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Soft Biometrics and Their Application

in Person Recognition at a Distance
Pedro Tome, Julian Fierrez, Ruben Vera-Rodriguez, and Mark S. Nixon

Abstract— Soft biometric information extracted from a human
body (e.g., height, gender, skin color, hair color, and so on) is
ancillary information easily distinguished at a distance but it is
not fully distinctive by itself in recognition tasks. However, this
soft information can be explicitly fused with biometric recognition
systems to improve the overall recognition when confronting high
variability conditions. One significant example is visual surveil-
lance, where face images are usually captured in poor quality
conditions with high variability and automatic face recognition
systems do not work properly. In this scenario, the soft biometric
information can provide very valuable information for person
recognition. This paper presents an experimental study of the
benefits of soft biometric labels as ancillary information based on
the description of human physical features to improve challenging
person recognition scenarios at a distance. In addition, we analyze
the available soft biometric information in scenarios of varying
distance between camera and subject. Experimental results based
on the Southampton multibiometric tunnel database show that
the use of soft biometric traits is able to improve the performance
of face recognition based on sparse representation on real and
ideal scenarios by adaptive fusion rules.

Index Terms— Soft biometrics, labels, primary biometrics, face
recognition, at a distance, on the move.

I. INTRODUCTION

A
WIDE variety of biometric systems have been developed

for automatic recognition of individuals based on their

physiological/behavioural characteristics. These systems make

use of a single or a combination of traits like face, gait, iris,

etc., for recognizing a person. On the other hand, the use of

other ancillary information based on the description of human

physical features for face recognition [1] has not been explored

in much depth.
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Biometric systems at a distance have an outstanding

advantage: they can be used when images are acquired non-

intrusively at a distance and other biometric modes such as

iris cannot be acquired properly. Given such situations, some

biometrics may have a severe degradation of performance due

to variability factors caused by the acquisition at a distance but

they can still be perceived semantically using human vision.

In this paper we analyze how these semantic annotations

(labels) are usable as soft biometric signatures, useful for

identification tasks.

A research line growing in popularity is focused on using

this ancillary information (soft biometrics) in less constrained

scenarios in a non-intrusive way, including acquisition “on the

move” and “at a distance” [2]. These scenarios are still in their

infancy, and much research and development is needed in order

to achieve the levels of precision and performance that certain

applications require.

As a result of the interest in these biometric applications

at a distance, there is a growing number of research works

studying how to compensate for the main degradations found

in uncontrolled scenarios [3]. Here, the ancillary information

such as soft biometrics can contribute to improve and com-

pensate the degraded performance of systems at a distance.

The main contribution of the present paper is an experimen-

tal study of the benefits of soft biometric labels as ancillary

information for challenging person recognition scenarios at a

distance. In particular, we provide experimental evidence on

how the soft labels of individuals witnessed at a distance can

be used to improve their identification and help to reduce the

effects of variability factors in these scenarios. Additionally,

we propose a new adaptive method for incorporating soft

biometrics information to this kind of challenging scenarios

considering face recognition.

In order to do so, the largest and most comprehensive set

of soft biometrics available in the literature is first described.

These soft biometrics labels (called from now on soft labels)

are manually annotated by several experts. These soft labels

have been grouped considering three physical categories:

global, body and head. The stability of the annotations of

the different experts and their discriminative power are also

studied and analyzed.

Finally, the available soft biometric information in scenar-

ios of varying distance between camera and subject (close,

medium and far) have been analyzed. The rationale behind

this study is that depending on the particular scenario, some

labels may not be visually present and others may be occluded.
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Fig. 1. Experimental framework. Two biometric systems are used, one based on soft labels and another based on face images. A final adaptive fusion is
carried out at the score level.

As a result, the discriminant information of soft labels will

vary depending on the distance.

The experimental framework used in this paper is shown

in Fig. 1. This figure shows how from a video at a distance

of a person walking, soft labels and faces from a subject are

extracted. In this case, soft labels are extracted manually by

human annotators because this process is still far from being

implemented by an automatic system.

To date, this is the first publication showing the relation

between the distance and the performance of soft biometrics

for recognition at a distance.

The rest of this paper is organized as follows: Section II

summarizes the related works, Section III reports an analysis

of the soft biometrics obtained in this work. Section IV

presents the experimental framework, scenario definition, and

experimental protocol. Section V describes the recognition

systems, and Section VI provides the experimental results and

discussions. Finally, Section VII summarizes the contributions

of this work.

II. RELATED WORK

First works in soft biometrics [4]–[6] tried to use demo-

graphic information (e.g., gender and ethnicity) and soft

attributes like eye color, height, weight and other visible marks

like scars [1], [7] and tattoos [8] as ancillary information to

improve the performance of biometric systems. They showed

that soft biometrics can complement the traditional (primary)

biometric identifiers (like face recognition) and can also be

useful as a source of evidence in courts of law because

they are more descriptive than the numerical matching scores

generated by a traditional face matcher. But in most cases, this

ancillary information by itself is not sufficient to recognize

a user.

More recently, Kumar et al. [9] explored comparative facial

attributes in the LFW Face Database [10] for face verification.

In this case the proposed soft labels were extracted automati-

cally based on still face images using trained binary classifiers.

Other works like [12]–[14] are focused on the automatic

extraction of soft biometrics from video datasets. They pro-

posed some soft labels based on height and color from the

human body that can be easily extracted using automatic

methods. Dantcheva et al. [15] proposed a group of soft labels

based on nine semantic traits, mainly focusing on facial soft

biometrics (e.g., beard, glasses, skin color, hair color, length,

etc.), some body measures based on the torso and legs, and

the clothes color.

