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1 Introduction

A persistent problem in the development of realistic string compactifications is the imple-

mentation of supersymmetry breaking in a genuinely stringy and controllable manner. The

tension comes from the fact that string theory is usually defined in 10 (or 11) dimensions

with a large number of supercharges, while realistic phenomenology requires such com-

pactifications to reduce at low energies to non-supersymmetric 4d theories. Added to this

tension is the issue of moduli stabilization whose details can significantly affect the vacuum

structure and supersymmetry-breaking terms in the dimensionally reduced theories. One

can contemplate bypassing the intermediate stage of realizing an effective 4d supergravity

at low energies by constructing stabilized vacua with supersymmetry broken at or above the

compactification scale. The construction of such vacua has proven to be a difficult task as

one often encounters (perturbative) instabilities. Thus far, explicit tachyon-free examples

of this kind with the broad features of the Standard Model have not yet been found, and

there are generic statistical arguments suggesting that such vacua are rare [1] (see also [2]).

Furthermore, the scale of supersymmetry breaking in such constructions is typically much

larger than the electroweak scale mZ ∼ 100 GeV, with no apparent relation between them.

In light of these issues, studies of supersymmetry breaking in string theory often takes

a different route. Most work on the subject begins with an effective 4d supergravity,

as there are several potential phenomenological benefits for supersymmetry (at least the

reduced version, e.g., N4 = 1) to persist at intermediate scales. Other than protecting
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certain operators from large quantum corrections, subsequent breaking of supersymmetry

in the effective low-energy supergravity provides a nice mechanism to trigger spontaneous

electroweak symmetry breaking thus tying the electroweak scale to the supersymmetry-

breaking scale. Furthermore, such a framework of intermediate or low-scale breaking has

the advantage that a myriad of N4 = 1 string constructions with semi-realistic spectra

are readily available, while there are fewer examples for those exhibiting high-scale super-

symmetry breaking. Traditionally, the source of supersymmetry breaking in this context

is assumed to be the result of some hidden sector dynamics. Recent developments have

extended the possibilities to include other supersymmetry-breaking sources such as fluxes

and anti-branes. It is useful to note that while we make a distinction for those construc-

tions that admit a 4d supergravity description at an intermediate scale, such vacua, when

lifted to 10d, should correspond to a non-supersymmetric background when the backreac-

tion of the supersymmetry-breaking effects is taken into account.1 Thus, from a 10d point

of view, the nature of the problem is not that different from some of those constructions

whose supersymmetry-breaking scale is at or above the compactification scale.2 Studying

the effects of such supersymmetry-breaking backgrounds on the gauge sector, irrespective

of the origin of such breaking, will be one goal of the present work

A particularly well-explored corner of N4 = 1 constructions are the class of flux com-

pactifications of type-IIB string theory [3–8] commonly known as GKP compactifications.3

This class of constructions invokes closed-string flux which, in addition to stabilizing many

moduli, allows for constructing strongly warped regions. Such strongly warped geometries

provide a mechanism to generate a hierarchy of scales via gravitational redshift, realizing

the bottom-up idea of [9]. This fact was exploited in the KKLT construction [10]. By

combining this strong warping with the quantum effects required to stabilize the Kähler

structure of the internal space, it was argued in [10] that supersymmetry can be bro-

ken at a hierarchically suppressed scale by the addition of a small number of anti-branes

which naturally inhabit points of strongest warping. The KKLT framework has been

widely explored in the context of string inflation (for reviews see [11–16]) and in phe-

nomenological scenarios such as mirage mediation [17, 18] and variations thereof [19, 20].

Furthermore, the gauge/gravity correspondence is often realized with strongly warped ge-

ometries [21–24]. The addition of a relatively small number of anti-branes to an otherwise

supersymmetric construction can, under certain circumstances, be described as a meta-

stable non-supersymmetric state in a dual supersymmetric gauge theory [25, 26] . This has

been used to construct gravity duals of gauge mediation scenarios [27–32] (see also [33–35]

1The supersymmetry-breaking effects here are not restricted to localized sources, but include also

fluxes as well as sources of dynamical supersymmetry breaking in the hidden sector realized as instan-

tons on branes.
2We are cautious in using the qualification “some” here. If the scale of supersymmetry is above the string

scale, one would expect in addition to the supergravity fields that a tower of string states to come into play.
3Strictly speaking, the compactifications of [8] are not necessarily supersymmetric. However, since we

are primarily interested in supersymmetric GKP compactifications, we will use the term “GKP” to indicate

the N4 = 1 setups of [8]. Furthermore, GKP compactifications alone does not provide a mechanism

for compactification, but our analysis will not depend on whether or not the Kähler structure moduli

are stabilized.
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for related ideas) which are otherwise difficult to analyze using conventional (perturbative)

field theoretical techniques. Finally, anti-branes also play an important role in the large-

volume scenario [36], where non-perturbative effects are played against ℓs-corrections to

produce intermediate-scale supersymmetry breaking without relying on strong warping.

Despite the wide applications of this framework, the nature of supersymmetry breaking

by D3-branes remains somewhat mysterious, even setting aside the subtleties involved in

the backreaction of the D3s [26, 37–42]. In particular, it is not clear whether or not the

breaking should be considered explicit breaking or spontaneous breaking from the 4d point

of view, although the common folklore holds that it is the former. An argument often given

for D3 branes providing an explicit source of breaking is that the D3s preserve the “wrong”

supersymmetry, meaning the supersymmetry that is broken by the D3 charge carried by

the fluxes in a GKP compactification. Indeed, such explicit breaking seems to be reflected

in the effective potential used in [10] in which the so-called uplift potential, corresponding

to the tension of the D3s, is not included with the F -term potential.4

On the other hand, the D3s can be thought of as a soliton of closed strings, especially

when the number of anti-branes is large, in which case it is simply a non-supersymmetric

configuration in a supersymmetric theory; such a state of affairs is, by definition, sponta-

neous breaking of supersymmetry. In this sense, the case of an anti-brane is quite similar

to the case of branes intersecting at angles. Although for special angles, two intersecting

branes preserve some of the same supercharges, for generic angles they will not. One might

be tempted to call this explicit breaking for precisely the same reason as in the D3 case: at

generic angles the branes do not preserve the same supersymmetry. Yet since such angles

are controlled by geometric and brane moduli, the breaking by a non-trivial angle can be

controlled by 4d fields and therefore seems to be manifestly spontaneous breaking (see,

e.g. [44] for related discussions). Indeed, this was considered in, for example, [45] where

the theory for the corresponding goldstino, which indicates the spontaneous breaking of

supersymmetry, was discussed. Since Dp-branes differ from Dp-branes precisely in their

orientation, the case of an Dp-Dp pair is in some sense an extreme version of branes inter-

secting at angles.5 Finally, the case of D3s in a GKP compactification is not intrinsically

distinct from the case of Dp-branes in flat space as both involve supercharges of 10d back-

ground being projected out by the localized sources. In the latter case the massless scalars

on the worldvolume are the goldstones associated with the spontaneous breaking of trans-

lational symmetry. The massless fermions should be viewed in the same light, as resulting

from the spontaneous breaking of maximal supersymmetry. Indeed, the supersymmet-

ric generalization of the Dirac-Born-Infeld (DBI) action contains in it a Akulov-Volkov-like

(AV) action for goldstini [46, 47]. Although this fact was understood long ago (see e.g. [48])

it seems, in our opinion, to be under-appreciated.

In this work, we explore this question of explicit and spontaneous breaking by con-

sidering non-supersymmetric perturbations to supersymmetric GKP compactifications.

4This of course leaves open the possibility that the D3 is a source of D-term breaking as suggested in,

for example, [43]. We will provide some evidence for this possibility as well.
5This is admittedly a bit of a cheat; for example, for spacetime filling 3-branes transverse to a compact

space, there is no finite-energy way to rotate the branes.
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Although much of our analysis is agnostic with respect to the source of these non-

supersymmetric perturbations, we have in mind those resulting from the addition of p

D3s such that p is much less than the number of flux quanta that builds a warped region.

In generic cases, even though only a single combination of fields is “directly” sourced by

the D3s, all other closed string fields are perturbed, including non-Hermitian components

of the internal metric. As a diagnostic of such breaking, we probe the resulting background

with a stack of D3 branes and consider the resulting effective field theory. Such a situation

has been considered previously in the literature from both the D-brane [43, 49–51] and

worldsheet points of view [52, 53], but none to our knowledge takes fully into account the

non-Hermitian perturbations to the internal metric (though see [27] for a related case) or

explicitly analyze Yukawa couplings. Although this may seem like a slight distinction, the

internal metric is the matter-field metric for position moduli of the D3 and so it modifies

the marginal operators (as well as operators of other dimensions) of the D3-brane effective

field theory. Since the soft terms that result from the spontaneous breaking of supersym-

metry are all relevant operators (at least in the mp → ∞ limit), this would seem to hint

at explicit breaking. Nevertheless, we find that a simple non-holomorphic field redefinition

puts the effective field theory into a form that manifestly exhibits only soft breaking. As

generic explicit breaking should lead to hard terms, even in the limit as mp → ∞, we take

this as an indication that the breaking of supersymmetry may be spontaneous.

Let us stress that since D3s are local objects, the analysis of the D3 action is, through

marginal order, fairly insensitive to the form that the internal metric takes (so long as it is

not singular) and previous analyses of the D3-action are straightforwardly adopted to the

case of a general metric. Indeed though the analyses of [43, 50] take the ansatz where the

internal metric remains Calabi-Yau, their results are largely valid in more general cases6

except for the fact that they rely on the underlying Calabi-Yau to give a complex structure

to the open-string effective field theory. In this light, our goal is to not to greatly extend

the technical advances of these works, but instead to make steps towards a conceptual

understanding of supersymmetry breaking.

We also emphasize that even though we primarily work in the context of a non-

supersymmetric perturbation to GKP, the D3-brane Lagrangian seems to be soft inde-

pendently of the background or even if the closed-string equations of motion are applied.

However, in the case in which the background is a result of the backreaction of D3s in

GKP, we are also able to identify the gaugino living on the D3-brane as a candidate for

the goldstino that is expected to be present if supersymmetry is spontaneously broken.

For this reason, much of our discussion is framed within the context of supersymmetry

breaking by the addition of anti-branes.

This paper is organized as follows. In section 2, we review GKP compactifications

and argue that the addition of an D3 brane will generically perturb all closed string fields

including the internal metric. In section 3, we discuss the effective field theory of a stack of

D3-branes or D3-branes probing such a geometry. In section 4, we review the nature of soft

6Notable exceptions are the non-renormalizable couplings between open and closed strings considered

in [50] which depend on an understanding of the light closed-string spectrum that is not available in general.
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breaking of supersymmetry and show how the action presented in the previous section falls

into this class, though the supersymmetry that is “least” broken is not quite that preserved

by GKP. In section 5, we discuss a candidate for a goldstino field on an D3 probing a GKP

compactification. Some concluding remarks are given in section 6 and our conventions are

summarized in appendix A.

2 Non-supersymmetric perturbations to GKP compactifications

In this section, we discuss non-supersymmetric perturbations to N4 = 1 GKP compact-

ifications [8] of the type-IIB superstring, with an emphasis on those resulting from the

addition of a number of D3-branes that is small compared to the amount of flux in the su-

persymmetric case. GKP compactifications are of the form R3,1×wX
6 where ×w indicates

a non-trivial fibration of R3,1 over the compact internal space X6. The metric takes the

familiar warped ansatz

ds210 = ĝMNdxMdxN = e2A(y)ηµνdx
µdxν + e−2A(y)gmndy

mdyn. (2.1a)

The geometry is supported by a 3-form flux G(3) = F(3) + ie−φH(3) without legs on the

external space R3,1 and a 5-form flux

F(5) =
(
1 + ∗̂

)
F(5), F(5) = dα ∧ dvolR3,1 , (2.1b)

in which dvolR3,1 is the volume form for R3,1 and ∗̂ is the 10d Hodge-∗ built from the metric

ĝMN . Our interest is in the regime where dimensional reduction on the X6 produces an

effective 4d theory. Such a theory will exhibit N4 ≥ 1 if [8, 54]

1. X6 is a Kähler manifold and gmn is the associated Kähler metric,

2. the 3-form flux is primitive and has Hodge type (2, 1) and is therefore imaginary

self-dual (ISD), iG(3) = ∗G(3), where ∗ (without the hat) denotes the 6d Hodge-∗
built from gmn,

3. the 5-form flux and the warp factor are related by e4A = α,

4. the axiodilaton τ = C(0) + ie−φ varies holomorphically over X6.

A construction satisfying these requirements is called a GKP compactification (though see

footnote 3). These compactifications must in addition contain certain sources (D3-branes,

O3-branes, or 7-branes) to ensure the cancellation of tadpoles; however, these sources will

not play a significant role in our analysis.

As reviewed in the introduction, GKP compactifications are a particularly interesting

region of the landscape since, while they are based upon the comparatively well-understood

Kähler and Calabi-Yau geometries, the presence of non-trivial 3-form flux can stabilize

the complex structure of X6, the axiodilaton, and the deformation moduli for 7-branes.

Additionally, these constructions can accommodate low-scale supersymmetry breaking as

large amounts of flux can produce strongly warped regions. Since ISD flux carries D3
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charge, D3s, which carry the opposite-sign charge and hence break the supersymmetry

preserved by GKP, are naturally attracted to the regions of strongest warping and so the

corresponding scale of supersymmetry breaking can be highly redshifted. In some cases,

when D3-branes are absent, the D3s will be perturbatively stable, only decaying into flux

and D3-branes after undergoing a Myers-like effect [55] followed by a quantum tunneling

process [25].

In order to perform a detailed study of such constructions, the influence of such D3-

branes on the background must be considered. The most studied example is the Klebanov-

Strassler (KS) geometry [56] which results from ISD 3-form flux threading the deformed

conifold. The backreaction of a small number of D3s on the KS geometry has been a

topic of recent interest [26, 37–39, 41, 42]. Due to the presence of the background 3-form

flux of KS, the addition of the D3s produces a non-ISD flux and in fact, near the anti-

branes, all Hodge types of 3-form flux are present [37]. Furthermore, it was pointed out

in [27] that the D3s perturb the metric in such a way that the internal metric gmn is no

longer Hermitian with respect to the original complex structure: the backreaction of the

D3s includes non-vanishing metric components gzz and gz̄z̄ when expressed in terms of the

complex coordinates of the original deformed conifold.

