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Abstract - The vast majority of current Internet traffic is generated by 
web browsing applications. Proxy caching, which allows some of the  
most popular web objects to  be cached at intermediate nodes within the  
network, has been shown to  provide substantial performance improve- 
ments. In this paper we argue that  image-specific caching strategies are  
desirable and will result in improved performance over approaches treat- 
ing all objects alike. We propose that  Soft Caching, where an  image can 
be cached at one of a set of levels of resolutions, can benefit the  over- 
all performance when combined with cache management strategies that  
estimate, for each object, both the bandwidth to  the server where the  
object is stored and the appropriate resolution level demanded by the  
user. We formalize the cache management problem under these condi- 
tions and describe an experimental system to  test these techniques. 

INTRODUCTION AND MOTIVATION 
The explosive growth in Internet traffic has made it critical to look for ways 

of accommodating the increasing number of users while preventing excessive 
delays, congestion and widespread blackouts. Increased transmission capacity 
and more sophisticated pricing will help in the long run relieve current bottle- 
necks but an immediate goal in both research and commercial environments 
has been to define methods which can provide a more efficient utilization of 
existing resources. For the past several years a large proportion of Internet 
traffic has been generated by web-browsing. This has led to a great deal of 
effort being devoted to studying web caching techniques [l]. 

Consider the basic interaction in web browsing, where a client requests an 
object2 that is stored at a server host. While caching is useful both at  the 
server (for example some pages might be kept in RAM memory) and the client 
(where recently accessed files are saved to disk), we concentrate here on proxy 
based caching. In this environment clients can designate a host to serve as a 
proxy for all or some of their requests (e.g., http, ftp, etc). The proxy acts as 
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a cache by temporarily storing on local disks, or memory, objects which were 
requested by the clients. When one of the clients sharing the proxy generates 
a request, the proxy searches its local storage for the requested object. If the 
object is available locally (hit) it is sent to the client, otherwise (miss) the 
request is passed on to the remote server (or to another proxy server, if the 
proxy cache belongs to a hierarchy of caches.) 

Obviously caching will improve the overall performance of the system as 
long as the hit ratio, i.e. the ratio of locally available information to total 
volume of requests, is sufficiently high. However, unlike traditional low level 
caching, as used in most current computer architectures, a relatively low hit 
ratio suffices to  make using a web caching system worthwhile. This is true 
because the overhead of a miss (getting the object from the remote server) 
can be very high compared to the speed of a local search and transfer and thus 
the savings on a few hits are sufficient to make up for the overhead needed 
for searching the cache storage first. 

The potential benefits of caching have sparked commercial and research 
interest. Several companies offer a proxy server among their products [a, 31 
while government-funded projects have resulted in a freely available cache 
implementation [4, 11. Web caching can be divided into two main classes, 
namely, push, where the server places information in the network caches [5], 
and pull, where proxies operate independently of the servers and store in- 
formation as a function of clients requests. In this work we concentrate on 
pull-based environments, which are also the most popular in terms of imple- 
mentation and research interest [a, 3,  41. 

There are several aspects which clearly differentiate web caching from tra- 
ditional caching environments. For example the above mentioned low hit ratio 
requirement, but also the fact that computation and memory at the proxy 
come relatively cheap and thus sophisticated cache management strategies 
are possible, including algorithms with different approaches for each class of 
objects. Another significant difference is that the bandwidths to the various 
servers are different (and indeed can change over time) and thus the cost of a 
miss does not depend on the size of the object alone. The goal of this paper 
is to motivate that increased levels of performance can be achieved with web 
caching strategies specifically geared towards images. 