On the other hand, D. Adjeroh et al. [16] studied the

correlation and imputation in human appearance analysis of

using automatic continuous data focusing on measurements of

the human body. This study was carried out on the CAESAR

anthropometric dataset, which is comprised of 45 human

measurements or attributes for 2369 subjects. They analyzed

these soft labels grouped in clusters and concluded that some

of them inside each cluster can be predicted.

The latest works such as D. Reid and M. Nixon [17]

introduce the use of comparative human descriptions for

facial identification. They use twenty-seven comparative

traits extracted manually from mugshot images to accurately

describe facial features, which are determined by the Elo rating

system from multiple comparative descriptions.
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The present work involves the application of an extensive

set of labels that can be visually described by humans at

a distance and they are quantifiable in a discrete way. The

soft labels considered here are based on head, global and

body anthropometric measures and while previous works try

to extract automatically them, here the soft labels have been

tagged by human experts; this is another important difference.

Thanks to it, we can analyze how humans understand and

describe human body and face features visually at a distance.

The integration of soft biometric information to improve

the accuracy of primary biometric systems has previously

been studied in the literature following a probabilistic

approach [4], [16]. In contrast in the present work, we have

exploited the idea of the inclusion of soft biometrics with

the primary biometric mode (face in this case), following an

adaptive fusion scheme at the score level.

III. SOFT BIOMETRICS DATA ANALYSIS

In this paper a set of soft biometrics has been used, whose

main value is that it is discernible by humans at a distance.

These physical trait labels are obtained from the Southamp-

ton Multibiometric Tunnel Database (TunnelDB) [18] which

contains biometric samples from 227 subjects for which

10 gait sample videos from between 8 to 12 viewpoints are

taken simultaneously. The TunnelDB database also contains

high-resolution frontal videos to extract face information and

high-resolution still images taken to extract ear biometrics.

There are roughly 10 of such sets of information gathered for

each subject.

The TunnelDB datasets were annotated against recordings

taken of the individuals in laboratory conditions [19]. The

annotation process was as follows: an annotator visualized

the full video of a subject walking toward the camera and

then generated one set of soft labels per each video. It is

important to note that the process followed here is independent

of the distance. A range of discrete values is given to each trait

label, e.g. “Arm length” marked as 1 (very short), 2 (short),

3 (average), 4 (long), and 5 (very long). The annotation process

of each label is described in detail in [20]. A summary of

these trait labels and their associated discrete semantic terms

is provided in Table I.

The labels and the labelling process were largely inspired

by an earlier study in Psychology which generated a list of

23 traits, each formulated as a bipolar five-point scale, and

the reliability and descriptive capability of these traits was

gauged [21]. The 13 most reliable terms, the most represen-

tative of the principal components, were incorporated into the

final trait set with the same scale [20].

These labels were designed based on which traits humans

are able to consistently and accurately use when describing

people at a distance. The traits were grouped in 3 classes,

namely:

• Global traits (age, ethnicity and sex). The demographic

information as the gender and ethnicity of a person does

not typically change over the lifetime, so it can be used

to filter the database to narrow down the number of

candidates. On the other hand, age is easily estimated

TABLE I

PHYSICAL SOFT LABELS AND THEIR ASSOCIATED

SEMANTIC TERMS. EXTRACTED FROM [20]

by physical traits at a distance and it can also be used to

filter suspects.

• Body features that describe the target’s perceived soma-

totype [22] (height, weight, etc.) These traits have a close

correlation between the style and kind of clothes that the

subject is wearing in the annotation process. For example,

tight clothes will allow to obtain more stable labels than

loose clothes.

• Head features, an area of the body humans pay great

attention to if it is visible [23] (hair color, beards, etc.)

These are very interesting soft biometrics to be fused with

face recognition systems.

To understand the role of soft labels and their application to

biometrics at a distance, the internal correlation, the stability,

and the discrimination power of the different labels with

semantic annotations is studied and analyzed in the next

Section. In this paper, a total of 13.340 labels from 58 subjects

annotated by 10 different experts1 are used in the experiments

reported in Section VI. The remaining subjects in TunnelDB

were annotated only by just 1 or 2 different experts and were

rejected for this analysis.

1Available at http://atvs.ii.uam.es/tsb_db.html
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Fig. 2. Correlation between labels of the 58 subjects considered based on
Pearson’s coefficient r (see Eq. 1).

A. Correlation Between Labels

This section reports an analysis of the correlation between

the labels defined. For this purpose the correlation between all

pairs of labels of the three groups defined (global, body and

head) is computed using the Pearson’s correlation coefficient:

r =
σXY

σXσY

=

∑N
i=1 (X i − X)(Yi − Y )

√

∑N
i=1 (X i − X)2

√

∑N
i=1 (Yi − Y )2

(1)

where σXY represents the covariance of the two variables

X and Y divided by the product of their standard deviations

σX and σY . The variables X and Y represent numerical values

associated to the pairs of semantic terms at hand. Here each

semantic term was converted to numerical values in the range

1 to 5 if the annotation contains the semantic term (e.g.

very short, short, average, long and very long) and 0 if the

annotation was left empty by the annotator (they were not

sure what to annotate). X i and Yi are the label values across

all individuals and annotators, therefore N = 580 annotations

(58 subjects × 10 annotators). The value r provides the

correlation coefficient which ranges from −1.0 to 1.0. A value

of 1.0 implies that a linear equation perfectly describes the

relationship between X and Y , with all data points lying on

a line for which Y increases as X increases. A value of −1.0

implies that all data points lie on a line for which Y decreases

as X increases. A value of 0 implies that there is no linear

correlation between the variables.

The correlation matrix containing the correlation between

all labels is represented graphically in Fig. 2. Colors in the red

range represent correlation coefficients close to 1.0 and thus

a positive correlation, while colors in the blue range represent

correlation coefficients close to −1.0 and thus a negative cor-

relation. Pale green represents no correlation between labels.