The fact that such non-Hermitian components will generically appear after the addition

of D3s can be easily seen from the type-IIB equations of motion. Let us again consider

the ansatz (2.1) but relax the conditions for supersymmetry. It is useful to construct

the combinations

Φ± = e4A ± α, G± =
(
∗6 ± i

)
G(3), Λ = Φ+G− +Φ−G+. (2.2)

The equations of motion and Bianchi identities (A.4) can be expressed in these fields

as [8, 57]

0 =∇2Φ± −
(
Φ+ +Φ−

)2

16 Im τ
|G±|2 −

2

Φ+ +Φ−
|∂Φ±|2 , (2.3a)

0 =dΛ +
i

2 Im τ
dτ ∧

(
Λ + Λ

)
, (2.3b)

0 =d
(
G(3) − τH(3)

)
, (2.3c)

0 =∇2τ +
i

Im τ
(∂τ)2 +

i

8

(
Φ+ +Φ−

)
G+ ·G−, (2.3d)

0 =Rmn − 1

2 (Im τ)2
∂(m τ∂n)τ̄ −

2

(Φ+ +Φ−)
2∂(mΦ+∂n)Φ−

+
Φ+ +Φ−

16 · 2! Im τ

[
G

pq
+(m G

−n)pq +G
pq

−(m G+n)pq

]
, (2.3e)

in which, for simplicity of presentation, we have omitted terms resulting from localized

sources. For p-forms we use the notation

X(p) · Y(p) =
1

p!
Xm1···mp

Y m1···mp ,
∣∣X(p)

∣∣2 = X(p) ·X(p). (2.4)
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Note that we have defined G± =
(
G±

)∗
so that, for example, G+ is imaginary anti-self-

dual (IASD). Here and throughout we perform contractions and construct connections

with the unwarped metric gmn unless otherwise noted. N4 ≥ 0 GKP compactifications are

characterized by the conditions Φ− = 0 and G− = 0 with N4 ≥ 1 having the additional

requirement that G(3) is a primitive (2, 1)-form. For non-vanishing Φ+, we can recast the

equation of motion for Φ+ as [58]

0 = ∇2Φ−1
+ +

1

16 Im τ

(Φ+ +Φ−)
2

Φ2
+

|G+|2 +
2

Φ+

[
1

(Φ+ +Φ−)
− 1

Φ+

](
∂Φ+

)2
. (2.5)

For the moment, we will specialize to the case in which we start with G− = 0, Φ− = 0

and τ is a constant so that X6 is a Calabi-Yau. We can then consider a perturbation

such as, for example, the addition of a small number of D3-branes. Then remarkably the

linearized equations of motion for the perturbations take a nearly triangular form [58]

∇2δΦ− =0, (2.6a)

d
(
Φ+δG−

)
= − d

(
δΦ−G+

)
, (2.6b)

(
∗+ i

)
δG− =0, (2.6c)

∇2δτ = − i

8
Φ+

(
G+ · δG−

)
, (2.6d)

−1

2
∆δgmn =

2

Φ2
+

∂(mΦ+∂n)δΦ− − Φ+

16 · 2!

[
G

pq
+(m δG

−n)pq + δG
pq

−(m G+n)pq

]
, (2.6e)

dδG+ =d
(
δG− + 2iδτH(3)

)
, (2.6f)

(
∗ − i

)
δG+ =0, (2.6g)

−∇2δΦ−1
+ =

(
δ∇
)2
Φ−1
+ − 1

16
Im δτ |G+|2

+
1

16

[
G+ · δG+ + δG+ ·G+ +

1

2!
G+m1n1p1G+m2n2p2g

m1m2gn1n2δgp1p2
]

+

[
1

8
Φ−1
+ |G+|2 − 2Φ−4

+

(
∂Φ+

)2
]
δΦ−. (2.6h)

Here δΨ denotes a perturbation to a field, Ψ → Ψ+ δΨ and

∆δgmn := ∇2δgmn +∇m∇n

(
gpqδgpq

)
− 2∇p∇(m δgn)p. (2.7)

We have additionally set the unperturbed constant axiodilaton to τ = i and again omitted

the explicit appearances of source terms. Although we will not make use of it, this pattern

of triangularity continues order-by-order in perturbation theory.7

7We note that the equations of motion may not always be truly triangular. For example, in general

the metric is characterized by many functions and (2.6e) will generically not have any special structure for

those functions. This is the case for perturbations to the KS geometry [38] except in the nearly-conformal

region [58].
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This form of the equations of motion is useful since it is precisely the mode Φ− that

is “directly” sourced by a D3-brane in the sense that only the equation of motion for Φ−

has a δ-function term in the presence of D3s. That an D3 sources Φ− can be most easily

seen by placing an D3 in flat space where the only field that becomes non-trivial is Φ−.

From (2.6), we see that in the presence of G+ 6= 0, once δΦ− is non-zero, δG− is non-zero

as well, and indeed δG− generically possess all Hodge types.8 The presence of δG− 6= 0

gives a source for δτ and generically both the real and imaginary components are non-

vanishing.9 Inserting the directly sourced δΦ− and the indirectly sourced δG− into the

equation for δgmn generically forces all components to be non-vanishing. For example, a

(2, 1) G+ and (3, 0) δG− act as a source δgz̄z̄ component.10 Similarly, Φ+ and Φ− are real

functions and so δΦ− 6= 0 should also generically source all components of the metric.11

Following the remainder of the equations as above also leads us to conclude that G+ and

Φ+ are perturbed from the original background values. We note also that this argument

implies that an initial singularity in δΦ−, such as that appearing in [26, 37, 38], is felt by

all perturbed fields, even if Φ− is the only field directly sourced.

The presence of the singularities in the fields not directly sourced by the D3s is perhaps

surprising and has been a topic of recent discussion [38–41, 61–64]. The D3s directly source

δΦ− and so the corresponding divergence is as physically acceptable as the divergence in the

electric field at the position of a point-charge in classical Maxwell theory. In contrast, the

3-form flux and other fields are not directly sourced by these fields and so the corresponding

singularities might be seen as suspect. Here we take the point of view that, due to the

non-linearity of the supergravity equations of motion and the fact that all of the fields

couple to each other, once one sort of singularity is accepted, divergences in all other

fields must be accepted as well. Indeed, presumably there exists some stringy mechanism

that resolves the singularity in Φ− (for example, an D3, even in flat space, should have

some finite width comparable to the string length) and once Φ− is rendered finite, there

is no reason to expect that any of the other singularities will be present (however, the

linearized analysis of the supergravity equations of motion is expected to be inapplicable).

We therefore view it is as plausible that the divergences will be resolved in a full treatment

and so accept the apparent singularities as being a consequence of an incomplete treatment

(see also [42] for responses to the objections related to these divergences). Nevertheless,

because supergravity may break down near the position of D3s, we will assume in what

follows that we are evaluating our fields sufficiently far away from any such sources.

To summarize, we have argued that in a generic N4 = 1 GKP compactification, the

addition of an D3-brane will cause the configuration to move away from all of the super-

8This genericity is violated in, for example, [26] where the imposed R-symmetry requires G(3,0) = 0

(where the Hodge-type is given in terms of the original complex structure).
9For the example of KS, τ is pure imaginary after the addition of the D3 brane since H(3) and F(3)

thread dual cycles and so F(3) ·H(3) ∝ Im (G+ ·G
−
) = 0 automatically, even after the perturbation.

10In [26], there was a non-vanishing δgz̄z̄ even though no (3, 0) flux was sourced. This is because the left-

hand side of (2.6e) involves all components of the perturbed metric and so even sourcing the z̄z component

of ∆δgmn will generically result in non-vanishing δgz̄z̄.
11Note that at least in some simple fluxless cases such as a D3-D3 pair in flat space, we can choose

a coordinate system such that the internal space is still Hermitian with respect to the original complex

structure, but at the expense of having a different scaling factor for the transverse metric [26, 59, 60].
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symmetry conditions, perturbing all Hodge-types of flux, causing the axiodilaton to be

non-vanishing, and forcing the internal metric to be no-longer Hermitian, even though the

D3 itself directly sources only Φ−. For simplicity and since the equations of motion are

almost triangular, we have worked in the special case in which the axiodilaton is constant

in the unperturbed geometry. However, it would be rather surprising if in the more generic

case of varying axiodilaton that these perturbations were not produced. Hence, it what

follows we will drop the assumption of constant axiodilaton. Further, although we have

emphasized in this section perturbations due to the presence of D3-branes, the analysis

of the D3-action will be independent of the source of these perturbations, though we will

assume that supergravity is still applicable.

Note that in the above discussion, we have neglected the influence of the non-

perturbative effects that are required to stabilize the Kähler structure [10]. Such non-

perturbative reactions will backreact on the geometry in such a way that it will be better

described as a generalized complex geometry [57, 65, 66]. Although such effects might

naively seem to be negligible, they may spoil important properties such as sequestering [67].

In principle, we could try to fold the backreaction of the non-perturbative effects into the

perturbations of GKP that in the above we attributed to the supersymmetry-breaking

sources. However, the points that we wish to make are independent of whether or not the

Kähler structure is in fact stabilized and so we will leave the incorporation of such effects

for future work.

3 Effective action for D3s

In this section, we consider the effective action for a stack of coincident D3-branes probing a

perturbation to anN4 ≥ 1 GKP compactification. Our analysis is similar to that performed

in [43, 50, 51] (see also [52, 53]) and indeed we recover many of the same results, except

that we take into account the fact that non-supersymmetric fluxes will generically cause

the internal metric to no longer be Hermitian with respect to the unperturbed complex

structure. We perform the analysis for both probe D3-branes and D3-branes but will

frequently, in this section, use “D3” to denote a 3-brane of either charge. In section 4, we

will re-express the resulting action for a D3 in the language of softly-broken supersymmetry

and comment on how our results relate to those appearing elsewhere in the literature.

3.1 Bosonic action

The effective action for the light open-string bosonic fluctuations of a single Dp-brane in

either type-II string theory consists of the familiar DBI and Chern-Simons (CS) terms

which in the 10d Einstein frame take the form

SDp =S
DBI
Dp + SCS

Dp , (3.1a)

SDBI
Dp =− τDp

∫
dp+1ξ e

p−3
4

φ
√
− det

(
M̂αβ

)
, (3.1b)

SCS
Dp =± τDp

∫
P

[∑

n

C(n) ∧ eB(2)

]
∧ eℓ

2
s f(2) , (3.1c)
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where the upper (lower) sign applies for a Dp-brane (Dp-brane). The integral is over the

worldvolume of the brane and the tension and charge of a Dp brane are given by τ−1
Dp =

1
2π ℓ

p+1
s gs. Away from orientifold planes, the bosonic fields consist of a U (1) gauge-field

A(1) with field strength f(2) = dA(1) and the transverse deformations which enter through

the pullback of bulk fields to the worldvolume denoted by P. ξα are the worldvolume

coordinates and choosing the static gauge we have

P
[
vα
]
= vα + ℓ2svi∂αϕ

i, (3.2)

where we have defined the worldvolume scalars ϕi = ℓ−2
s Xi in which Xi are coordinates

transverse to the worldvolume. Here we have defined

M̂αβ = P
[
Êαβ

]
+ e−φ/2ℓ2sfαβ , ÊMN = ĝMN + e−φ/2BMN . (3.3)

For a stack of N Dp-branes the gauge symmetry on the common worldvolume is pro-

moted to a U (N) gauge symmetry and the transverse deformations ϕi are promoted to

adjoint-valued fields. The DBI and CS actions then become modified to [55]

SDBI
Dp =− τDp

∫
dp+1ξ Str

{
e

p−3
4

φ
√
− det

(
M̂αβ

)
det
(
Qi

j

)}
, (3.4a)

SCS
Dp =± τDp

∫
Str

{
P

[
eiℓ

2
s ι

2
ϕ

(∑

n

C(n) ∧ eB(2)

)]
∧ eℓ

2
s f(2)

}
. (3.4b)

In the static gauge in which we work, we redefine

M̂αβ = P
[
Êαβ + eφ/2Êαi

(
Q−1 − δ

)ij
Êjβ

]
+ e−φ/2ℓ2sfαβ , (3.5)

in which

Qi
j = δij + iℓ2s

[
ϕi, ϕk

]
eφ/2Êkj . (3.6)

The field strength is modified to f(2) = dA(1) − iA(1) ∧ A(1) and the pullback to a non-

Abelian pullback

P
[
vα
]
= vα + ℓ2sviDαϕ

i, (3.7)

where

Dα = ∂α − i
[
Aα, ·

]
, (3.8)

is the usual gauge-covariant derivative acting on adjoint-valued fields. ιϕ denotes an inte-

rior product,

ιϕ
(
vMdxM

)
= ϕivi, ι2ϕ

(
1

2
vMNdxMdxN

)
=

1

2

[
ϕj , ϕi

]
vij . (3.9)

Note that due to the non-Abelian nature of the theory, ι2ϕ 6= 0. A bulk field appearing in

the D-brane action is to be interpreted as a non-Abelian Taylor expansion,

Ψ
(
ϕ
)
=

∞∑

n=0

ℓ2ns
n!
ϕi1 · · ·ϕin

[
∂i1 · · · ∂inΨ

(
ϕ
)]

ϕ=0

. (3.10)
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Finally, Str denotes a particular trace prescription [55]: before tracing over gauge indices,

the expression is symmetrized over factors of fαβ , Dαϕ
i,
[
ϕi, ϕj

]
and the ϕi appearing in

the Taylor expansion. Note that this allows us to treat these objects as commuting.

Our goal is to deduce the effective action to leading order in ℓs. That is, the bosonic

action consists of an infinite series of irrelevant operators that can be thought of as arising

from integrating out massive string modes. Since our interest is the long-wavelength theory,

we will consider only the relevant and marginal operators. Furthermore, the coefficients of

these operators generically have expansions of the schematic form

c ∼
∑

n

ℓns ∂
nΨ, (3.11)

in which Ψ indicates a bulk field and ∂n indicates n derivatives. Since we wish to work

in the supergravity regime, we must consider backgrounds where ℓs corrections to the

supergravity action (A.4) can be neglected, and thus we must have that the derivatives

of bulk fields are small with respect to the string scale, at least when evaluated near the

position of the probe branes. Therefore we can truncate the sum (3.11) after a certain

number of terms. Note that for both expansions, we are comparing energies to ℓ−1
s and

so, although it’s dimensionful, we can expand in powers of ℓs as a proxy for the double

expansion in powers of open-string fields and closed-string curvatures. As evidenced by

explicit examples [26, 37–42, 61–64] and discussed in the previous section, the closed-

string background will generically be divergent at the position of the D3s (at least in the

approximation of linearized supergravity) and so we will work far from the anti-branes.