SOFT CACHING 
A web cache design addresses two main questions (see [l] for details): 

1. Given a requested object that is not locally available, should it be fetched 
and stored for future requests? The answer depends for example on the object 
type, since dynamic objects (e.g. counters) may not be suitable for caching. 
2. Given the current state of the cache, i.e. number of objects and their 
characteristics (size, number of times they have been accessed, last access 
time, etc), and given the limited storage available, what objects should remain 
in the cache and what objects should be erased? This “garbage collection” 
or object removal policy (see for examplc [6]) will be the focus of our study. 
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Current design efforts have provided answers to the above questions which 
are valid for generic objects, while assuming that object integrity has to be 
preserved, i.e. objects cannot be modified. Thus an object is either present or 
not in the cache, but cannot be available in part. Here we propose that caching 
proxies should be able to perform recoding of the images in the cache so that 
lower resolution versions of the images can be stored and made available to 
the clients. We call this strategy Sofc Caching, since we now allow a lower 
resolution version of an image object to be stored; a soft decision is made 
(how many bits to use for a certain image) instead of a hard one (is the image 
left in the cache or not). 

In our framework, specific caching strategies are derived for images and 
other media objects, for which preserving the object integrity is not com- 
pletely necessary. While incomplete delivery of text data may render it use- 
less, for images it may be sufficient to provide the end user with a lower 
resolution version of the image stored at  the remote server, especially if this 
can be done in significantly less time than it would take to download the 
full resolution image. This is one of the reasons for the continuing popular- 
ity of progressive image formats such as Progressive JPEG [7] nowadays, or 
pyramids [8] and wavelets [9] in the near future. 

For access over a fast link, progressive transmission may not offer significant 
advantages, but over a slow link a progressive format allows a usable, albeit 
reduced resolution, picture to be available even if the transfer is terminated 
early. This allows users to stop the transfer when a sufficient quality image has 
been downloaded. A study of such a multiresolution imaging system under 
simple assumptions can be found in [lo,  111 and motivates the advantages in 
terms of average access delay of using a progressive transmission. 

Real-time distillation [la,  131 has been proposed to allow proxies to extract 
(distill) a low resolution image to serve it to slow clients (e.g. clients connected 
to the network via dial-up). While this approach is similar in philosophy, we 
consider here a more general case where a shared resource (the cache memory) 
is taken into account and other configurations are considered (including for 
example a fast local network and a remote access to the server). 

CACHE MANAGEMENT STRATEGIES FOR IMAGES 
In our framework the cache management task consists of determining both 

which images to maintain in the cache and the level of resolution at  which 
they should be stored. As for generic objects, the objective of the cache 
management algorithm should be to minimize the average access time per 
image. 

We consider a scenario where the user is served each image first at what- 
ever resolution is available in the cache (or full resolution if the image is not 
available there) and then can request the full resolution image to be fetched by 
pressing “reload”. From an implementation standpoint this can be achieved 
by filtering all the requests involving images and handling them separately 
from other objects. Serving the reload request can be done by requesting 
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from the server either (A) the full resolution object or (B) the missing layers 
to complete full resolution d e ~ o d i n g . ~  

Information available at  the proxy Assume a total of N different images 
have been accessed recently. Denote Ri the size in bits of the i-th image 
and let Ai be the number of times that the image has been requested during 
the observation period. Let ~i be the size in bits of the reduced resolution 
version of the i-th image currently stored in the cache and let Ri be the set 
of all available resolutions for this image. In a general scenario the cache 
serves J clients (Cl, .  . . , Cj, . . . , C J ) ,  which access information stored in K 
servers (SI, . . . , S k ,  . . . , SK). Let Di(ri)  represent the number of bits required 
to obtain the full resolution image given that the ~i bits are available in the 
cache. Under scenario (A) above Di(r;)  = Ri, while in the more efficient case 
(B),  Di = Ri - ri. Among the data available to the cache manager will be 
the estimated bandwidth in bitlsec to a given server or client, bSk and BcJ ,  
respectively. This information can be obtained by recording the time the 
corresponding sockets remain open and the image sizes (both are available in 
log files of typical proxy caching software). Bandwidths associated to each 
server have been considered and proven to be useful for management of general 
web caches [14, 151. Here we consider the particular case of image caches. 