Similarly to the previous work [20], the 58 subjects selected

for the experiments follow the same tendencies regarding

correlation between labels. As a novelty with respect to [20],

Fig. 3. Annotators’ stability for the 23 soft labels considered (see Table I).

here the correlation has been studied grouping the labels in

3 categories: body, global, and head.

Focusing our attention in the global labels, very small

correlation between these 3 features and all the remaining

ones is observed in the graph as could be expected. On the

other hand, some body labels are very correlated between them

mainly due to the proportion relationships of the human body

(e.g., the larger the arms the larger the legs). This means that

physical characteristics like the chest (3), and the figure (4)

are very correlated. Therefore if we try to recognize people

just by using these correlated features the success rate will not

be very high.

Head features do not present the same correlation between

them compared to body traits (except e.g. facial hair color

(18) and facial hair length (19) or neck length (22) and neck

thickness (23) which are highly correlated).

Fig. 2 also shows some strong relationships between demo-

graphic traits such as ethnicity (15) and skin color (17), or

hair color (20), as was expected.

As observed in [16] the human body measurements are often

correlated. In the same way, our experimental results also show

correlations between body measurements.

B. Stability Analysis of Annotations

This section reports an analysis of the stability of the human

annotations for all soft labels. This is done by calculating the

stability coefficient, defined for label X as:

StabilityX = 1 −
1

S A

S
∑

i=1

A
∑

a=1

|X ia − modea(X ia)| (2)

where X ia is the annotated value for subject i by annotator a,

A = 10 is the total number of annotators, S = 58 is the

total number of subjects, and modea(X ia) is the statistical

mode across annotators (i.e., the value most often annotated

for subject i ).

The resulting stability coefficients for all labels are depicted

in Fig. 3. Using the definitions in chapter 11 of [24], we can
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Fig. 4. Discrimination power of the 23 soft labels considered (see Table I).

see that some of the features are nominal, i.e., their values

cannot be ordered meaningfully (e.g., ethnicity (15), sex (16),

skin (17), facial hair (18) and hair color (20)) whereas others

are ordinal, i.e., their values can be meaningfully ordered (e.g.,

arm length (1), arm thickness (2), height (4), weight (13), and

hair length (21)).

In Fig. 3 we can see that sex (16) (a nominal label that has

just two terms, male and female), is the most stable label due

to the low variability. Other nominal features such as body

proportions (11) and skin color (17) have also high stability.

On the other hand, the stability of ordinal features such as arm

length (1), height (5), hips (6), or shoulder shape (12) is lower

due to the high variability and the different point of view of

the annotators.

Although these two types of features (nominal and ordinal)

may be processed differently (e.g., using different similarity

measures), here in this paper we have processed them in the

same way as an initial approach.

C. Discrimination Power Analysis

In order to evaluate the discriminative power of the soft

label X , we compute for it the ratio between the inter-subject

variability, and the intra-subject variability as follows:

DiscriminationX =

1
S(S−1)

∑S
i=1,i �= j

∑S
j=1 |µi − µ j |

σ
(3)

µi = mean
a

(X ia), µ j = mean
a

(X j a), σ =
1

S

S
∑

i=1

σi (4)

where σi = stda(X ia), i and j index subjects, and a indexes

annotators.

The discrimination coefficient for the Xk labels

(k = {1, . . . , K = 23}) is depicted in Fig. 4. There we

can see that the body features (IDs 1-13) are less discriminant

than the global (IDs 14-16) and head (IDs 17-23) features.

The least discriminant features are the arm length (1) and

neck length (22) followed by leg direction (8) and neck

thickness (23). These are ordinal features and therefore the

majority of the subjects share similar annotations.

Eq. 3 gives an idea of the discrimination power of each

label, given that σ > 0. If σ = 0, i.e., there is no variation

across annotators, then this measure is not reliable. This

is the case for the label sex (16). Fig. 3 showed that sex

is the most stable label (i.e., the annotators give always a

correct decision), hence the intra-variability will be 0 and

consequently DiscriminationX → 1. Therefore in the case

where we have a label without annotation mistakes (where the

annotators always select the correct value) Eq. 3 cannot predict

correctly the discrimination power. When gathering larger data

sets we anticipate that there are more likely to be more errors

in the labelling of sex than have been experienced here.

Better results are reached for the nominal features such as

ethnicity (15), or skin color (17), and the most discriminative

is the sex (16) due to the clear identification by the human

annotators in the TunnelDB database. Consequently, we can

predict that global and head features will provide better person

recognition results than body features.

IV. EXPERIMENTAL FRAMEWORK

A. Scenario Definition

The annotation process in [18] was as follows: an annotator

visualized the full video of a subject walking toward the

camera and then generated a set of the soft labels defined

in Table I per each video, hence the labels are unique for the

whole set of three distances.

In our case using those sets of labels, three different

challenging scenarios, varying the distance between camera

and subject, have been defined and used in our experiments

in order to understand the behaviour of soft biometric labels

and their best application to biometrics at a distance. For this

purpose, high resolution frontal face sample videos from the

TunnelDB database [18] have been used together with their

corresponding physical soft labels analyzed in the previous

sections. A summary of this process is shown in Fig. 5. The

three scenarios are defined as follows:

• Close distance (∼ 1.5m). Includes both the face and the

shoulders.

• Medium distance (∼ 4.5m). Includes the upper half of

the body.

• Far distance (∼ 7.5m). Includes the full body.

The rationale behind this study is the fact that depending on

the particular scenario, some labels may not be visually present

and others may be occluded. As a result, the discriminative

information of the soft biometrics will vary depending on the

distance. Table II shows the soft labels available for each of

the scenarios defined.