For the case of interest p = 3 and we can replace the worldvolume indices α, β with the

usual R3,1 indices µ, ν and the transverse indices with the internal indices of X6 m,n. Then

M̂µν = e2A(ϕ)ηµν + e−φ(ϕ)/2ℓ2sfµν + ℓ4s
(
e−2A(ϕ)gmn

(
ϕ
)
+ e−φ(ϕ)/2Bmn

(
ϕ
))
Dµϕ

mDνϕ
n,

(3.12)

since Bµν = 0, Êµm = 0 and Q = 1 +O
(
ℓ2s
)
. Then, making use of the identity

√
det(1 +M) = 1 +

1

2
tr
(
M
)
− 1

4
tr
(
M2
)
+

1

8

[
tr
(
M
)]2

+ · · · , (3.13)

we have

√
− det

(
M̂µν

)
= e4A(ϕ) +

ℓ4s
2
gmn (ϕ)Dµϕ

mDµϕn +
ℓ4se

−φ(ϕ)

4
fµνf

µν , (3.14)

where we have made use of the anti-symmetry of f(2) and B(2). From this expression, we see

that we are interested in an expansion through O
(
ℓ4s
)
. Performing the Taylor expansions,

√
− det

(
M̂µν

)
=
1

2

(
Φ+ +Φ−

)
+
ℓ4s
2
gmnDµϕ

mDµϕn +
ℓ4s Im τ

4
fµνf

µν

+
ℓ2s
2
∂m
(
Φ+ +Φ−

)
ϕm +

ℓ4s
4
∂m∂n

(
Φ+ +Φ−

)
ϕmϕn. (3.15)

Our notation is such that closed-string fields without an expressed ϕ dependence are to be

evaluated at ϕ = 0 and external indices are contracted only with ηµν . Note that the Taylor
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expansion of the warp factor demonstrates the point discussed regarding (3.11): further

expansion leads to operators that are relevant and marginal (as well as irrelevant), but

their coefficients are suppressed by higher orders in derivatives of the warp factor which

we take to be small compared to the string scale.

Similarly,

√
det
(
Qm

n

)
= 1− iℓ2s

2
Bmn

(
ϕ
)[
ϕm, ϕn

]
− ℓ4s

4
e−4A(ϕ)eφ(ϕ)gmn

(
ϕ
)
gpq
(
ϕ
)[
ϕm, ϕp

][
ϕn, ϕq

]

− ℓ4s
8
Bmn

(
ϕ
)
Bpq

(
ϕ
)[
ϕm, ϕn

][
ϕp, ϕq

]
, (3.16)

where we have made use of the symmetry properties of gmn and Bmn. We can choose a

gauge so that B(2) = 0 at ϕ = 0, and so this result simplifies to

√
det
(
Qm

n

)
= 1− iℓ4s

2
∂pBmnϕ

p
[
ϕm, ϕn

]
− ℓ4s

2 (Φ+ +Φ−) Im τ
gmngpq

[
ϕm, ϕp

][
ϕn, ϕq

]
.

(3.17)

Using that the trace is cyclic we can write

∂mBnp tr
{
ϕm
[
ϕn, ϕp

]}
=

2

3
Hmnp tr

(
ϕmϕnϕp

)
. (3.18)

Putting things together,

SDBI
D3 = −τD3ℓ

4
s

∫
d4x tr

{
Φ+ +Φ−

2ℓ4s
+

Im τ

4
fµνf

µν +
1

2
gmnDµϕ

mDµϕn

+
1

2ℓ2s
∂m
(
Φ+ +Φ−

)
ϕm +

1

4
∂m∂n

(
Φ+ +Φ−

)
ϕmϕn

+
i (Φ+ +Φ−)

24 Im τ

(
G+ −G− +G+ −G−

)
mnp

ϕmϕnϕp

− 1

4 Im τ
gmngpq

[
ϕm, ϕp

][
ϕn, ϕq

]}
. (3.19)

Let’s now turn to the CS action (3.4b). In type-IIB, n takes on even values,

n = 0, 2, 4, 6, 8 where C(6) and C(8) are the redundant magnetic duals of C(2) and

C(0) respectively.

For n = 0, we write the contribution to the action as

S0
D3 = ±τD3

∫
Str

{
P

[(
1 + iℓ2s ι

2
ϕ − ℓ4s

2
ι4ϕ

)(
C(0)

(
ϕ
)
∧ eB(2)(ϕ)

)]
∧

(
1 + ℓ2sf(2) +

ℓ4s
2
f(2) ∧ f(2)

)}
, (3.20)

where we have omitted terms that will only contribute at O
(
ℓ6s
)
or higher. The only terms

that contribute to the action are those that, after expanding eB(2) , are 4-forms. Since B(2)

has no legs on R3,1, it contributes ℓ4s from the pullback and then another factor of ℓ2s from

the fact that we chosen the gauge such the potential vanishes at the position of the probe

D3-branes. Thus terms in which B(2) contributes to “soak up” the legs of the integral are
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higher order in ℓ2s and so the 4-form must be formed entirely from f(2) ∧ f(2). Any scalars

resulting from the interior product acting on eB(2) are again higher order. The result for

the n = 0 contribution through O
(
ℓ4s
)
is then

S0
D3 = ∓ℓ

4
sτD3

8

∫
d4x tr

{
Re τ ǫµνρσfµνfρσ

}
. (3.21)

We can perform a similar argument for the n = 2 contribution but since C(2) has no

legs on the non-compact directions, there is no contribution through O
(
ℓ4s
)
.

For the n = 4 contribution, we write C(4) = C ext
(4) + C int

(4) , where from (2.1) C ext
(4) =

α dvolR3,1 while C int
(4) has all four legs on the internal manifold. Using the same reasoning

as above, we find that C int
(4) does not contribute to action at ℓ4s order. For C ext

(4) , we have

S ext
D3 = ±τD3

∫
Str

{
P

[(
1 + iℓ2s ι

2
ϕ − ℓ4s

2
ι4ϕ

)(
C ext
(4)

(
ϕ
)
∧ eB(2)(ϕ)

)]
∧

(
1 + ℓ2sf(2) +

ℓ4s
2
f(2) ∧ f(2)

)}
. (3.22)

Now, since ιϕC
ext
(4) = 0, C ext

(4) soaks up all of the legs and this becomes

S ext
D3 = ±τD3

∫
Str

{
C ext
(4)

(
ϕ
)
∧
[
1 + iℓ2s ι

2
ϕB(2)

(
ϕ
)
− ℓ4s

4
ι4ϕ

(
B(2)

(
ϕ
)
∧B(2)

(
ϕ
))]}

. (3.23)

We can make another gauge choice to set the constant part of C ext
(4) to zero, and so combining

this with the similar gauge choice for B(2), the Taylor expansion gives

S ext
D3 = ±τD3ℓ

4
s

∫
d4x tr

{
1

2ℓ2s
∂m
(
Φ+ − Φ−

)
ϕm +

1

4
∂m∂n

(
Φ+ − Φ−

)
ϕmϕn

}
. (3.24)

For n = 6, the corresponding potential is defined by

F(7) = dC(6) + C(4) ∧H(3) = −∗̂(s)F(3), (3.25)

in which ∗̂(s) is the 10d Hodge-∗ in the string frame. We find12

F(7) = −e4A+φdvolR3,1 ∧ ∗F(3), (3.26)

and thus C(6) has four legs on R
3,1 and two legs on the internal space. Setting the constant

part of C(6) to be a constant and applying reasoning similar to the C ext
(4) part gives the

leading order contribution

S6
D3 = ±iτD3ℓ

2
s

∫
Str

{
ι2ϕC(6)

(
ϕ
)}
. (3.27)

Writing C(6) = dvolR3,1 ∧ C̃(2), the leading-order contribution is

S6
D3 = ∓ iτD3ℓ

4
s

2

∫
d4x tr

{
∂mC̃npϕ

m
[
ϕn, ϕp

]}
. (3.28)

12Recall that our notation is that unadorned ∗ means the Hodge-∗ built from the 6d unwarped metric gmn.
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Following the same steps that lead to (3.18) and using dC̃(2) = −e4A+φ ∗F(3) this term be-

comes

S6
D3 = ± iτD3ℓ

4
s

24

∫
d4x tr

{
Φ+ +Φ−

Im τ

(
G+ +G− +G+ +G−

)
mnp

ϕmϕnϕp

}
. (3.29)

Finally, we consider n = 8 where the potential is defined via

F(9) = dC(8) + C(6) ∧H(3) = ∗̂(s)F(1). (3.30)

Setting the constant part of C(8) to vanish, the potential does not contribute to the action

at this order as there is a factor of ℓ4s coming just from the interior product.

Combining these, we find

SCS
D3 = ±τD3ℓ

4
s

∫
d4x tr

{
− Re τ

8
ǫµνρσfµνfρσ +

1

2ℓ2s
∂m
(
Φ+ − Φ−

)
ϕm

+
1

4
∂m∂n

(
Φ+ − Φ−

)
ϕmϕn

+
i (Φ+ +Φ−)

24 Im τ

(
G+ +G− +G+ +G−

)
mnp

ϕmϕnϕp

}
. (3.31)

Adding this with (3.19), we get the 4d Lagrangian for the bosonic sector

LB = tr

{
− 1

4g2
fµνf

µν − ϑ

64π2
ǫµνρσfµνfρσ − 1

2
KmnDµϕ

mDµϕn − V0 − Tmϕ
m

− 1

2
m2

B,mnϕ
mϕn − i

3!
Cmnpϕ

mϕnϕp +
g2

4
KmnKpq

[
ϕm, ϕp

][
ϕn, ϕq

]}
, (3.32)

in which

Kmn =
2π

gs
gmn, (3.33a)

g−2 =
2π

gs
Im τ, (3.33b)

ϑ =± 16π3

gs
Re τ, (3.33c)

V0 =
π

ℓ4sgs
(Φ+ +Φ−) , (3.33d)

Tm =
2π

ℓ2sgs
∂mΦ∓, (3.33e)

m2
B,mn =

2π

gs
∂m∂nΦ∓, (3.33f)

Cmnp =∓ π

gs

Φ+ +Φ−

Im τ

(
G∓ +G∓

)
mnp

, (3.33g)

where again the upper (lower) sign applies for D3-branes (D3-branes).
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3.2 Fermionic action

In this subsection, we consider the fermoinic modes on the D3. We begin with the Dirac-

like action of [68–70] (see also [71]). Although this action is applicable only in the Abelian

case of a single Dp-brane, it is enough to deduce the kinetic terms and mass terms. The

analogous action in the non-Abelian case is not well-understood; however we will make use

of a portion of the action that follows from consistency with T-duality to determine the

Yukawa couplings.

3.2.1 Abelian case

To leading order in ℓs, the fermionic action for a single Dp-brane in the Einstein frame is [70]

SF
Dp = iτDpℓ

4
s

∫
dp+1ξ e

p−3
4

φ
√
− det

(
M̂αβ

)
Θ̄PDp

± P

[(
M̂−1

)αβ
Γ̂β

(
D̂α +

1

4
Γ̂αÔ

)
−Ô

]
Θ,

(3.34)

in which Θ is a double 10d Majorana-Weyl spinor (see appendix A) and again the upper

(lower) sign applies to a Dp-brane (Dp-brane).13 Note that in (3.34) we have redefined Θ

with respect to [70] so that an explicit power of ℓs appears in order to match the one that

appears in the bosonic action (3.32). M̂αβ is given by (3.3) (taken in the limit ℓs → 0)

while in IIB14

M̂αβ = P
[
ĝαβ
]
+ e−φ/2FαβΓ(10) ⊗ σ3, (3.35)

where

F(2) = P
[
B(2)

]
+ ℓ2sf(2). (3.36)

Γ(10) is the 10d-chirality operator while σ3 acts on the extension space as discussed in

appendix A. The projection operator takes the form

PDp
± =

1

2

(
1 ±Γ̆−1

Dp

±Γ̆Dp 1

)
, (3.37a)

in which

Γ̆Dp =i(p−2)(p−3)Γ
(0)
DpΛ

(
F
)
, (3.37b)

Γ
(0)
Dp =

1

(p+ 1)!
ε̂α1···αp+1Γ̂

α1···αp+1 , (3.37c)

Λ
(
F
)
=

√
− det

(
P
[
ĝαβ
])

√
− det

(
M̂αβ

)
∑

q

e−qφ/2

2qq!
Fα1β1 · · · Fαqβq

Γ̂α1β1···αqβq . (3.37d)

The operators D̂M and Ô are related to the supersymmetry transformations of the gravitino

and dilatino (A.7).

For a D3 probing (2.1) with 〈fµν〉 = 0, we have to leading order in ℓs F(2) = 0 and

M̂µν = e2Aηµν . This latter fact implies that Ô cancels out of the action. Also to this order,

13The sign difference in the projection operator with respect to [70] is a consequence of our different

convention for the Levi-Civita tensor.
14In IIA, we make the replacement σ3

→ I2.
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only the leading term in Λ (F) contributes and so we take Λ (F) = 1, giving Γ̆D3 = −iΓ(4).

Furthermore, in the background (2.1), we have

D̂µ = ∇̂µ − 1

16
eφ/2Γ̂µĜ+ +

1

16
/̂F (5)Γ̂µ

(
iσ2
)
, (3.38)

where, as in (A.8),

G± = /̂F (3)σ
1 ± e−φ /̂H(3)σ

3, (3.39)

and ∇̂µ is the covariant derivative. As is familiar from the Green-Schwarz superstring, the

fermionic action (3.34) is subject to a gauge redundancy known as κ-symmetry

Θ ∼ Θ+ PDp
± κ, (3.40)

in which κ is an arbitrary double Majorana-Weyl spinor. We can use this to set

Θ =

(
θ

0

)
, (3.41)

in which θ is an ordinary Majorana-Weyl spinor. With this choice of κ-fixing, we find

SF
D3 =

iτD3ℓ
4
s

2

∫
d4x e4Aθ̄

{
Γ̂µ∇̂µ ∓ i

16
Γ(4)Γ̂

µ /̂F (5)Γ̂µ − eφ/2

4

(
±iΓ(4) /̂F (3) + e−φ /̂H(3)

)}
θ.

(3.42)

From (A.14) we have

∇̂µ = ∂µ +
1

2
∂mA Γ̂µΓ̂

m = ∂µ +
e−2A

16
∂m
(
Φ+ +Φ−

)(
γµγ(4) ⊗ γm

)
, (3.43)

where we have used the decomposition (A.26) and γµ and γm are the unwarped γ-matrices.

