with the exception

of having two Q-functions, using hard target updates, not

having a separate target actor, and using fixed rather than

learned exploration noise. Figure 2 compares five individual

runs with both variants, initialized with different random
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Figure 2. Comparison of SAC (blue) and a deterministic variant of

SAC (red) in terms of the stability of individual random seeds on

the Humanoid (rllab) benchmark. The comparison indicates that

stochasticity can stabilize training as the variability between the

seeds becomes much higher with a deterministic policy.

seeds. Soft actor-critic performs much more consistently,

while the deterministic variant exhibits very high variability

across seeds, indicating substantially worse stability. As

evident from the figure, learning a stochastic policy with

entropy maximization can drastically stabilize training. This

becomes especially important with harder tasks, where tun-

ing hyperparameters is challenging. In this comparison, we

updated the target value network weights with hard updates,

by periodically overwriting the target network parameters

to match the current value network (see Appendix E for

a comparison of average performance on all benchmark

tasks).

Policy evaluation. Since SAC converges to stochastic

policies, it is often beneficial to make the final policy deter-

ministic at the end for best performance. For evaluation, we

approximate the maximum a posteriori action by choosing

the mean of the policy distribution. Figure 3(a) compares

training returns to evaluation returns obtained with this strat-

egy indicating that deterministic evaluation can yield better

performance. It should be noted that all of the training

curves depict the sum of rewards, which is different from

the objective optimized by SAC and other maximum en-

tropy RL algorithms, including SQL and Trust-PCL, which

maximize also the entropy of the policy.

Reward scale. Soft actor-critic is particularly sensitive to

the scaling of the reward signal, because it serves the role

of the temperature of the energy-based optimal policy and

thus controls its stochasticity. Larger reward magnitudes

correspond to lower entries. Figure 3(b) shows how learn-

ing performance changes when the reward scale is varied:

For small reward magnitudes, the policy becomes nearly

uniform, and consequently fails to exploit the reward signal,

resulting in substantial degradation of performance. For

large reward magnitudes, the model learns quickly at first,
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Figure 3. Sensitivity of soft actor-critic to selected hyperparameters on Ant-v1 task. (a) Evaluating the policy using the mean action

generally results in a higher return. Note that the policy is trained to maximize also the entropy, and the mean action does not, in general,

correspond the optimal action for the maximum return objective. (b) Soft actor-critic is sensitive to reward scaling since it is related to the

temperature of the optimal policy. The optimal reward scale varies between environments, and should be tuned for each task separately.

(c) Target value smoothing coefficient τ is used to stabilize training. Fast moving target (large τ ) can result in instabilities (red), whereas

slow moving target (small τ ) makes training slower (blue).

but the policy then becomes nearly deterministic, leading

to poor local minima due to lack of adequate exploration.

With the right reward scaling, the model balances explo-

ration and exploitation, leading to faster learning and better

asymptotic performance. In practice, we found reward scale

to be the only hyperparameter that requires tuning, and its

natural interpretation as the inverse of the temperature in

the maximum entropy framework provides good intuition

for how to adjust this parameter.

Target network update. It is common to use a separate

target value network that slowly tracks the actual value func-

tion to improve stability. We use an exponentially moving

average, with a smoothing constant τ , to update the target

value network weights as common in the prior work (Lill-

icrap et al., 2015; Mnih et al., 2015). A value of one cor-

responds to a hard update where the weights are copied

directly at every iteration and zero to not updating the target

at all. In Figure 3(c), we compare the performance of SAC

when τ varies. Large τ can lead to instabilities while small

τ can make training slower. However, we found the range

of suitable values of τ to be relatively wide and we used

the same value (0.005) across all of the tasks. In Figure 4

(Appendix E) we also compare to another variant of SAC,

where instead of using exponentially moving average, we

copy over the current network weights directly into the tar-

get network every 1000 gradient steps. We found this variant

to benefit from taking more than one gradient step between

the environment steps, which can improve performance but

also increases the computational cost.

6. Conclusion

We present soft actor-critic (SAC), an off-policy maximum

entropy deep reinforcement learning algorithm that provides

sample-efficient learning while retaining the benefits of en-

tropy maximization and stability. Our theoretical results

derive soft policy iteration, which we show to converge to

the optimal policy. From this result, we can formulate a

soft actor-critic algorithm, and we empirically show that it

outperforms state-of-the-art model-free deep RL methods,

including the off-policy DDPG algorithm and the on-policy

PPO algorithm. In fact, the sample efficiency of this ap-

proach actually exceeds that of DDPG by a substantial mar-

gin. Our results suggest that stochastic, entropy maximizing

reinforcement learning algorithms can provide a promising

avenue for improved robustness and stability, and further

exploration of maximum entropy methods, including meth-

ods that incorporate second order information (e.g., trust

regions (Schulman et al., 2015)) or more expressive policy

classes is an exciting avenue for future work.
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