B. Experimental Protocol

The same dataset selected for the soft labels from the

TunnelDB was used for the face recognition system. Each

user has 10 sessions, so 580 images per scenario from high-

resolution frontal face sample videos have been used. For

each of the 10 sessions of a subject, the first frame (close

distance), the middle frame (medium distance) and the last
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Fig. 5. Scenario defined based on the TunnelDB [18]: close, medium, and far distance images used in the experimental work. Body region visible at the
three distances considered. A person walking frontal to the camera is captured by a high-resolution video camera (10 fps and resolution of 1600 × 1200).

TABLE II

SOFT LABELS AVAILABLE VISUALLY IN EACH SCENARIO

USING NUMBERING FROM TABLE I

frame (far distance) from the frontal videos have been selected

to generate the image samples used in the experiments, having

in total 1740 images (58 subjects × 10 sessions × 3 distances).

The database was divided into gallery and testing sets. For

each subject 9 face images and 9 sets of soft labels were used

for the training and the remaining session was used for testing

following a leave-one-out approach [24] generating this way

580 similarity target scores and 33640 similarity non-target

scores.

V. RECOGNITION SYSTEMS

A. Verification Based on Soft Biometrics

This section describes a person verification system based

only on soft biometrics. First, each label in numeric form (see

Section III) is normalised to the range [0, 1] using the tanh-

estimators described in [25]:

X
′k =

1

2

{

tanh

(

0.01

(

Xk − µXk

σXk

))

+ 1

}

(5)

where Xk is the k = {1, . . . , K } soft label (K = 23),

X
′k denotes the normalized label, and µXk and σXk are

respectively the estimated mean and standard deviation of the

label under consideration (see Table I for the list of the labels).

Note that, depending on the scenario considered (close,

medium, and far), there are K = 12, 17, or 23 labels,

respectively (see Table II).

Similarity scores s(C, x) are computed using the

Mahalanobis distance [24] between the test vector with

K labels x = {X
′1, . . . , X

′k} and a statistical model C of the

client, obtained using a number of gallery labels (9 examples

per label in our experiments), as follows:

s(C, x) =
1

(

(

x − µC
)T

(�C)−1
(

x − µC
)

)1/2
(6)

where µC and �C are respectively the mean vector and

covariance matrix obtained from the gallery labels, which form

the statistical model of the client C = {µC,�C}.

B. Verification Based on Face Biometrics

For the face recognition experiments, two different systems

have been used and compared (one commercial and one

proprietary): i) Luxand FaceSDK 4.0, and two face recognition

systems based on SRC [26], ii) VJ-SRC, using automatic face

detection based on Viola Jones [27], and iii) ID-SRC using

ideal face detection marked manually.

FaceSDK by Luxand2 is a high-performance and multi-

platform face recognition solution based on facial fiducial

feature recognition.

A proprietary VJ-SRC face recognition system based on

Viola Jones to detect faces and using a matcher based on

SRC [26], [28] is also used. Face segmentation and location

of the eyes are two of the main problems in face recognition

systems at a distance. For our experiments, we have also

manually tagged the eyes’ coordinates which allows us to

consider an ideal case of face detection in the ID-SRC face

recognition system. This way, we can compare the behaviour

of soft labels when fused with face images on real (VJ-SRC)

and ideal (ID-SRC) scenarios at a distance free of segmenta-

tion errors.

The SRC matcher is a state-of-the-art system based on

recent works in sparse representation for classification pur-

poses. Essentially, this kind of systems spans a face subspace

using all known gallery face images, and for an unknown

face image they try to reconstruct the image sparsely. The

motivation of this model is that given sufficient gallery samples

of each person, any new test sample for this same person will

approximately lie in the linear span of the gallery samples

associated with the person.

VI. EXPERIMENTS

This section describes the experimental analysis of the

discrimination power of individual and grouped soft labels

and the performance of the considered face recognition sys-

tems in the three scenarios defined. Then, a fusion of the

two modalities in different conditions is studied. Results are

2http://www.luxand.com/facesdk/
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Fig. 6. EER (%) obtained for each individual soft label defined in Table I .

reported using ROC curves, with EERs and verification rates

(VR) working at a different FAR points (FAR = 0.1%, 1%,

and 10%).

A. Soft Labels

1) Analysis of Individual Soft Labels: This section presents

the discrimination power of each individual soft label fol-

lowing the leave-one-out experimental protocol described in

Section VI. As shown in Fig. 6, hair length (21) achieves

the best results (EER = 30.27%) but it is worth noting that

this was not the most discriminative feature regarding the

initial experiments shown in Fig. 4. Another relevant label

with a high performance and discrimination power is hair color

(20) with an EER = 35.11%. The rest of soft labels achieve

similar performance, with better results in general for head

labels compared to body labels, as anticipated in Section III-A

As can be seen, individual labels are not very discriminative

on their own.

2) Analysis of Grouped Soft Labels: The aim of this exper-

iment is to study the discriminative power of the three groups

of soft labels considered in the different scenarios at a distance

defined in Section IV-A. Fig. 7 shows the performance of

each set of labels considered. Here, dashed lines represent the

sets: global, body and head, while solid lines represent all the

available labels in each scenario at a distance as defined in

Table II.

There is a significant difference between global, head and

body regarding the performance as can be observed. The

performance of body labels is clearly lower compared to global

and head sets as predicted in Sections III-B and III-C through

the stability and discrimination analysis.

Regarding the other 3 groups of labels that take into account

the labels visible at the 3 distances defined the difference of

performance is not that significant as can be seen in Fig. 7.

Far scenario is comprised of all available labels including body

labels, therefore it experiences a decrease in EER performance

compared to the other scenarios in some regions of the plot

Fig. 7. ROC curves obtained for the physical labels sets (global, body, and
head) grouped following the definition in Table I and for the three defined
scenarios in Table II (close, medium, and far), i.e., the soft labels that would
be visible at these distances.