On the other hand, from (2.1) we have

Fµνρσm = εµνρσ∂mα, Fmnpqr = −e−8Aε s
mnpqr ∂sα, (3.44)

where ε123456 =
√

det (gmn) and similarly for εµνρσ. Hence,

/̂F (5) = −ie−3A∂mα
(
I4 ⊗ γm

)(
1− Γ(10)

)
. (3.45)

Using that Γ(10)θ = +θ, we find

/̂F (5)Γ̂µθ = −ie−2A∂m
(
Φ+ − Φ−

)(
γµ ⊗ γm

)
θ. (3.46)

Thus, the action becomes

SF
D3 =

iτD3ℓ
4
s

2

∫
d4x θ̄

{
e3A/∂ ⊗ I8 +

eA

2
∂mΦ∓γ(4) ⊗ γm

∓ ie7A+φ/2

8

[(
I4 ∓ γ(4)

)
⊗ /G(3) +

(
I4 ± γ(4)

)
⊗ /G(3)

]}
θ, (3.47)
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where, for example, /G(3) = 1
3!Gmnpγ

mnp involves only unwarped SO (6) γ-matrices and

similarly /∂ = γµ∂µ. If η± is a 6d Weyl spinor satisfying γ(6)η± = ±η±, then

γmnpη± = ± i

3!
ǫmnp

stlγ
stlη±, (3.48)

and so for a 3-form X(3),

/X(3)η± = ∓i /̃X(3)η±, (3.49)

in which X̃(3) = ∗X(3). Since Γ(10)θ = +θ, we have Γ(4)θ = Γ(6)θ and so

SF
D3 =

iτD3ℓ
4
s

2

∫
d4x θ̄

{
e3A/∂ ⊗ I8 +

eA

2
γ(4) ⊗ /∂Φ∓

+
e7A+φ/2

16

[(
I4 ∓ γ(4)

)
⊗ /G∓ −

(
I4 ± γ(4)

)
⊗ /G∓

]}
θ. (3.50)

The fermionic modes on the D3 can be decomposed into a gaugino λ and a number of

modulini ψm, the fermionic partners of the transverse deformations of the worldvolume,

θ = θg + θm. (3.51)

Following [50], we can determine how to extract these modes by considering the super-

symmetry transformations. To this end, we consider the case where the metric and fluxes

satisfy the conditions for N4 = 1 supersymmetry. Then the solution to the Killing spinor

equations

D̂M ǫ̂ = 0, Ôǫ̂ = 0, (3.52)

takes the form

ǫ̂ =

(
ǫ̂1
ǫ̂2

)
, (3.53)

where [54]

ǫ̂1 =eA/2

(
0

ǫα

)
⊗ η− − eA/2

(
i ǭα̇

0

)
⊗ η+,

ǫ̂2 = − i eA/2

(
0

ǫα

)
⊗ η− − i eA/2

(
i ǭα̇

0

)
⊗ η+, (3.54)

in which ǫα is an arbitrary constant spinor, η− is a negative chirality spinor satisfying

0 = ∇mη− +
i

4
eφFmη−, (3.55)

and η+ := B∗
6η

∗
−. In the string frame the supersymmetry transformations of the D3 bosonic

fields take the schematic forms

δǫAµ ∼ Θ̄(s)Γ̂(s)
µ ǫ̂(s), δǫΦ

m ∼ Θ̄(s)Γ̂m(s)ǫ̂(s) (3.56)

Moving to the Einstein frame, ĝMN = e−φ/2ĝ
(s)
MN , ǫ̂ = e−φ/8ǫ̂(s), Θ = e−φ/8Θ(s), we have

δǫAµ ∼ eφ/2Θ̄Γ̂µǫ̂, δǫΦ
m ∼ Θ̄Γ̂mǫ̂. (3.57)
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We wish to recover the usual N4 = 1 supersymmetry transformations

δAµ ∼ λγµǫ, δϕi ∼ ψiǫ, (3.58)

where we have used η− to define a complex structure characterized by the (3, 0) form

Ωmnp = η†−γmnpη+, (3.59)

and have denoted holomorphic and anti-holomorphic indices by i and ı̄. Then (3.58) is

recovered from (3.57) by taking

θg = a e−3A/2−φ/2

(
0

λα

)
⊗ η− − a e−3A/2−φ/2

(
i λ̄α̇

0

)
⊗ η+,

θm = b e−3A/2

(
0

ψi
α

)
⊗ Ωijkγ

jkη− − b e−3A/2

(
i ψ̄ı̄α̇

0

)
Ω̄ı̄̄k̄γ

̄k̄η+, (3.60)

in which a and b are normalization constants. Note that the form is taken to ensure that

θ is Majorana-Weyl.

Consider now the non-supersymmetric case. As discussed in the previous section,

generically, the addition of D3-branes will cause the metric to no longer be Hermitian with

respect to the complex structure. However, at least away from the D3, the spinor η−
defines an SU (3) structure15 and from this we can construct an almost complex structure

J n
m and a pre-symplectic structure ωmn. The existence of the former is equivalent to the

existence of a 3-form Ω and we have

Ωmnp = η†−γmnpη+, ωmn = iη†+γmnη+. (3.61)

We emphasize that, since in the non-supersymmetric case there is no natural spinor to

define them, these structures are defined by the spinor satisfying (3.55) where the derivative

is built from the unperturbed Kähler metric of the supersymmetric solution that we are

perturbing. We also note that we are no longer guaranteed that η− is well-defined and

non-vanishing everywhere in the internal space, and so these structures may only be locally

defined. By construction, these structures satisfy the compatibility condition

Ω ∧ ω = 0, (3.62)

which ensures that the metric that defines the Clifford algebra is Hermitian and we have

ωmn = Jmn. However, in general we are not ensured that either ω nor Ω is closed and so

the space is not immediately Kähler or indeed even complex. Therefore, we will not, for

now, explicitly denote indices that are holomorphic or anti-holomorphic with respect to

this perturbed almost complex structure and write

θm = b e−3A/2

(
0

ψm
α

)
⊗ Ωmnpγ

npη− − b e−3A/2

(
i ψ̄mα̇

0

)
⊗ Ω∗

mnpγ
npη+. (3.63)

15See, e.g., [72, 73] for reviews on G-structures.
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Note that although the notation suggests that there are now six independent Weyl fermions

in 4d, the fact that η− is Weyl, and therefore pure in the sense that it is annihilated by half

of the γ-matrices, implies that only three of them are independent. In the supersymmetric

case, the analogous statement is ψı̄ = 0 (since Ωı̄mn = 0) where ψı̄ should not be confused

with ψ̄ı̄ =
(
ψi
)∗
.

Consider now (3.50). The first operator that appears gives rise to the 4d kinetic terms

and we have

e3Aθ̄g /∂ ⊗ I8 θg = −a2e−φ

{
λ̄σ̄µ∂µλ η

†
−η− + λσµ∂µλ̄ η

†
+η+

}
. (3.64)

We normalize η− so that at the position of the D3,

η†−η− = η†+η+ = 1. (3.65)

The factor of e−φ is what is expected from the kinetic term of Aµ appearing in (3.32) and

so we get a properly normalized term by setting a = 1.

Next, we consider

e3Aθ̄g /∂⊗I8 θm = −ab e−φ/2

{
λ̄σ̄µ∂µψ

mΩmnp η
†
−γ

npη−+λσµ∂µψ̄
mΩ∗

mnp η
†
+γ

npη+

}
. (3.66)

Using (3.61), we see that these terms depend on Ωmnp ω
np which vanishes as a consequence

of compatibility (3.62) and the fact that Ω is IASD (using (3.61) and (3.49)). We then have

e3Aθ̄g /∂ ⊗ I8 θm = e3Aθ̄m /∂ ⊗ I8 θg = 0. (3.67)

The last kinetic term is

e3Aθ̄m /∂ ⊗ I8 θm

= −b2
{
ψ̄mσ̄µ∂µψ

nΩ∗
mpqΩnst η

†
−γ

qpγstη− + ψmσµ∂µψ̄
nΩmpqΩ

∗
nst η

†
+γ

qpγstη+

}
. (3.68)

Making use of the Clifford algebra, the fact that ∗ω = 1
2ω ∧ ω, the compatibility of the

almost complex and pre-symplectic structures, and the identity

γmnpqη± = ∓ i

2!
ǫmnpq

stγ
stη±, (3.69)

we have

Ω∗
mpqΩnst η

†
−γ

qpγstη− = 8Ω∗ pq
m Ωnpq = 8 |Ω|2

(
gmn − iωmn

)
, (3.70)

where we use the notation (2.4). Thus, setting

b =
1

4 |Ω| , (3.71)

we get

e3Aθ̄m /∂ ⊗ I8 θm = −1

2

(
gmn − iωmn

)
ψ̄mσ̄µ∂µψ

n − 1

2

(
gmn + iωmn

)
ψmσµ∂µψ̄

n. (3.72)
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Summarizing, after integrating by parts the kinetic terms are

− iτD3ℓ
4
s

∫
d4x

{
Im τ λ̄σ̄µ∂µλ+

1

2

(
gmn − iωmn

)
ψ̄mσ̄µ∂µψ

n

}
. (3.73)

The next operator in (3.50) is the coupling to Φ±. However, since θ is Majorana-Weyl,

any bilinear of the type

θ̄Γ̂M1···Mnθ, (3.74)

automatically vanishes unless n is 3 or 7 and hence this coupling vanishes.

The masses therefore come only from the 3-form contribution. For the D3 case,

S 3
D3 =

iτD3ℓ
4
s

32

∫
d4x e7A+φ/2θ̄

{(
I4 − γ(4)

)
⊗ /G− −

(
I4 + γ(4)

)
⊗ /G−

}
θ. (3.75)

Consider
e7A+φ/2

32
θ̄g
(
I4 − γ(4)

)
⊗ /G−θg = − ie4A−φ/2a2

16
λλ η†+ /G−η−. (3.76)

From (3.61), we have

η†+γmnpη− = −Ω∗
mnp, (3.77)

so this becomes
ie4A−φ/2a2

16
G− · Ωλλ, (3.78)

where again we recall (2.4). Note that if the complex structure were not perturbed this

would provide a coupling to the (3, 0) part of G(3) alone. However, in general this will

couple also to other (unperturbed) Hodge-types. The term in the action is

− τD3ℓ
4
s

∫
d4x

(Φ+ +Φ−) (Im τ)1/2

32

{
G− · Ωλλ+G− · Ω λ̄λ̄

}
. (3.79)

Next, we consider the terms that mix the gaugino and the modulini in the mass matrix

e7A+φ/2

32
θ̄g
(
I4 − γ(4)

)
⊗ /G−θm = − ie4Aab

16
λψm η†+ /G−Ωmnpγ

npη−. (3.80)

One can show η†+γmη− = 0 which implies that η†+γmnpqrη− = 0 and hence, using the

Clifford algebra, we find

η†+ /G−Ωmnpγ
npη− = −ΩmnpΩ

∗ p
tl G

ntl
− . (3.81)

Using

Ω∗ p
tl Ωmnp =

|Ω|2
4

[(
gtm − iωtm

)(
gln − iωln

)
−
(
glm − iωlm

)(
gtn − iωtn

)]
, (3.82)

we find

η†+ /G−Ωmnpγ
npη− =

i |Ω|2
2

(
gml + iωml

)
Gl

−ntω
nt. (3.83)
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Hence, this coupling corresponds to the non-primitive part of the (2, 1)-flux in the case

in which the complex structure is not perturbed.16 We get the same result coming from

θ̄m
(
I4 − γ(4)

)
⊗ /G−θm and hence the gaugino-modulino mass-mixing is

iτD3ℓ
4
s

∫
d4x

(Φ+ +Φ−) |Ω|
128

{
λψm

(
gml + iωml

)
Gl

−ntω
nt − λ̄ψ̄m

(
gml − iωml

)
G

l
−ntω

nt

}
.

(3.84)

The final contribution to the mass matrix is the modulino-modulino part. We have

e7A+φ/2

32
θ̄m
(
I4 − γ(4)

)
⊗ /G−θm = − ie4A+φ/2b2

16
ψmψnη†+Ωmpqγ

qp /G−Ωnstγ
stη−. (3.85)

Since ψmψn is symmetric in m and n this becomes

ψmψnη†+Ωmpqγ
qp /G−Ωnstγ

stη− = −4
∣∣Ω
∣∣2(gl(m − iωl(m

)
Ωn)pqG

lpq
− ψmψn, (3.86)

and so the corresponding part of the action is

−τD3ℓ
4
s

∫
d4x

Φ+ +Φ−

128 (Im τ)1/2

{
ψmψn

[
gl(m − iωl(m

]
Ωn)pqG

lpq
−

+ ψ̄mψ̄n
[
gl(m + iωl(m

]
Ω̄n)pqG

lpq
−

}
. (3.87)

This couples to the primitive (1, 2) flux in the case in which the complex structure is not

perturbed.

3.2.2 Non-abelian case

The previous analysis in the Abelian case suffices to determine the kinetic terms and mass

terms in the fermionic action, but in order to determine the Yukawa couplings we need

to move to the non-Abelian case. Unfortunately, the non-Abelian version of the fermionic

action (3.34) is not currently well-understood. However, we can argue from T-duality

and supersymmetry how the action (3.34) will be modified to leading order in ℓs for our

backgrounds of interest.17

To do so, we again consider a stack of N Dp-branes. As discussed in section 3.1, this

involves the promotion of the gauge symmetry to U (N) and the corresponding modifica-

tion to the connection A(1) and its curvature. This of course must be accompanied by the

modification of the ordinary derivative to the gauge-covariant derivative. However, since

we have taken
〈
f(2)
〉
= 0, there are no other modifications to marginal or relevant operators

from this modification to A(1). A further change is the promotion of the transverse fluctu-

ations to adjoint-valued fields and the Taylor expansion to non-Abelian Taylor expansions.