Single. object case Assume that an image object is present a.t the cache a.nd 
we would like to determine at what resolution it, shoiild be kept t,here. Assume 
that, for any value of ri we can estimate p r ( r i ) ,  the probabilit,y that a reload 
will occur if the image is stored at resolution ~ i .  Note that we expect p r ( r i )  
to  become small as ri gets close to Ri. Conversely, p, . (r i )  should increase as 
ri decreases. 

We can define, for a choice of ri, the expected download time for a given 

where we have assumcd that object i is stored in server k and we use the 
Di(ri) value defined above. Further we have simplified things by considering 
that all clients have the same access bandwidth to the proxy. This is a real- 
istic assumption for caches located at the bottom of a hierarchy, for example 
proxies that serve a set of clients within a company or campus network. 

A qi~est~ion of interest is to find r; such E[t(r;)]  is minimal among all 
possible choices of ri. This formulation is similar to the one considered in 
[lo,  111. The optimal value r: will depend on the form of p , ( r i )  and the 
relative values of B,, and b,. Under scenario (A) the solution can sometimes 
be r: = Ri, i.e. it is best to cache the whole image to minimize the delay. 

3Note that  while (B) is clearly more attractive, since only the additional information is 
downloaded, it requires that the server be able respond to these types of requests, something 
that, is currently not supported in most practical systems. This may become possible as 
new formats and protocols specific to images become available (e.g. FlashPix from Kodak). 
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However, even if this is the case, global storage limits for the set of N images 
will mean that a lower resolution image may have to be stored. 

Dynamic behavior We have so far assumed that there is knowledge of 
the bandwidths ( B S k  and 6,) and the p,.(r;) function. This information has 
to be gathered as images are accessed. It is possible for exarnple to use 
methods such as those described in [14] or [15] to estimate the bandwidths. 
Estimating p,.(ri) is not as simple. If ri were maintained constant it would be 
possible to count the instances when a reload is requested and p,.(ri) could 
be approximated for that particular ri. However in an actual scenario the 
value of r; would change and so would the bandwidth to  the proxy. The best 
alternative might thus be to  have a predetermined family of curves for p,. (ri) 
from which a specific curve can be chosen. For example curves of the form 

for a given parameter m can be used, with the parameter m chosen to best 
match the observed characteristics. 

Multiple object case If storage was not an issue it would be possible to 
store all the images at  their optimal ri as determined by their own statistics. 
Obviously storage is an issue in any practical system and thus when consider- 
ing the limited resources we need to  select r; for each image to ensure global 
optimality. 

In fact, if one considers only individual images the reductmion in delay 
achievable when caching an intermediate resolution image instead of Ri might 
be very small (in particular under scenario (A)) and it is tempting to conclude 
that soft caching has limited value. However, because soft caching allows im- 
ages to  be stored at lower resolution it also frees up storage for other images. 
Thus the performance improvement (w.r.t. hard caching) in the system we 
propose will come through an increase in the number of objects that can be 
cached for a given storage capacity. 

Our goal is to find T; for each image (note that 0 and R, are both in Ri) 
such that 

N N 

where Cachesize is the available storage capacity. pi is the probability of 
having a request for image i and can be for example approxirriated as pi = 
A;/ A;. Note that the expected delay for each image is assumed lo be 
independent and thus we can use well known Lagrangian techniques [16] to 
find the optimal solution. In this case we can minimize for each image and a 
given X > 0 the cost J;(X) = p ;  E [ ~ ( T ; ) ]  -+ XR;. The overall solution can then 
be achieved by firiding X which provides an overall cache occupancy equal (or 
close) to Cachesize .  Note that Lagrangian techniques only sclect points on 
the convex hull of the set of operating points. Thus if E[t(ri)] is minimized 
for a given ra all the values of ~i > T: are automatically discarded, since they 
increase both the rate and the expected delay. 
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We are currently implementing an experimental system that will allow 
us to measure the reload probabilities when using a multiresolution system 
(this data is not available from current implementations [4]). Simulation and 
experimental results will be made available as they are generated and will be 
stored in http://sipi.usc.edu/”ortega/SoftCaching/index.ht~l. 
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