(e.g., around FAR = 0.1 = 10%). On the other hand, the other

two scenarios have a lower number of soft labels available but

result in better EER performance.

It is important to note that although soft labels provide low

recognition performance when used as a stand alone system,

they can help to improve hard biometric systems as we will

show in Sect. 6.3.

3) Analysis of Gallery Set Size for Soft Labels: An

important parameter to be considered in soft labels systems

is the size of the gallery set. For this purpose, we have

evaluated the system with different number of gallery samples

(varying between 1 to 9 samples) following a leave-one-out

methodology.

Fig. 8 shows the different configurations analyzed for the

six sets of soft labels defined in the previous section. As

can be seen, all soft label sets follow the same trend, the

system recognition performance (EER) improves significantly

when more samples are used in the training stage. For global,

body, and head sets using more than 5 gallery samples the

system performance saturates. On the other hand, for close,

medium, and far sets, the performance saturates for more than

7 samples.

As it was expected the more features are included in the set

(e.g., for far labels which include all 23 labels) the larger the

performance improvement for increasing gallery samples until

saturation. The relative performance improvement before the

saturation for small datasets (e.g., global with only 3 labels)

is much smaller.

As Fig. 8 shows, the head labels achieve better performance

than the global when more than 5 gallery samples are consid-

ered in the training stage. This effect can be explained by the
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Fig. 8. EER (%) obtained when varying the number of gallery samples.

TABLE III

FACE DETECTION ERRORS IN THE THREE SCENARIOS AT A DISTANCE

FOR VIOLA JONES AND FACESDK SYSTEMS. FTA AND FTD

ERROR PERCENTAGES ARE CALCULATED FOR THE

TOTAL NUMBER OF FACE IMAGES (N = 580)

different number of labels that comprises both sets: 3 labels

for global and 7 for head (see Table I). In other words, the

higher number of degrees of freedom for the head set leads

to improved performance compared to the global set if the

training set is large enough.

B. Face Recognition

1) Analysis of Face Detection Errors: This section presents

an analysis of the three scenarios considered: close, medium,

and far. Two face detection systems have been evaluated:

i) proprietary based on Viola Jones, and ii) a commercial

system (FaceSDK) based on facial landmarks.

Two different detection errors have been defined and ana-

lyzed:

• Fail To Acquire (FTA): when there is a face in the image,

but it is not detected.

• Fail To Detect (FTD): when the face detector finds an

object in the image, but it is not a face.

The first error FTA will be a feedback report for the systems

but the second error FTD has to be analyzed manually by an

operator or automatically by an error detector system. In this

Fig. 9. ROC curves of SRC systems obtained using two configurations:
automatic (VJ-SRC, dashed lines) and manual (ID-SRC, solid lines,
FTA = 0%, FTD = 0%).

paper FTD error was evaluated manually observing the faces

detected by both systems.

Table III shows the detection errors for the two systems eval-

uated. Firstly, Viola Jones approach achieves less FTA errors

than FaceSDK system, but introduces a high number of FTD

errors which will affect the system recognition performance.

The FTA errors in close scenario are due to short people whose

middle part of the face is outside of the vision plane of the

camera.

As can be seen, the scenarios at a distance analyzed are very

challenging. Analyzing the results both systems work poorly

at medium and far distances due to the high variability and the

low quality of face images. The Viola Jones approach achieves

a reasonable FTA error in these distances but a large number

of detections are not faces (FTD error is very high). On the

other hand, the FaceSDK system has a higher FTA with lower

FTD. The total error is so large for FaceSDK (73.31% and

100%) that it was discarded for the following experiments.

2) Analysis of Face Recognition Systems: The results

achieved for VJ-SRC and ID-SRC systems with automatic

and manual (FTA = 0% and FTD = 0%) face detection are

presented in Fig. 9. As can be seen in the manual face detection

(ID-SRC system, solid lines), the database analyzed is very

challenging and the system performance decreases quickly

when the acquisition distance increases. On the other hand,

poor results are achieved for the case of using the automatic

Viola Jones face detector (VJ-SRC) due to the high number

of FTD errors but also because in this case there is no pose
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Fig. 10. ROC curves for the VJ-SRC system (automatic face detection errors) together with the corresponding improvement by sum and switch fusion for
the three scenarios defined: close (left), medium (center), and far (right). Best configuration of weights for each fusion (VR and EER performance) is in bold
in bottom graphs.

compensation and normalisation regarding the position of the

eyes as in the ideal case.

Therefore, a large improvement in the EER is achieved for

all distances by considering manual face detection compared

to Viola Jones in the SRC system. On the other hand, the

system performance with automatic face detection is very poor

in a FAR = 0.001 = 0.1% with Verification Rates (VR) lower

than 5%. It is important to note that for far scenario with ideal

face detection (ID-SRC system) the VR is lower than 30%,

which shows the complexity of the database analyzed.

C. Fusion of Face and Soft Biometrics

Soft biometrics offer several benefits over other forms of

identification at a distance as they can be acquired from low

resolution and low frame rate videos, and have great invariant

attributes such as to camera viewpoint, sensor ageing and

scene illumination. This allows for the use of soft biometrics

when primary biometric identifiers cannot be obtained or when

only a description of the person is available.

This section analyzes how soft labels can improve the

face recognition system performance through the fusion of

both biometric systems. The fusion method used is based on

the combination of the systems at the score-level following

different fusion approaches [29], [30]: i ) the sum rule, i i ) an

adaptive switch fusion rule, and i i i ) a weighted fusion rule.

As indicated in Fig. 1, the switch fusion rule uses only the

soft labels for recognition in the cases where no face images

are detected, and sum or weighted fusion is applied if both

scores are available. This helps the real automatic systems

to achieve better performance dealing with low resolution

images.