But, as even the usual Taylor expansion in (3.34) will lead only to ℓs-corrections, this again

will not be relevant. The fermionic variables themselves are promoted to adjoint-valued

16Recall however that generic Calabi-Yaus and other simply connected spaces have b1 = b5 = 0 (where

bi are the Betti numbers) and so do not support non-primitive flux since ω ∧X(3) = 0 automatically.
17In addition to the term that we consider here, there may be ℓs-suppressed Yukawa couplings arising

from, for example, performing a Taylor expansion of closed-string fields.
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fields and the non-Abelian action must contain a trace that is symmetrized according to

some procedure. Fortunately, since all of the operators discussed in the previous section are

quadratic in the fermions and, to this order in ℓs, the closed string fields are proportional

to the identity, this becomes a simple trace. As a result, part of the action is (c.f. (3.50))

SF
D3 ∋

iτD3ℓ
4
s

2

∫
d4x tr

[
θ̄

{
e3A/∂ ⊗ I8 +

eA

2
γ(4) ⊗ /∂Φ∓

+
e7A+φ/2

16

[(
I4 ∓ γ(4)

)
⊗ /G∓ −

(
I4 ± γ(4)

)
⊗ /G∓

]}
θ

]
. (3.88)

A further modification, required by gauge invariance, is the replacement of the ordinary

derivative ∂µ with the gauge-covariant derivative

Dα = ∂α − i [Aα, ] . (3.89)

This leads to an additional term in the action and in the absence of fluxes, the κ-fixed

string-frame action includes, for any p

τDpℓ
4
s

2

∫
dp+1ξ e−φtr

{
θ̄(s) Γ̂(s)α

[
Aα, θ

(s)
]}
. (3.90)

For this generalization to be consistent with T-duality under which Aα is exchanged with

transverse deformations ϕi, we must include the term

τDpℓ
4
s

2

∫
dp+1ξ e−φtr

{
θ̄(s)Γ̂

(s)
i

[
ϕi, θ(s)

]}
. (3.91)

We can confirm that at this level no symmetrization prescription is required since these

couplings agree with the expectation from supersymmetry (see also [74]). In the presence of

fluxes, it is natural, given the bosonic action (3.4), to expect that the worldvolume indices

ought to be contracted with M̂αβ (or M̂αβ before κ-fixing) while transverse indices ought

to be contracted with Êmn and its inverse. However, taking the gauge choice B(2) = 0 at

the position of the D3s, these effects do not contribute at this order in ℓs.

In summary, to leading order in ℓs, the effect of moving to the non-Abelian case in our

background is to replace (3.50) with

SF
D3 =

iτD3ℓ
4
s

2

∫
d4x tr

[
θ̄

{
e3A /D ⊗ I8 +

eA

2
γ(4) ⊗ /∂Φ∓ − i e3A+φ/2

(
γ(4) ⊗ γm

)[
ϕm, ·

]

+
e7A+φ/2

16

[(
I4 ∓ γ(4)

)
⊗ /G∓ −

(
I4 ± γ(4)

)
⊗ /G∓

]}
θ

]
. (3.92)

The factors of eφ arise from moving to the 10d Einstein frame. The same sign for the

Yukawa applies for both the D3 case and the D3 case since it results from the supersym-

metrization of the DBI part of the bosonic action which is independent of the sign of the

D3-brane charge.

For the kinetic and mass terms, the modification from the Abelian case is minimal

since, in our normalization, the generators satisfy tr
(
T aT b

)
= δab. However, the Yukawa
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couplings involve further analysis. Note that because of the non-trivial gauge structure, the

bilinear doesn’t automatically vanish even though there is only a single Γ̂-matrix present

(Γ̂m = e−Aγ(4) ⊗ γm). However, for the term arising when θ is pure gaugino, we have

− ie3A+φ/2 tr

{
θ̄g
(
γ(4) ⊗ γm

)[
ϕm, θg

]}

= a2e−φ/2tr

{
λ
[
ϕm, λ

]}
η†+γmη− − a2e−φ/2tr

{
λ̄
[
ϕm, λ̄

]}
η†−γmη+, (3.93)

which, on account of the fact that η†+γmη− = 0, does vanish.

For terms involving the gaugino and the modulino, we have

− ie3A+φ/2 tr

{
θ̄g
(
γ(4) ⊗ γm

)[
ϕm, θm

]
+ θ̄m

(
γ(4) ⊗ γm

)[
ϕm, θg

]}

= ab tr

{
λ
[
ϕm, ψn

]}
Ωnpq η

†
+

{
γm, γ

pq
}
η− − ab tr

{
λ̄
[
ϕm, ψ̄n

]}
Ω∗
npq η

†
−

{
γm, γ

pq
}
η+

=
i |Ω|
2
ωmn tr

{
λ
[
ϕm, ψn

]
− λ̄

[
ϕm, ψ̄n

]}
. (3.94)

where we have made use of the cyclicity of the trace and (3.70).

Finally, for the modulini Yukawas, we have

− ie3A+φ/2 tr

{
θ̄m
(
γ(4) ⊗ γm

)[
ϕm, θm

]}

= b2eφ/2tr

{
ψn
[
ϕm, ψr

]}
ΩnpqΩrst η

†
+γ

qpγmγ
stη−

− b2eφ/2tr

{
ψ̄n
[
ϕm, ψ̄r

]}
Ω∗
npqΩ

∗
rst η

†
−γ

qpγmγ
stη+. (3.95)

Making use of (3.70) and the fact that ΩmnpΩ
p

st = 0, this becomes

− ie3A+φ/2 tr

{
θ̄m
(
γ(4) ⊗ γm

)[
ϕm, θm

]}

= −eφ/2

2
Ωmnptr

{
ψm
[
ϕn, ψp

]}
− eφ/2

2
Ω∗
mnptr

{
ψ̄m
[
ϕn, ψ̄p

]}
. (3.96)

We can now put things together, and the fermionic Lagrangian for a D3 is

LF = tr

{
− iK̃mnψ̄

mσ̄µ∂µψ
n − i

g2
λ̄σ̄µ∂µλ−m1/2λλ−m∗

1/2λ̄λ̄

−mF,mλψ
m −m∗

F,mλ̄ψ̄
m − 1

2
mF,mnψ

mψn − 1

2
m∗

F,mnψ̄
mψ̄n

− ihmnλψ
mϕn − ih∗mnλ̄ψ̄

mϕn − ihmnpψ
mψnϕp − ih∗mnpψ̄

mψ̄nϕp

}
, (3.97)
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with

K̃mn =
π

gs

(
gmn − iωmn

)
, (3.98a)

m1/2 =
π

16gs

(
Φ+ +Φ−

)(
Im τ

)1/2
G− · Ω, (3.98b)

mF,m = − iπ

64gs

(
Φ+ +Φ−

)∣∣Ω
∣∣(gml + iωml

)
Gl

−ntω
nt, (3.98c)

mF,mn =
π

32gs

Φ+ +Φ−

(Im τ)1/2
[
gl(m − iωl(m

]
Ωn)pqG

lpq
− , (3.98d)

hmn =
2πi

gs
|Ω|ωmn, (3.98e)

hmnp =
π

gs

1

(Im τ)1/2
Ωmnp. (3.98f)

For the case of D3 branes, we can define the fermionic degrees of freedom in the same

way. The Lagrangian takes the same form with the masses modified according to

m1/2 = − π

16gs

(
Φ+ +Φ−

)(
Im τ

)1/2
G+ · Ω, (3.99a)

mF,m =
iπ

64gs

(
Φ+ +Φ−

)∣∣Ω
∣∣(gml + iωml

)
G

l
+ntω

nt, (3.99b)

mF,mn = − π

32gs

Φ+ +Φ−

(Im τ)1/2
[
gl(m − iωl(m

]
Ωn)pqG

lpq
+ . (3.99c)

4 The soft Lagrangian

Consider now a general N4 = 1 theory. Such a theory consists of the supergravity multiplet,

vector multiplets giving rise to a gauge group G, and chiral multiplets transforming under

various representations of the gauge group. The theory is specified by the Kähler function

K, which is a real function of the chiral superfields, and the superpotential W and gauge

kinetic functions f , which are holomorphic in the chiral superfields. The purpose of this

section is in part to review how the theory for a stack of probe D3s discussed in the previous

section can be expressed in terms of these data in the supersymmetric case. Additionally,

we will argue that in the non-supersymmetric case, the resulting Lagrangian is consistent

with the spontaneous breaking of supersymmetry.

As discussed in section 2, an N4 = 1 theory is obtained by taking G(3) to be (2, 1)

primitive (and hence G− = 0), Φ− = 0, the internal metric gmn to be Kähler, and τ to

vary holomorphically over the internal space. In this case, all of the masses appearing

in (3.32) and (3.97) vanish. Since our focus is on the interaction of the open strings with

themselves and not the interactions of open strings with closed-string fluctuations (though

such interactions can be important), we take τ and the metric to be constant. After a

constant rescaling of the fields, the low-energy Lagrangian following from (3.32) and (3.97)
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takes the form

L = tr

{
− 1

4
fµνf

µν − ϑg2

32π2
fµν f̃

µν − i λ̄σ̄µDµλ− gīDµϕ
iDµϕ̄̄ − i gī ψ̄

̄σ̄µDµψ
i

− i
√
2g gī

([
ϕ̄, ψi

]
λ+

[
ϕi, ψ̄

]
λ̄
)
+ i g

(
Ωijkψ

iψjϕk +Ωı̄̄k̄ψ̄
ı̄ψ̄̄ϕ̄k̄

)

+
g2

2
gīgkl̄

([
ϕi, ϕk

][
ϕ̄̄, ϕ̄l̄

]
+
[
ϕi, ϕ̄l̄

][
ϕ̄̄, ϕk

])}
, (4.1)

in which f̃(2) := ∗4f(2) and we have made use of the complex structure to separate holomor-

phic and anti-holomorphic indices and have used that in our conventions |Ω|2 = 8. Here

the gauge-covariant derivative is now Dµ = ∂µ − ig [Aµ, ·] due to the field redefinition.

Let’s now compare this to the Lagrangian following from the usual data of N4 = 1

supergravity. Our interest is in the Lagrangian only through marginal order and in the

rigid supersymmetry limit. In this case, the Lagrangian takes the form

LN4=1 =− 1

4
faµνf

aµν − ϑg2

32π2
faµν f̃

aµν − iλ̄aσ̄Dµλ
a −KIJ̄ Dµϕ

IDµϕJ̄ − iKIJ̄ ψ̄
J̄ σ̄µDµψ

I

− i
√
2gKIJ̄

((
ϕ̄ĪT a

r ψ
J
)
λa +

(
ψ̄ĪT a

r ϕ
J
)
λ̄a
)
− g2

2

(
KIJ̄ ϕ̄

J̄T a
r ϕ

I
)2

−KIJ̄WIW̄J̄ − 1

2

(
WIJψ

IψJ +W Ī J̄ψ
ĪψJ̄

)
, (4.2)

in which WI = ∂IW , and WIJ = ∂I∂JW when treating W as a function of the scalar

components and T a
r indicates the generators in the representation r. Here KIJ̄ is assumed

to be non-singular at ϕI = 0 and is evaluated at that point.

Comparing to (4.1), we immediately make the well-known identification of the matter-

field metric with the internal metric KIJ̄ → gī. To deduce the superpotential that corre-

sponds to (4.1), we note that we can write

igΩijktr
{
ψiψjϕk

}
=

ig

2
Ωijktr

{
ψi
[
ψj , ϕk

]}
= −1

2
fabcΩijkψ

i
aψ

j
bϕ

k
c , (4.3)

where we have normalized the generators according to tr
(
T aT b

)
= δab and defined the

structure constants
[
T a, T b

]
= ifabcT c. Thus the Yukawa couplings not involving the

gaugino follow from

WN4=4 =
g

3!
fabcΩijkϕ

i
aϕ

i
bϕ

k
c = − ig

3
Ωijktr

{
ϕiϕjϕk

}
, (4.4)

which is the usual superpotential used to describe N4 = 4 super Yang-Mills theory in

N4 = 1 language. From this superpotential, we find the F -term potential

VF = gīWiW̄̄ = −g2gīgkl̄tr
{[
ϕi, ϕk

][
ϕ̄̄, ϕ̄l̄

]}
. (4.5)

Adding this to the D-term potential

VD = −g
2

2

(
gī
[
ϕi, ϕ̄

])2
, (4.6)

and making use of the Jacobi identity we recover the scalar potential appearing in (4.1).
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We now turn to the more general case in which the geometry no longer satisfies the

conditions for supersymmetry. An important distinction between the supersymmetric and

non-supersymmetric cases, as discussed in section 2, is that once non-supersymmetric fluxes

are introduced to the geometry, the equations of motion imply that the internal metric gmn

will generically no longer be Hermitian with respect to the unperturbed complex structure.

Indeed, there is no guarantee at this level that the internal metric is even either complex or

symplectic. However, we can make use of the almost complex structure and pre-symplectic

structures that are defined, at least locally, by the Killing spinor of the non-perturbed

geometry (3.61). Note that although the same spinor is used, it will not generically satisfy

the Killing spinor equations of the perturbed geometry. Furthermore, since the internal

gamma matrices are defined in terms of the vielbein

γm = e n
m γn, (4.7)

and these vielbein are perturbed according to the perturbation of the metric, the almost

complex structure and pre-symplectic structure are not equal to their non-perturbed coun-

terparts. In what follows, we will make use of this almost complex structure to locally

define holomorphic and anti-holomorphic indices, keeping in mind that the structure is not

expected to be integrable.

Before discussing the Lagrangian resulting from the stack of D3s, let us review the

impact that the breaking of supersymmetry can have on the system. As briefly mentioned

in the introduction, there are two ways that supersymmetry can be broken in a theory.

The first is explicit breaking in which the theory is altered by changing the action (which

may be accompanied by changing the field content) such that it no longer respects any

supersymmetry transformations. The second way is by spontaneous or dynamical super-

symmetry breaking in which the theory is invariant under supersymmetry transformations,

but the supercharges do not annihilate the state being considered, typically a meta-stable

false vacuum. This latter case is, from a phenomenological standpoint, more interesting

since spontaneous breaking restricts the sorts of terms that can appear in the resulting

effective field theory so that certain operators, such as scalar masses, are protected from

large quantum corrections. In the case of spontaneous breaking, the effective field theory

may not have manifest supersymmetry, but instead supersymmetry may be realized only

non-linearly. This is similar to the case of the spontaneous breaking of bosonic symmetries.

The effective low-energy Lagrangian in such a case is a non-linear Σ-model in which the

symmetry, though spontaneously broken and realized only non-linearly, greatly restricts

low-energy physics.

In a typical model of supersymmetry breaking18 supersymmetry is broken sponta-

neously in a particular sector of a theory by a non-vanishing expectation value for an

F -term or a D-term (other possibilities exist if one is willing to give up Lorentz invari-

ance). In order to avoid a phenomenologically unacceptable spectrum, supersymmetry

breaking is typically assumed to occur in a “hidden” sector, rather than in the visible sec-

tor of interest. The effects of the breaking are then mediated by a (not necessarily distinct)

18See [75, 76] for reviews and [77–81] for early treatments of gravity mediation which is the mechanism

most relevant for the discussion here.
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ϕi

ϕj

ϕ̄k̄

Figure 1. A Feynman diagram demonstrating hard breaking of supersymmetry. Integration over

the internal momentum gives rise to quadratic dependence on the UV regulator. However, if ϕi is

not a gauge singlet, then gauge invariance forces this diagram to vanish. Note that the holomorphic

a-terms do not give rise to such hard breaking since kinetic terms, schematically represented by the

insertion in the loop, do not mix holomorphic with holomorphic fields.

sector known as the messenger sector. Upon integrating out the hidden and messenger sec-

tors, the resulting visible sector does not possess manifest supersymmetry. However, the

Lagrangian is non-generic in that only the relevant operators do not obey supersymmetry

relations. That is, after breaking supersymmetry, the visible sector Lagrangian in the rigid

limit takes the form

Lvis = Lsusy + Lsoft, (4.8)

where Lsusy linearly preserves supersymmetry, while Lsoft does not, but has no operators

of dimension greater than three. In general, Lsoft takes the schematic form

Lsoft ∼ tiϕ
i+ bijϕ

iϕj +m2
īϕ

iϕ̄̄+m1/2λλ+miλψ
i+ aijkϕ

iϕkϕk + cijk̄ϕ
iϕjϕ̄k̄ +h.c. (4.9)

Other operators can be shuffled into a redefinition of the superpotential as we will do

below. We also note the existence of the potentially unfamiliar term miλψ
i that can be

present for adjoint-valued fields, while in more phenomenologically viable constructions,

such fields typically do not exist and so this term is absent. The operators are denoted

“soft” since although the absence of supersymmetry implies less protection against quantum

corrections, most of the operators in Lsoft only depend logarithmically on the scale of

ultraviolet physics. However, some of these operators may break supersymmetry in a

hard manner. In particular, the operator cijk̄ϕ
iϕjϕ̄k̄ will produce quadratically divergent

tadpole graphs such as that appearing in figure 1. Fortunately, gauge invariance implies

that such a graph can only be non-vanishing if one of the fields is a singlet and it is easy

to argue, as we do below, that these couplings are absent for the singlets in the theory.

The structure of the Lagrangian in the case of spontaneous breaking is to be con-

trasted with the generic Lagrangian in the case of explicit breaking. In the latter case,

one would expect from a Wilsonian standpoint that the resulting Lagrangian would have

no special structure and instead consist of all scalar operators consistent with gauge in-

variance. In particular, generic explicit breaking should also lead to non-supersymmetric

marginal deformations of the Lagrangian.

We now return to the case of D3s probing a flux compactification. As can be seen

from the results of the previous section, a general perturbation to a supersymmetric flux

compactification alters the Lagrangian (4.2) in a more drastic way than the simple addition
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of (4.9). It particular, a general perturbation from N4 = 1 GKP will modify the marginal

couplings, namely the kinetic terms, Yukawa couplings and ϕ4. However, by making use

of the perturbed structures (3.61), it follows immediately that the marginal operators

take the same form as they do in (4.1) when written in terms of these structures. As

stated previously, in general the structures are not expected to be integrable and so gī
is not expected to be Kähler. Insofar as we are interested only in relevant and marginal

operators, this will not affect the Lagrangian and so still the marginal operators follow

from the superpotential (4.4). We return to this point of non-Kählerity in section 6.

In terms of these renormalized fields and the local almost complex structure, we can

rewrite the Lagrangians (3.32) and (3.97) as

L = tr

{
− 1

4
fµνf

µν − ϑg2

32π2
fµν f̃

µν − iλ̄aσ̄Dµλ
a − gīDµϕ

iDµϕ̄̄ + i gī ψ̄
̄σ̄µDµψ

i

− i
√
2g gī

([
ϕ̄, ψi

]
λ+

[
ϕi, ψ̄

]
λ̄
)
+ i g

(
Ωijkψ

iψjϕk +Ωı̄̄k̄ψ̄
ı̄ψ̄̄ϕ̄k̄

)

+
g2

2
gīgkl̄

([
ϕi, ϕk

][
ϕ̄̄, ϕ̄l̄

]
+
[
ϕi, ϕ̄l̄

][
ϕ̄̄, ϕk

])

−
(
tiϕ

i + t∗ı̄ ϕ̄
ı̄
)
− 1

2

(
bijϕ

iϕj + b∗ı̄̄ϕ̄
ı̄ϕ̄̄
)
−m2

īϕ
iϕ̄

− i

3!

(
aijkϕ

iϕjϕk + a∗ı̄̄k̄ϕ̄
ı̄ϕ̄̄ϕ̄k̄

)
− i

2!

(
cijk̄ϕ

iϕjϕ̄k̄ + c∗ı̄̄kϕ̄
ı̄ϕ̄̄ϕk

)

−
(
m1/2λλ+m∗

1/2λ̄λ̄
)
−
(
miλψ

i +m∗
ī λ̄ψ̄

ī
)
− 1

2

(
µijψ

iψj + µ∗ı̄̄ψ̄
ı̄ψ̄̄
)}
, (4.10)

in which for the D3 case (recall g−2 = 2π
gs
Im τ)

ti =

√
2π

gs

1

ℓ2s
∂iΦ−, (4.11a)

bij = ∂i∂jΦ−, (4.11b)

m2
ī = ∂i∂̄̄Φ−, (4.11c)

aijk = − g2

2

√
2π

gs

(
G− +G−

)
ijk
, (4.11d)

cijk̄ = − g2

2

√
2π

gs

(
G− +G−

)
ijk̄
, (4.11e)

m1/2 = g

√
2π

gs

Φ+ +Φ−

32
G− · Ω, (4.11f)

mi =
g

8
√
2

√
2π

gs

(
Φ+ +Φ−

)
G j

− ij , (4.11g)

µij = g

√
2π

gs

Φ+ +Φ−

32
G

kl
−(i Ω j)kl. (4.11h)

As mentioned above, the general Lagrangian contains a holomorphic mass term for the

fermions. Such a term can be absorbed into a superpotential as discussed in [43],

W =WN4=4 +
1

2
µijϕ

iϕj , (4.12)
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in which WN4=4 is given by (4.4).

The gauge group on the D3 branes is a semi-direct product U (N) = SU (N) ⋊ U(1).

Since the adjoint of U (1) is trivial, this implies the existence of gauge singlets on the

worldvolume (for example, the center-of-mass of the D3 branes in the internal space) and

hence we must check if the terms like cijk̄ lead to the hard breaking of supersymmetry. To

this end, we expand the open-string fields in terms of the generators of the gauge group,

e.g. ϕi = ϕi
aT

a, and denote the U (1) generator by T 0. cijk̄ is anti-symmetric in i and j,

so the terms ϕi
0 or ϕj

0 automatically vanish as T 0 commutes with everything. The term

involving ϕk̄
0 also vanishes since we have, for a, b 6= 0,

cijk̄ϕ
i
aϕ

j
bϕ̄

k̄
0tr
{
TaTbT0

}
∼ cijk̄ϕ

i
aϕ

j
bϕ̄

k̄
0f

abctr
{
T cT 0

}
= 0, (4.13)

which follows from T c 6= T 0. Therefore the couplings of the type cijk̄ vanish when they

involve singlets and so do not introduce any hard breaking.

Let us pause to emphasize that many of these operators have appeared elsewhere in

the literature. The relevant operators as well as the ϕ4 operator appeared in the weak-

warping limit in [43]. These operators also appeared with more general warping in the

Abelian case in [50] as did a subset of them in [51]. Finally, some of these operators can be

deduced via worldsheet methods [52, 53]. However, in these works, the expression of such

terms in terms of softly-broken N4 = 1 language made use of the existence of an underlying

complex structure (i.e. when the underlying metric is Kähler) while here we have expressed

the Lagrangian in terms of a softly broken supersymmetric Lagrangian (including Yukawa

couplings that were not considered in some previous work) in more general cases.

The superpotential (4.12) is of course holomorphic, but it is holomorphic with respect

to a perturbed complex structure. Said differently, (4.12) is not holomorphic in the fields of

the D3 probing the non-perturbed GKP compactification but instead holomorphic in fields

after a non-holomorphic field redefinition. This implies that although the Lagrangian (4.10)

describes a theory of a spontaneously broken rigid supersymmetry, this supersymmetry is

not the same as the supersymmetry preserved by GKP. Instead the supercharges that are

treated as spontaneously broken in (4.10) is some linear combination of the supercharges

preserved by GKP and those that are not,

Qα ∼ QGKP
α +

∑
caQ

a
α, (4.14)

where the coefficients ca are of the same order as the perturbation to GKP and we have kept

the spinor index explicit. We note that a similar phenomenon must occur even with certain

supersymmetric perturbations. Changes to the complex structure (which of course must

involve either complex structure moduli that are not fixed by fluxes or a modification of the

fluxes as well) implies that a different spinor η+ is annihilated by the new anti-holomorphic

γ-matrices and so correspondingly the preserved supercharges is shifted.

Another way to see the shift in supercharges is in terms of the gravitini. Type-IIB is a

theory with 32 supercharges, and so a toroidal compactification to 4d gives eight gravitini

ψI
µα where I = 1, · · · , 8. On a Calabi-Yau with strictly SU (3) holonomy, only two of these

gravitini remain light, and the other six can be thought of as being lifted to the Kaluza-

Klein. Once supersymmetric fluxes have been added, the remaining gravitino is (at least in
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generic cases) lifted by that flux, leaving a single light gravitino ψGKP
µα (without fluxes, the

geometry cannot distinguish between D3-branes and D3-branes, so the gravitino lifted by

the fluxes must correspond to the supercharges preserved by an D3-brane). Finally, once

non-supersymmetric fluxes have been added, the remaining gravitino will also be lifted

(see, for example [82]). Schematically, and neglecting warping effects, the mass is similar

to that for the gaugino discussed above

m3/2 ∼
∫
η†+ /Gη−, (4.15)

which follows from the 10d gravitino action and depends on the (0, 3) ISD flux. However,

generically all Hodge types of fluxes are sourced and this will give rise to mixing between

ψGKP
µα and the gravitini lifted by the geometry and flux. Due to this mixing, the lightest

gravitino will not be the GKP gravitino, but instead will include an admixture of the

gravitini lifted by GKP itself. Although we leave a more precise treatment (for example,

the incorporation of the compactification effects required to ensure a finite Kaluza-Klein

scale and that (4.15) is well-defined) for future work, this mixture of gravitini is another way

of understanding the physics of why (4.12) is not holomorphic in the unperturbed fields.

If supersymmetry is broken by the addition of D3-branes, then the supersymmetric

state obtained by the system after the decay of such branes may not be the same as

supersymmetric state to which the anti-branes were originally added. For example, in the

KS system the D3s decay, via NS5s, into flux and D3-branes that were not present in the

original KS geometry [25]. This system has, due to the change in flux, a different complex

structure and hence a different supersymmetry than the one preserved by the geometry

before the addition of the anti-branes. Generically, one would again expect that the lightest

gravitino is not quite the gravitino gauging the supersymmetry in this final state, but it

would be worthwhile to understand this in detail.19

We close this section by noting that the softness of the D3-action is independent of the

background that the D3-branes are probing. In the approximation scheme of our analysis,

the marginal operators are controlled exclusively by the internal metric. Although in the

above analysis we considered small perturbations away from GKP, we can always perform

a local field redefinition so that the matter-field metric always takes a form proportional to

δī. This field redefinition will also cause the Yukawa-couplings and ϕ4 potentials to take

the form that they do in (4.2).

5 An anti-brane goldstino

The result of the previous section is that through marginal order, a stack of D3-branes

probing a perturbation of an N4 = 1 GKP compactification in the supergravity limit

experiences the breaking of supersymmetry softly. Although soft breaking and spontaneous

breaking are not equivalent (indeed, as discussed previously non-zero cijk̄ which may be

present will introduce hard breaking in certain other models), soft breaking is a very non-

generic feature of models of explicit breaking. We thus take the softness of the D3 action as

19We thank T. Wrase for discussions related to this point.
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evidence that the non-supersymmetric flux, and therefore what is giving rise to that flux,

may break supersymmetry spontaneously (although other explanations may be possible).

If supersymmetry is indeed spontaneously broken, then there must exist a fermion that is

massless in the mp → ∞ limit. In this section, we consider the case where the fluxes result

as a backreaction of an D3 and argue for the presence of such a goldstino in the spectrum

of D3-fluctuations.

To this end, we consider the effective Lagrangians (3.32) and (3.97) for the case of an

D3-brane probing a GKP compactification that exhibits N4 = 1 before the addition of the

D3. In that case, the Lagrangian again takes the form (4.10) with

g−2 =
2π

gs
Im τ, (5.1a)

ϑ = − 16π3

gs
Re τ, (5.1b)

ti =

√
2π

gs

1

ℓ2s
∂iΦ+, (5.1c)

bij = ∂i∂jΦ+, (5.1d)

m2
ī = ∂i∂̄̄Φ+, (5.1e)

aijk = − g2

2

√
2π

gs

(
G+ +G+

)
ijk
, (5.1f)

cijk̄ = − g2

2

√
2π

gs

(
G+ +G+

)
ijk̄
, (5.1g)

m1/2 = − g

√
2π

gs

Φ+ +Φ−

32
G+ · Ω, (5.1h)

mi = − g

8
√
2

√
2π

gs

(
Φ+ +Φ−

)
G

j
+ ij , (5.1i)

µij = − g

√
2π

gs

Φ+ +Φ−

32
G

kl
+(i Ω j)kl. (5.1j)

In what follows, we will for simplicity consider a single D3-brane so that a and c both

vanish.20 Here gī is the Kähler metric of the unperturbed geometry and Ωijk is the form

associated with the complex structure. Now, in addition to an N4 = 1 GKP compactifica-

tion having G− = 0, the non-vanishing G+ part is restricted to be (2, 1) and primitive and

as a consequence,

m1/2 = 0, mi = 0. (5.2)

That is, the gaugino on the D3 is massless. Note that it was important that both m1/2 and

mi vanished; even if m1/2 vanished but mi were non-vanishing then upon diagonalization

of the mass matrix, there would generically not be any massless mode.

The massless fermions on a Dp-brane in flat space can be considered as goldstini

associated with the spontaneous breaking of 16 supercharges. However, just as the action

20In the case of multiple D3s, the goldstino is most likely related to the U (1) part of the fermionic mode

that we identify below, just as for multiple D-branes the goldstone is the center-of-mass.
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for a goldstone boson is restricted, the action for a goldstino χ in R3,1 takes the Akulov-

Volkov form [46, 47],

SAV = −f
2

2

∫
d4x det

[
δµν +

i

f2
(
χ̄σ̄µ∂νχ+ χσµ∂νχ

)]
, (5.3)

in which f is related to the scale of the breaking of supersymmetry. Although this action

does not contain a full multiplet, it is invariant under the transformation

δǫχ = fǫ− i

f

(
χσµǭ− ǫσµχ̄

)
∂µχ, (5.4)

in which ǫ is an arbitrary constant spinor. Moreover, this transformation reproduces the

usual supersymmetry algebra and so (5.3) realizes supersymmetry non-linearly.