To carry out the fusion stage of the two biometric modal-

ities, scores of the different systems were first normalized to

the [0, 1] range using the tanh-estimators described in [25].

This simple method is demonstrated to give good results for

the biometric authentication problem.

Experiments are carried out by fusing the soft labels with

VJ-SRC and ID-SRC face recognition systems over the three

acquisition distances: close, medium and far. First, we consider

the case of the fusion of soft labels with the automatic face

detection errors, and then the case of their fusion with an ideal

face recognition using manual face detection.

1) Fusion With Automatic Face Detection Errors: This

experiment studies the fusion of soft labels with the

VJ-SRC system with automatic face detection carried out
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Fig. 11. ROC curves for the ID-SRC system (manual face detection) and its corresponding improvement by sum and weighted fusion rule for the three
scenarios defined. Best configuration of weights for weighted fusion (VR and EER performance) is in bold in bottom graphs.

using a switch fusion. In case the face recognition system fails

to acquire (FTA) a face due to variability factors, soft labels

can help to improve the system performance.

In video surveillance systems (at a distance), in most cases

you the presence of the person can be detected but the faces do

not always have enough quality to be useful. In that case, the

automatic systems are going to produce a FTA error and this

switch fusion allows us to use a soft biometric system where

traditional systems do not work. This is case also happens

in forensic scenarios when criminals cannot be identified in

surveillance videos by their faces (due to occlusions or low

quality) but the soft information (clothes, body and head

information, etc) could be very useful.

Fig. 10 shows 4 ROC profiles in each graph: the

VJ-SRC face recognition system, the soft labels system and

two fusions. The first fusion applies a sum rule of the scores

from the two systems only if both of them are available,

otherwise it emits a FTA. As a result using this sum fusion

FTA is non-zero. On the other hand, the switch fusion always

results in an output score as described above, reducing the FTA

error to 0 in this case. Detection errors showed in Table III

show the cases in which the switch fusion selects only the soft

labels for the three scenarios defined.

The sum fusion of the two systems achieves absolute

improvements of 10.0%, 14.8%, 24.6%, and relative improve-

ments of 50.1%, 53.3%, and 59.9% of EER for close, medium,

and far scenarios, respectively compared to the VJ-SRC face

recognition system. As shown, soft labels improve the system

performance and allow the system to maintain robustness in

far scenario. The same conclusion is confirmed for the switch

fusion of the systems, which achieves absolute improvements

of 9.0%, 15.2%, 24.7%, and relative improvements of 45.0%,

54.9%, and 60.0% of EER for close, medium, and far sce-

narios, respectively, compared to the VJ-SRC face recognition

system.

As can be seen, the EERs for sum and switch sum fusion are

similar, with the advantage of switch fusion of eliminating all

FTA errors. In these scenarios a weighted fusion rule has been

also evaluated. Fig. 10 (bottom) shows the VR and EER for

varying weights in the weighted and switch weighted fusion.

Based on these results, we have fixed the following weights:

w f ace = 0.6 and wso f t = 0.4 for close, and medium distance,

and finally w f ace = 0.25 and wsof t = 0.75 for far distance.

Using this configuration we achieve an absolute increment in

VR of around 2% for all the distances.

Therefore, as the results show, a real face recognition

system which do not have a good performance due to the

variability factors derived from acquisition at a distance, could

be improved using soft biometric labels visually available in

the scene.
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2) Fusion With Manual Face Detection: This experiment

focuses on use of the soft labels in order to improve the

ID-SRC system with ideal face detection (FTA = 0% and

FTD = 0%). Fig. 11 shows the ROC curves of both systems

and two fusions (sum and weighted fusion rules) for different

FAR points.

In this case the incorporation of soft labels improves the

face recognition system performance. The sum fusion achieves

significant relative improvements of 30.1%, 33.9%, and 49.8%

in the EER for close, medium, and far scenarios respectively.

On the other hand analyzing the Verification Rate (VR) in a

high security point such as FAR = 0.001 (0.1%), the system

performance deteriorates. A relative decrement of about 10%

in the VR for close and medium scenarios is obtained but in

far scenario the VR increases moderately. These results are

due to the poor performance of soft labels in a high security

working point.

A weighted fusion has been proposed in order to solve the

problem of the VR deterioration. The fusion gives more weight

to the most robust system which is the face recognition system

in FAR = 0.1%. Different weights have been tuned for the

3 distances based on the EER performance of the systems.

Fig. 11 (bottom) shows the VR and EER for varying weights.

Based on these results, we have fixed the following weights:

w f ace = 0.8 and wso f t = 0.2 for close and medium distance,

and finally w f ace = 0.7 and wsof t = 0.3 for far distance.

Using this configuration we achieve an absolute increment

in VR of 5.3%, 8.9%, 20.4%, and a relative increment in

VR of 92.4%, 80.0%, and 45.0%, for close, medium, and far

scenarios, respectively.

Therefore, the usage of soft labels can still help to improve

the systems in these better conditions. The face detection

stage is a key factor in order to achieve good results in

scenarios at a distance. Consequently a single weighted fusion

rule combining soft biometrics allows to improve the system

performance where the primary biometrics are not working

due to variability factors in the scenarios at a distance.

VII. CONCLUSION

This work reports a study of how the usage of soft labels

can help to improve a biometric system for challenging

person recognition scenarios at a distance. It is important to

emphasize that the use of this ancillary information is very

interesting in scenarios suffering from very high variability

conditions. These soft labels can be visually identified at a

distance by humans (or an automatic system) and fused with

hard biometrics (as e.g., face recognition). It is important to

note that this kind of soft information is still a developing field

in relation to its automatic extraction.