If the fermionic modes on a Dp are to be interpreted as goldstini, then their action must

be similarly constrained. The action for a single Dp-brane in flat space can be expanded out

to higher order in fermions. In flat space, the κ-fixed action takes the form [48] (matching

to our conventions)

SDp =− τDp

∫
dp+1ξ

√
− det (Mαβ), (5.5)

Mαβ =ηαβ + ℓ2sfαβ + ℓ4s∂αϕ
i∂βϕ

i − iℓ4s θ̄
(
Γα + ℓ2sΓi∂αϕ

i
)
∂βθ −

1

4
ℓ8s
(
θ̄ΓM∂αθ

)(
θ̄ΓM∂βθ

)
.

The term that is quadratic order in fermions is the action (3.34). In addition to the

linearized supersymmetry transformations corresponding to the supercharges that the Dp

preserves, it also realizes another set of supersymmetries non-linearly, as detailed in [48].

Unlike (5.3), the action for a Dp brane realizes some supersymmetry in a linear way and

therefore we should not expect to recover precisely (5.3) and indeed, (5.5) is closed under

the non-linearly realized supersymmetry only once the bosonic terms are included [48].

Nevertheless, the corresponding supersymmetry transformations realize the supersymmetry

algebra and θ, which appears non-linearly in the supersymmetry transformations, ought to

be identified with the goldstini associated with the spontaneous breaking of 16 supercharges

by the Dp-brane.

When moving to flux backgrounds, the extension of the action to higher-order in

fermions becomes more complicated (see e.g. [83] for a review of related issues). However,

the physics of the situation remains the same: D-branes spontaneously break supersym-

metry and the worldvolume fermions are the corresponding goldstini. We are not aware of

a presentation of the higher-order fermionic action in a flux background that is as readily

applicable as (3.34) or (5.5), but from the higher-order terms presented in [48] and the

expansion of the Ramond-Ramond superfields as presented in, for example, [68, 69], it is

clear that it must involve products of bilinears of the type that appear in (3.34), at least

in the absence of scalar fluctuations. When θ is pure gaugingo then the Hodge-types of

background fluxes and the property that θ̄Γ̂M1···Mp
θ vanishes if p 6= 0, 3, 7, 10 imply that the

only non-vanishing bilinears are the derivative terms. Therefore, the higher-order fermionic

action is expected to take the form (5.5) when θ is pure gaugino, with some modifications
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due to warping. By comparing the scale of the constant term in the action to that of the

kinetic term of the gaugino, we find

f2 = τD3e
4A ∼ ℓ−4

s e4A, (5.6)

which is the familiar statement that the scale of supersymmetry is warped down from the

string scale [8, 10].

Finally, let’s consider the case in which, instead of probing an N4 = 1 GKP com-

pactification, the D3 probes a compactification with non-vanishing (0, 3) or primitive (1, 2)

flux. Although such flux is still ISD and so the internal space is Kähler, supersymmetry

is no longer preserved by the background, and so the D3 is not, by itself, responsible for

the breaking of the supersymmetry preserved by the primitive (2, 1) flux. From (5.1) it

is clear that in this case the gaugino will no longer be massless, which is consistent with

the fact that the goldstino cannot be exclusively an D3 mode and consistent also with the

interpretation of the D3 gaugino as the goldstino when probing a supersymmetric compact-

ification. A possible objection to this line of reasoning comes from considering the limit

in which all of the flux vanishes. Then according to (5.1), all of the fermions on the D3

are massless, yet the goldstino cannot be purely an open-string mode since the geometry

itself breaks three of the supercharges preserved by the D3 and so one should expect some

closed-string component to the goldstino (note that the same issue arises for D3-branes

as the geometry itself cannot distinguish between the charges). However, one can imagine

going to a region in moduli space where the internal volume is very large and flat and so

the D3 is, to good approximation, probing flat 10d space, in which case the interpretation

of the D3 modulini modes as goldstini is appropriate. It is therefore not surprising that

the modulini will be massless in other regions of moduli space. Presumably, the goldstino

is at all points in moduli space a mixture of open- and closed-string modes. It would

be interesting to confirm this fact by understanding the super-Higgs mechanism in such

cases. Note that this is again entirely analogous to what occurs in the bosonic sector: the

Calabi-Yau itself generically has no isometries and yet there are still massless bosons that

are neatly associated with goldstones modes associated with the spontaneous breaking of

translational symmetry in the large-radius limit.

To summarize this section, we have identified the D3 gaugino as a candidate for the

goldstino associated with the spontaneous breaking of supersymmetry. Although more

work is required to rigorously demonstrate this, the gaugino is massless when an D3 probes

N4 ≥ 1 GKP compactifications and massive when probing N4 = 0 GKP compactifications,

as is expected from such a goldstino.

6 Discussion and concluding remarks

In this work, we have presented some circumstantial evidence that D3s spontaneously break

supersymmetry in a flux compactification, contrary to some common folklore which claims

that they are an explicit source of breaking. Although this evidence is not conclusive, it

approaches a coherent story about the breaking of supersymmetry by anti-branes. In this

final section, we summarize these arguments, discuss some possible objections, and lay out
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some directions for future work. Although many of the arguments here refer explicitly to

D3-branes, they apply to other sources of supersymmetry breaking as well. However, since

we have been able to identify a candidate goldstino in the case of D3s, we will largely limit

our discussion to that case.

As mentioned previously, the common wisdom is that D3-branes break supersymmetry

explicitly. However, there are two possible meanings to “explicit” breaking: either the

breaking is spontaneous but the scale of breaking is so high so that the low-energy action

effectively exhibits explicit breaking after truncating the operators beyond a certain mass

dimension (this is, for example in the AV Lagrangian (5.3) where the marginal operator

alone does not exhibit supersymmetry), or the breaking is truly explicit in that it exhibits

N = 0 at arbitrarily high energies. In the absence of warping, the scale of breaking

is naturally expected to be the compactification or string scale21 and so the distinction

between explicit and spontaneous breaking is perhaps not important. However, for the

case of an D3-brane which is naturally attracted to regions of large redshift, the scale

of supersymmetry breaking may be warped down and so the distinction may be relevant.

Before reviewing the circumstantial evidence in this paper, let us first review some heuristic

reasoning for why the D3s might be expected to break supersymmetry spontaneously.

The first is simply the statement that an D3-brane represents a particular state in a

supersymmetric theory, namely string theory. That is, whatever the fundamental descrip-

tion of string theory is, it admits configurations, such as flat 10d/11d space, that preserves

32 supercharges and therefore the theory itself has 32 supercharges. Any other state in the

theory that preserves fewer supercharges is still a state in a supersymmetric theory and so

those supercharges are, by definition spontaneously broken, though, as mentioned previ-

ously, the scale of breaking may be beyond the scale at which field theory is applicable.22

Furthermore, as stated previously in this work, the breaking of supersymmetry by a D-

brane should be entirely analogous to the breaking of translational symmetry and the latter

is an example of spontaneous breaking. It is occasionally argued that the D3s in a GKP

geometry break supersymmetry explicitly because they “project out” the supercharges pre-

served by the background. However, they again do so in a way that is completely analogous

to the projecting out of the translational symmetries associated to translating the brane.

Another way of stating this argument is that the D3 couples anti-holomorphically to some

fields when supersymmetry demands holomorphic couplings (e.g. the gauge kinetic func-

tion for a D3-brane is proportional to τ rather than τ). However, the coupling is of course

holomorphic with respect to the conjugate complex structure. That is, while the action

for a D3-brane will have actions that are expressible as
∫
d4x d2θ · · · , for an D3-brane, the

same term will be
∫
d4x d2θ′ for some other fermionic coordinate θ′. This integral over a

part of the N4 = 8 superspace of type-IIB that is different than the part integrated over

21An exception to this is of course dynamical supersymmetry breaking in which the scale of breaking can

naturally be much lower.
22One possible exception to this is an orientifold plane which in a perturbative treatment literally removes

fields from the spectrum. However orientifolds, like D-branes, ultimately map to dynamical objects (M-

branes and gravitational monopoles) in M-theory and so ought be treated on the same footing as D-branes

in this sense, though the scale of breaking is expected to be non-perturbatively high.
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by a D3-brane is entirely analogous to the integration over a particular part of bosonic

space (namely the worldvolume) for the Dp-brane action. That is, integrating over part

of superspace is, in terms of the breaking of supersymmetry, on the same footing as only

integrating over part of the bosonic space. A problem very similar in spirit, involving the

spontaneous breaking of N4 = 2 to N4 = 1 was considered in [84].

In this work, our first line of evidence towards the spontaneous breaking was from a

stack of D3-branes probing a non-supersymmetric perturbation to an N4 = 1 GKP com-

pactification, a system that has been considered previously [43, 50, 51]. A supersymmetric

GKP compactification is characterized by (among other criteria) G− = 0 and Φ− = 0.

A small non-zero perturbation to the latter, which is sourced “directly” by D3-branes,

perturbs the geometry and fluxes in many directions, at least when G+ 6= 0 before the

perturbation. Among these is a perturbation to the internal unwarped metric such that

the metric is no longer Kähler, at least with respect to the unperturbed structures. Since

the internal metric is identified with the matter-field metric for a D3 probing the geometry,

this corresponds to a marginal deformation of the effective field theory describing the open-

string fluctuations of the D3s. As all soft terms are relevant operators, naively this would

imply a hard breaking of supersymmetry. Despite this fact, we found that when a very

natural, albeit non-holomorphic, field redefinition is performed, the marginal operators are

related by supersymmetry and thus the breaking is soft. Although one must be careful

to not conflate soft breaking with spontaneous breaking and hard breaking with explicit

breaking, from the Wilsonian point of view, explicit breaking is generically expected to

be hard23 while spontaneous breaking is soft (so long as complete multiplets remain in

the low-energy theory and even then the Lagrangian is soft only up to some potentially

hard relevant operators, which were absent for the probe D3s). We thus take the non-

generic non-supersymmetric Lagrangian of the probe D3s as an indication that breaking

of supersymmetry may be spontaneous.

From the field theory point of view, the breaking is a little unusual in that sponta-

neous breaking of supersymmetry is usually accomplished by way of some non-vanishing

F -term or D-term which do not themselves alter kinetic terms. In contrast, the probe

D3s do experience such a deformation. Further, the field redefinition discussed above is

non-holomorphic in the original set of fields. This suggests that the “least” broken su-

persymmetry is not that of the original GKP, but instead some linear combination of this

supersymmetry and others broken by GKP. More precisely, an N4 = 1 GKP compactifica-

tion breaks 28 of the 32 supercharges of type-IIB. These supercharges can be thought of

as being spontaneously broken, but since this breaking occurs at a much higher scale than

many scales of interest, we can for the most part ignore these charges. That is, one should

in principle be able to treat the theory as having non-linearly realized supersymmetries,

but as discussed above, this gains us very little in terms of practical value (for example, it

tells us about the higher-order terms in the fermionic action for Dp-branes, but the scale

of suppression will typically be the string scale). When an D3-brane is added to a GKP

23However, see [85] for an interesting example of a string construction in which the field-theory dual

exhibits soft explicit breaking.
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compactification, the remaining four supercharges are also broken, but the N4 = 1 that

is most conveniently thought of as being spontaneously broken is not quite the one pre-

served by GKP but instead includes an admixture of the charges broken by GKP. This is

reflected in both the non-holomorphic field redefinition and mixing between the gravitino

that gauges the supersymmetry preserved by GKP and those that are lifted in GKP. The

lightest gravitino should not be ψGKP
µ but should instead include a linear combination of

ψGKP
µ and the gravitini lifted by the fluxes and curvature.

A gap in this perspective is the extension of the action for the D3s to irrelevant order,

as supersymmetry restricts more than just the relevant and marginal operators that we

considered here. This was reflected even in the supersymmetric case as the Lagrangian (4.1)

exhibits N4 = 4 through marginal order while the irrelevant operators coming, for example,

from the non-trivial Kähler metric reveal it to be N4 = 1. In the case of spontaneously

broken N4 = 1, supergravity imposes that the target space metric is Kähler, while the

internal metric (which as stated previously is the target space metric for probe D3s) re-

sulting from an D3 appears to be generically non-Kähler (at least when expressed in the

complex structure of the unperturbed geometry). One possibility is that the backreaction

is in fact still Kähler, though the corresponding structures would likely differ from (3.61).

We do not supply any evidence in favor of this possibility which would be a very non-

trivial consequence of the supergravity equations of motion.24 Another possibility is that

the open-string moduli on the D3 are not the correct Kähler coordinates, but instead the

correct coordinates are combinations of the open-string fields on the D3 and closed-string

fields, which occurs even in the supersymmetric case (see, e.g. [50, 86]). This would be

a very interesting case to check more precisely, but requires more work as even the the-

ory for closed strings alone is not wholly understood in flux compactifications, whether or

not supersymmetry is present. Note that since the structures (3.61) are not integrable,

we have not demonstrated that the supersymmetry that is softly broken in (4.10) is glob-

ally well-defined. It would be important to work out whether such a globally well-defined

supersymmetry exists.

From the point of view of the D3s and setting aside the fluctuations of the D3 for

a moment, it may seem almost obvious that the breaking is spontaneous. The DBI and

CS actions for the D3-branes describes the interaction between the light open strings and

light closed strings and placing the D3 brane in the D3 background amounts to just setting

certain expectation values for these closed string fields at a single point in the D3-brane

moduli space. It may be that the soft structure of the Lagrangian is a consequence of the

locality of the D3s. Indeed it would be valuable to repeat this analysis for, for example,

D7-branes or closed strings. However, as mentioned previously, even in supersymmetric

cases the incorporation of warping and fluxes into the effective action for strings that are

not localized at a point in the internal space can be involved,25 and we leave such analyses

for future work (though see, e.g., [27, 51, 98] for some progress in this direction).

If the non-supersymmetric fluxes do break supersymmetry spontaneously, then there

must exist a fermion that is massless in the mp → ∞ limit. The easiest case to consider

24In fact it is quite unlikely as there are even supersymmetric compactifications that are not Kähler.
25See, for example [51, 82, 87–97].
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is when the fluxes result from the backreaction of an D3, and we argued for the existence

of such a massless fermion, namely the gaugino on the D3. If this identification is correct,

then the D3 brane should be thought of as D-term breaking, though F -term breaking in

the closed-string sector would consequently result. This possibility was also raised in [43].