First, the stability and discriminative power of the largest

and most comprehensive set of soft labels available from the

literature, has been studied and analyzed. The discriminative

information of these labels grouped by physical categories

(body, global and head) has also been studied.

Moreover, the available soft biometric information in sce-

narios of varying distance between camera and subject (close,

medium and far) has been analyzed. The rationale behind this

study is that depending on the scenario, some labels may

not be visually present and others may be occluded. Thus,

the discriminative information of soft biometrics will vary

depending on the distance. To the best of our knowledge, this

is the first publication to date showing the relation between

scenarios at a distance and the performance of soft biometrics

for person recognition.

Finally, some fusion rules have been proposed and studied to

incorporate soft biometrics to these challenging scenarios at a

distance considering a state-of-the-art face recognition system.

Experiments are carried out considering both automatic and

manual face detection. Results have shown the benefits of the

soft biometrics information maintaining robustness of the face

recognition performance and also improving the performance

on a high security level. We have shown how this visually-

available ancillary information can be fused with traditional

biometric systems and improve their performance in scenarios

at a distance.

REFERENCES

[1] U. Park and A. K. Jain, “Face matching and retrieval using soft
biometrics,” IEEE Trans. Inf. Forensics Security, vol. 5, no. 3,
pp. 406–415, Sep. 2010.

[2] S. Z. Li, B. Schouten, and M. Tistarelli, Handbook of Remote Biometrics

for Surveillance and Security. New York, NY, USA: Springer-Verlag,
2009, pp. 3–21.

[3] Robust, Riyadh, Saudi Arabia. (2008). Robust Biometrics:

Understanding Science & Technology [Online]. Available:
http://biometrics.cylab.cmu.edu/ROBUST2008

[4] A. K. Jain, K. Nandakumar, X. Lu, and U. Park, “Integrating faces,
fingerprints and soft biometric traits for user recognition,” in Proc.

Biometric Authentication Workshop, LNCS, 2004, pp. 259–269.
[5] A. K. Jain, S. C. Dass, K. Nandakumar, and K. Nandakumar, “Soft

biometric traits for personal recognition systems,” in Proc. Int. Conf.

Biometric Authentication, 2004, pp. 731–738.
[6] D. Heckathorn, R. Broadhead, and B. Sergeyev, “A methodology for

reducing respondent duplication and impersonation in samples of hid-
den populations,” in Proc. Annu. Meeting Amer. Sociol. Assoc., 1997,
pp. 543–564.

[7] A. K. Jain and U. Park, “Facial marks: Soft biometric for face recogni-
tion,” in Proc. IEEE Int. Conf. Image Process., Nov. 2009, pp. 37–40.

[8] J. Eun Lee, A. K. Jain, and R. Jin, “Scars, marks and tattoos: Soft
biometric for suspect and victim identification,” in Proc. Biometric

Symp., Biometric Consortium Conf., 2008, pp. 1–8.
[9] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar, “Attribute

and simile classifiers for face verification,” in Proc. IEEE 12th ICCV,
Oct. 2009, pp. 365–372.

[10] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database for studying face recognition in uncon-
strained environments,” Karlsruhe Inst. Technol., Univ. Massachusetts,
Boston, MA, USA, Tech. Rep. 07-49, Oct. 2007.

[11] A. Gupta and L. S. Davis, “Beyond nouns: Exploiting prepositions and
comparative adjectives for learning visual classifiers,” in Proc. ECCV,
2008, pp. 16–29.

[12] S. Denman, C. Fookes, A. Bialkowski, and S. Sridharan, “Soft-
biometrics: Unconstrained authentication in a surveillance environment,”
in Proc. DICTA, 2009, pp. 196–203.

[13] D. Vaquero, R. Feris, D. Tran, L. Brown, A. Hampapur, and M. Turk,
“Attribute-based people search in surveillance environments,” in Proc.

IEEE WACV, Snowbird, UT, USA, Dec. 2009, pp. 1–3.
[14] Y. Fu, G. Guo, and T. S. Huang, “Soft Biometrics for Video Surveil-

lance,” in Intelligent Video Surveillance: Systems and Technology, Y. Ma
and G. Qian, Eds. Cleveland, OH, USA: CRC Press, 2009, pp. 407–432,
ch. 15.

[15] A. Dantcheva, C. Velardo, A. D’angelo, and J.-L. Dugelay, “Bag of
soft biometrics for person identification: New trends and challenges,”
Mutimedia Tools Appl., vol. 10, pp. 1–36, Oct. 2010.

[16] D. Adjeroh, D. Cao, M. Piccirilli, and A. Ross, “Predictability and
correlation in human metrology,” in Proc. IEEE Int. WIFS, Dec. 2010,
pp. 1–6.



TOME et al.: SOFT BIOMETRICS AND THEIR APPLICATION 475

[17] D. Reid and M. Nixon, “Human identification using facial comparative
descriptions,” in Proc. ICB, Jun. 2013, pp. 1–7.

[18] R. D. Seely, S. Samangooei, L. Middleton, J. Carter, and M. Nixon,
“The University of southampton multi-biometric tunnel and introducing
a novel 3D gait dataset,” in Proc. IEEE Biometrics, Theory, Appl. Syst.,
Sep. 2008, pp. 1–6.

[19] R. D. Seely, “On a three-dimensional gait recognition system,” Ph.D. dis-
sertation, School Electron. Comput. Sci., Univ. Southampton, Southamp-
ton, U.K., 2010.

[20] S. Samangooei, M. Nixon, and B. Guo, “The use of semantic human
description as a soft biometric,” in Proc. 2nd IEEE Biometrics, Theory,

Appl. Syst., Oct. 2008, pp. 1–7.
[21] M. D. MacLeod, J. N. Frowley, and J. W. Shepherd, “Whole body infor-

mation: Its relevance to eyewitnesses,” in Adult Eyewitness Testimony:

Current Trends and Developments. Cambridge, U.K.: Cambridge Univ.
Press, 1994.