However, to make a solid case for identification of this mode as the goldstino, there is

still work to be done. The first, and most important, would be to demonstrate that

supersymmetry is still realized non-linearly on the anti-branes. Here, we primarily made

reference to previous work (e.g. [48]), but it would be worthwhile to see this explicitly in

the case at hand. It would then be interesting to see how the super-Higgs mechanism is

realized in this setup, and to show precisely which gravitino is lightest. Finally, although the

discussion above focused on the case in which anti-branes were the source of the breaking of

supersymmetry, many of the points go through for other backgrounds as well. Indeed, the

softness of the D3 Lagrangian is a consequence of the fact that all of the marginal operators

are (to leading order in ℓs) controlled by the same closed-string field, namely the internal

metric, and therefore the D3 Lagrangian will apparently be soft in any background. If

non-supersymmetric fluxes can always be interpreted as spontaneous breaking, then one

should be able to identify the goldstino and understand its physics even when the fluxes

do not result from the backreaction of an anti-brane. We hope to return to these questions

in the near future.
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A Conventions

We work with the type-IIB superstring in the supergravity limit and largely follow the

conventions of [70]. In the 10d Einstein frame, the bosonic pseudo-action is

SIIB =SNS
IIB + SR

IIB + SCS
IIB, (A.1a)
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SNS
IIB =

1

2κ210

∫
d10x

√
− det (ĝ)

[
R̂− 1

2
ĝMN∂Mφ∂Nφ− 1

2
e−φĤ2

(3)

]
, (A.1b)

SR
IIB =− 1

4κ210

∫
d10x

√
− det (ĝ)

[
e2φF̂ 2

(1) + eφF̂ 2
(3) +

1

2
F̂ 2
(5)

]
, (A.1c)

SCS
IIB =

1

4κ210

∫
C(4) ∧H(3) ∧ F(3), (A.1d)

in which the 10d gravitational constant is 2κ210 = 1
2π ℓ

8
sg

2
s where ℓs = 2π

√
α′ is the string

length. R̂ is the Ricci scalar built from the 10d Einstein-frame metric ĝMN which is related

to the 10d string-frame metric by ĝMN = e−φ/2ĝ
(s)
MN . φ is the dilaton defined so that the

string coupling is gse
φ. The NS-NS 2-form potential is B(2) and the R-R potentials are

C(p) for p = 0, 2, 4. The gauge-invariant field strengths are

H(3) = dB(2), F(1) = dC(0), F(3) = dC(2) + C(0) ∧H(3), F(5) = dC(4) + C(2) ∧H(3).

(A.2)

F(5) is constrained at the level of the equations of motion to satisfy the self-

duality constraint F(5) = ∗̂F(5) in which ∗̂ is the 10d Hodge-∗,
(
∗̂F
)
MNPQR

=
1
5! ǫ̂

STLKI
MNPQR FSTLKI . We use the convention that in flat space ǫ̂01···9 = +1. For a

p-form we define

Ω̂2
(p) =

1

p!
ĝM1N1 · · · ĝMpNpΩM1···Mp

ΩN1···Np
. (A.3)

More generally, ˆ will indicate objects pertaining to the 10d metric ĝMN .

The equations of motion that follow from (A.1) are (see, e.g. [99])

0 = R̂MN − 1

2
∂Mφ∂Nφ− 1

2
e2φFMFN − 1

2 · 2!e
−φHMPQĤ

PQ
N − 1

2 · 2!e
φFMPQF̂

PQ
N

− 1

4 · 4!FMPQRSF̂
PQRS

N +
1

8
ĝMN

[
e−φĤ2

(3) + eφF̂ 2
(3)

]
, (A.4a)

0 = ∇̂2φ− e2φF̂ 2
(1) −

1

2
eφ
[
F̂ 2
(3) − e−2φĤ2

(3)

]
, (A.4b)

0 = ∇̂M
(
e2φFM

)
− eφ

3!
HMNP F̂

MNP , (A.4c)

0 =d∗̂
(
e−φH(3) + C(0)e

φF(3)

)
− F(5) ∧ F(3), (A.4d)

0 =d∗̂
(
eφF(3)

)
+ F(5) ∧H(3), (A.4e)

0 =d∗̂F(5) +H(3) ∧ F(3). (A.4f)

Here, R̂MN is the Ricci tensor and we have imposed self-duality on F(5). In addition, we

have the Bianchi identities

dH(3) = 0, dF(1) = 0, dF(3) = F(1) ∧H(3), dF(5) = F(3) ∧H(3). (A.4g)

Along with these bosonic modes, type-IIB supergravity contains a pair of 32-component

Majorana-Weyl dilatini χ̂1,2 and a pair of Majorana-Weyl-Rarita-Schwinger gravitini Ψ̂1,2
M .
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We take these modes to be right-handed in the sense that Γ(10)Ψ̂
i
M = Ψ̂i

M where the 10d-

chirality operator Γ(10) is defined by (A.28). These can be used to construct so-called

double spinors

χ̂ =

(
χ̂1

χ2

)
, Ψ̂M =

(
Ψ̂1

M

Ψ̂2
M

)
. (A.5)

The action for the closed-strings fermions will not be used be used here, but the com-

bined action is invariant under N10 = (2, 0) supersymmetry under which the fermions

transform as

δǫ̂χ̂ = Oǫ̂, δǫ̂Ψ̂M = D̂M ǫ̂, (A.6)

in which ǫ̂ is a double right-handed Majorana-Weyl spinor and

Ô =
1

2
/̂∂φ− 1

2
eφ /̂F (1)iσ

2 − 1

4
eφ/2G−, (A.7a)

D̂M = ∇̂M +
1

4
eφ∂MC(0)iσ

2 +
1

8
eφ/2

(
G+Γ̂M +

1

2
Γ̂MG+

)
+

1

16
/̂F (5)Γ̂M iσ2, (A.7b)

in which

G± = /̂F (3)σ
1 ± e−φ /̂H(3)σ

3. (A.8)

For a p-form,

/̂Ω(p) :=
1

p!
ΩM1···Mp

Γ̂M1···Mp , (A.9)

in which

Γ̂M1···Mp = Γ̂[M1 · · · Γ̂Mp], (A.10)

where [· · · ] denotes averaging over signed permutations, e.g.,

X(MPQ) =
1

3!

(
XMPQ +XMQP + · · ·

)
, X [MPQ] =

1

3!

(
XMPQ −XMQP + · · ·

)
. (A.11)

Unless otherwise noted, Γ-matrices on double spinors as

Γ̂M ǫ̂ =

(
Γ̂M ǫ̂

1

Γ̂M ǫ̂
2

)
. (A.12)

The Pauli matrices appearing in (A.7) act on the so-called extension space. For example,

σ1

(
ǫ̂1

ǫ̂2

)
=

(
ǫ̂2

ǫ̂1

)
. (A.13)

∇̂ is the covariant derivative defined by

∇̂M = ∂M +
1

4
ω̂

NP
M Γ̂NP , (A.14a)

where ω̂
NP

M are the components of the spin connection

ω̂
NP

M =
1

2
ê

Q

M

(
T̂

NP

Q − T̂
NP

Q − T̂
P N

Q

)
, T̂

M
NP =

(
êQN ê

R
P − êQP ê

R
N

)
∂Rê

M
Q ,

(A.14b)
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in which ê
N

M are the vielbein defining the local frame êN = ê
N

M dxM and êMN are the

inverse vielbein.

For the Γ̂-matrices, we choose a basis that is useful for the decomposition SO (9, 1) →
SO (3, 1)× SO (6). In 3 + 1 dimensions, we take in a local frame

γµ =

(
0 −σ̄µ
σµ 0

)
, (A.15)

in which

σµ =
(
1,σ

)
, σ̄µ =

(
1,−σ

)
. (A.16)

where σ are the usual Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.17)

The γ-matrices then satisfy {
γµ, γν

}
= 2ηµν . (A.18)

The 4d chirality operator is

γ(4) =
i

4!
εµ1···µ4γ

µ1···µ4 =

(
I2 0

0 −I2

)
, (A.19)

in which ε0123 = +
√
det (gµν). Since γ2 is the only imaginary γ-matrix, the 4d Majorana

matrix is

B4 = γ(4)γ
2 =

(
0 σ2

−σ2 0

)
, (A.20)

and satisfies B4B
∗
4 = I4, γ

µB4 = B4γ
µ∗, and γ(4)B4 = −B4γ

∗
(4).

We will make use the dotted, undotted notation of [100] and write a 4d Dirac spinor as

ψ =

(
iψ̄α̇

R

ψLα

)
, (A.21)

where we raise and lower indices with ǫ12 = ǫ21 = 1.

In 6 dimensions, we take in an orthonormal frame26

γ̃1 =σ1 ⊗ I2 ⊗ I2, γ̃4 =σ2 ⊗ I2 ⊗ I2,

γ̃2 =σ3 ⊗ σ1 ⊗ I2, γ̃5 =σ3 ⊗ σ2 ⊗ I2, (A.22)

γ̃3 =σ3 ⊗ σ3 ⊗ σ1, γ̃6 =σ3 ⊗ σ3 ⊗ σ2.

They satisfy {
γ̃m, γ̃n

}
= 2δmn. (A.23)

26In the main text, we drop the ˜ appearing above these γ-matrices since context should hopefully make

clear whether we mean SO (3, 1) or SO (6) γ-matrices.
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The 6d chirality operator is then

γ̃(6) = − i

6!
ε̃m1···m6 γ̃

m1···m6 = σ3 ⊗ σ3 ⊗ σ3. (A.24)

The 6d Majorana matrix is

B̃6 = γ̃4γ̃5γ̃6 = iσ2 ⊗ σ1 ⊗ σ2. (A.25)

It satisfies B̃6B̃
∗
6 = I8, γ̃

mB̃6 = −B̃6γ̃
m∗, and γ̃(6)B̃6 = −B̃6γ̃

∗
(6).

From these, we define the 10d Γ-matrices,

Γ̂µ = γµ ⊗ I8, Γ̂m = γ(4) ⊗ γ̃m, (A.26)

where the second equality should be read as Γ̂4 = γ(4) ⊗ γ̃1, etc. They satisfy

{
Γ̂M , Γ̂N

}
= 2η̂MN . (A.27)

The 10d chirality operator is then

Γ(10) =
1

10!
ε̂M1···M10Γ̂

M1···M10 = γ(4) ⊗ γ̃(6). (A.28)

The 10d Majorana matrix

B̂10 = Γ̂2Γ̂7Γ̂8Γ̂9 = −B4 ⊗ B̃6, (A.29)

satisfies B̂10B̂
∗
10 = I32, Γ̂

M B̂10 = B̂10Γ̂
∗
M , and Γ(10)B̂10 = B̂10Γ

∗
(10).
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[43] P.G. Camara, L. Ibáñez and A. Uranga, Flux induced SUSY breaking soft terms,

Nucl. Phys. B 689 (2004) 195 [hep-th/0311241] [INSPIRE].

[44] G. Villadoro and F. Zwirner, D terms from D-branes, gauge invariance and moduli

stabilization in flux compactifications, JHEP 03 (2006) 087 [hep-th/0602120] [INSPIRE].

[45] I. Antoniadis and M. Tuckmantel, Nonlinear supersymmetry and intersecting D-branes,

Nucl. Phys. B 697 (2004) 3 [hep-th/0406010] [INSPIRE].

[46] D. Volkov and V. Akulov, Possible universal neutrino interaction, JETP Lett. 16 (1972)

438 [INSPIRE].

[47] D. Volkov and V. Akulov, Is the neutrino a goldstone particle?,

Phys. Lett. B 46 (1973) 109 [INSPIRE].

– 43 –

http://dx.doi.org/10.1103/PhysRevD.81.026005
http://arxiv.org/abs/0911.0019
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.0019
http://dx.doi.org/10.1007/JHEP06(2011)046
http://arxiv.org/abs/1104.2078
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.2078
http://dx.doi.org/10.1103/PhysRevD.85.045025
http://arxiv.org/abs/1110.5075
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.5075
http://arxiv.org/abs/1205.4677
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.4677
http://arxiv.org/abs/1205.4709
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.4709
http://dx.doi.org/10.1103/PhysRevD.76.055001
http://arxiv.org/abs/0704.3571
http://inspirehep.net/search?p=find+EPRINT+arXiv:0704.3571
http://dx.doi.org/10.1103/PhysRevD.82.125034
http://arxiv.org/abs/1009.4696
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.4696
http://dx.doi.org/10.1103/PhysRevD.84.035005
http://arxiv.org/abs/1105.0241
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0241
http://dx.doi.org/10.1088/1126-6708/2005/03/007
http://arxiv.org/abs/hep-th/0502058
http://inspirehep.net/search?p=find+EPRINT+hep-th/0502058
http://dx.doi.org/10.1016/j.nuclphysb.2010.09.008
http://arxiv.org/abs/0910.4581
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.4581
http://dx.doi.org/10.1007/JHEP09(2010)087
http://arxiv.org/abs/0912.3519
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.3519
http://arxiv.org/abs/1102.2403
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.2403
http://arxiv.org/abs/1106.6165
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.6165
http://arxiv.org/abs/1202.3789
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.3789
http://dx.doi.org/10.1007/JHEP05(2011)053
http://arxiv.org/abs/1102.1734
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.1734
http://dx.doi.org/10.1016/j.nuclphysb.2004.04.013
http://arxiv.org/abs/hep-th/0311241
http://inspirehep.net/search?p=find+EPRINT+hep-th/0311241
http://dx.doi.org/10.1088/1126-6708/2006/03/087
http://arxiv.org/abs/hep-th/0602120
http://inspirehep.net/search?p=find+EPRINT+hep-th/0602120
http://dx.doi.org/10.1016/j.nuclphysb.2004.07.027
http://arxiv.org/abs/hep-th/0406010
http://inspirehep.net/search?p=find+EPRINT+hep-th/0406010
http://inspirehep.net/search?p=find+J+JETPLett.,16,438
http://dx.doi.org/10.1016/0370-2693(73)90490-5
http://inspirehep.net/search?p=find+J+Phys.Lett.,B46,109


J
H
E
P
0
7
(
2
0
1
2
)
1
8
8

[48] M. Aganagic, C. Popescu and J.H. Schwarz, Gauge invariant and gauge fixed D-brane

actions, Nucl. Phys. B 495 (1997) 99 [hep-th/9612080] [INSPIRE].
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