[22] C. N. Macrae and G. V. Bodenhausen, “Social cognition: Think-
ing categorically about others,” Annu. Rev. Psychol., vol. 51, no. 1,
pp. 93–120, 2000.

[23] J. Hewig, R. H. Trippe, H. Hecht, T. Straube, and W. H. R. Miltner,
“Gender differences for specific body regions when looking at men and
women,” J. Nonverbal Behavior, vol. 32, no. 2, pp. 67–78, 2008.

[24] S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th ed.
New York, NY, USA: Academic, 2008.

[25] A. Jain, K. Nandakumar, and A. Ross, “Score normalization in
multimodal biometric systems,” Pattern Recognit., vol. 38, no. 12,
pp. 2270–2285, Dec. 2005.

[26] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.
[27] P. Viola and M. Jones, “Robust real-time face detection,” Int. J. Comput.

Vis., vol. 57, no. 2, pp. 137–154, 2004.
[28] K. Huang and S. Aviyente, “Sparse representation for signal classifica-

tion,” in Proc. NIPS, 2006, pp. 609–616.
[29] P. Tome, J. Fierrez, F. Alonso-Fernandez, and J. Ortega-Garcia,

“Scenario-based score fusion for face recognition at a distance,” in Proc.

IEEE CVPRW, Jun. 2010, pp. 67–73.
[30] J. Fierrez, J. Ortega-Garcia, J. Gonzalez-Rodriguez, and J. Bigun,

“Discriminative multimodal biometric authentication based on quality
measures,” Pattern Recognit., vol. 38, no. 5, pp. 777–779, May 2005.

Pedro Tome received the M.Sc. degree in electri-
cal engineering and the Ph.D. degree in electrical
engineering from Universidad Autonoma de Madrid
(UAM), Spain, in 2008 and 2013, respectively. Since
2007, he has been with the Biometric Recognition
Group - ATVS, UAM, where he is currently a
Postdoctoral Researcher. He has carried out different
research internships in worldwide leading groups in
biometric recognition such as Image and Information
Engineering Laboratory, Kent University, Canterbury
U.K., CSPC - Communication Signal Processing

and Control Group from Southampton University, U.K., and Security and
Surveillance Research Group - SAS from University of Queensland, Australia.
His research interests include signal and image processing, pattern recognition,
computer vision, and biometrics. His current research is focused on biometrics
at a distance and video-surveillance, using face and iris recognition and he is
actively involved in forensic face evaluation.

Julian Fierrez received the M.Sc. and the Ph.D.
degrees in telecommunications engineering from
Universidad Politecnica de Madrid, Madrid, Spain,
in 2001 and 2006, respectively. Since 2002, he has
been with the Biometric Recognition Group, first
at Universidad Politecnica de Madrid, and since
2004 at Universidad Autonoma de Madrid, where
he is currently an Associate Professor. From 2007 to
2009, he was a Visiting Researcher with Michigan
State University, USA, under a Marie Curie fellow-
ship. His research interests and areas of expertise

include signal and image processing, pattern recognition, and biometrics, with
emphasis on signature and fingerprint verification, multi-biometrics, biometric
databases, system security, and forensic applications of biometrics. He has
been and is actively involved in European projects focused on biometrics (e.g.,
TABULA RASA and BEAT), and is a recipient of a number of distinctions
for his research, including Best Ph.D. Thesis in Computer Vision and Pattern
Recognition from 2005 to 2007 by the IAPR Spanish liaison, Motorola Best
Student Paper at ICB 2006, the EBF European Biometric Industry Award
2006, the IBM Best Student Paper at ICPR 2008, and EURASIP Best Ph.D.
Award 2012.

Ruben Vera-Rodriguez received the M.Sc. degree
in telecommunications engineering from Universi-
dad de Sevilla, Spain, in 2006, and the Ph.D.
degree in electrical and electronic engineering from
Swansea University, U.K., in 2010. Since 2010, he
has been with the Biometric Recognition Group -
ATVS, Universidad Autonoma de Madrid, Spain,
first as the recipient of a Juan de la Cierva post-
doctoral fellowship from the Spanish Ministry of
Innovation and Sciences, and is currently an Assis-
tant Professor. His research interests include signal

and image processing, pattern recognition, and biometrics. In 2007, he
received the Best Paper Award at the Fourth International Summer School
on Biometrics, Alghero, Italy, by top international researchers in the field.

Mark S. Nixon is a Professor of computer vision
with the University of Southampton, U.K. His
research interests are in image processing and com-
puter vision. His team develops new techniques for
static and moving shape extraction which have found
application in automatic face and automatic gait
recognition and in medical image analysis. His team
were early workers in face recognition, later came
to pioneer gait recognition and more recently joined
the pioneers of ear biometrics. Amongst research
contracts, he was a Principal Investigator with John

Carter on the DARPA supported project Automatic Gait Recognition for
Human ID at a Distance and he was previously with the FP7 Scovis project
and is currently with the EU-funded Tabula Rasa project. His vision textbook,
with A. Aguado, Feature Extraction and Image Processing (Academic Press)
reached 3rd Edition in 2012 and has become a standard text in computer
vision. With T. Tan and R. Chellappa, their book Human ID Based on Gait

is part of the Springer Series on Biometrics and was published in 2005. He
has been a chair or program chair of many conferences (BMVC 98, AVBPA
03, IEEE Face and Gesture FG06, ICPR 04, ICB 09, IEEE BTAS 2010) and
given many invited talks. He is a member of the IAPR TC4 Biometrics and
the IEEE Biometrics Council. He is a fellow of IET and FIAPR.


