
SOFT CACHING: WEB CACHE MANAGEMENT
TECHNIQUES FOR IMAGES

A. Ortega, F. Carignano
Integrated Media Systems Center
University of Southern California EPFL
Los Angeles, CA, USA

S . Ayer and M. Vetterli'
Visual Communications Lab

Lausanne, Switzerland

Abstract - The vast majority of current Internet traffic is generated by
web browsing applications. Proxy caching, which allows some of the
most popular web objects to be cached at intermediate nodes within the
network, has been shown to provide substantial performance improve-
ments. In this paper we argue that image-specific caching strategies are
desirable and will result in improved performance over approaches treat-
ing all objects alike. We propose that Soft Caching, where an image can
be cached at one of a set of levels of resolutions, can benefit the over-
all performance when combined with cache management strategies that
estimate, for each object, both the bandwidth to the server where the
object is stored and the appropriate resolution level demanded by the
user. We formalize the cache management problem under these condi-
tions and describe an experimental system to test these techniques.

INTRODUCTION AND MOTIVATION
The explosive growth in Internet traffic has made it critical to look for ways

of accommodating the increasing number of users while preventing excessive
delays, congestion and widespread blackouts. Increased transmission capacity
and more sophisticated pricing will help in the long run relieve current bottle-
necks but an immediate goal in both research and commercial environments
has been to define methods which can provide a more efficient utilization of
existing resources. For the past several years a large proportion of Internet
traffic has been generated by web-browsing. This has led to a great deal of
effort being devoted to studying web caching techniques [l].

Consider the basic interaction in web browsing, where a client requests an
object2 that is stored at a server host. While caching is useful both at the
server (for example some pages might be kept in RAM memory) and the client
(where recently accessed files are saved to disk), we concentrate here on proxy
based caching. In this environment clients can designate a host to serve as a
proxy for all or some of their requests (e.g., http, ftp, etc). The proxy acts as

'Martin Vetterli is also with Department of EECS, University of California, Berkeley,

'In the web context an object is a file (text, image, audio, executable) which is available
CA 94720, USA

to be downloaded by a client.

0-7803-3780-8/97/$10.00 0 1 997 IEEE 475

a cache by temporarily storing on local disks, or memory, objects which were
requested by the clients. When one of the clients sharing the proxy generates
a request, the proxy searches its local storage for the requested object. If the
object is available locally (hit) it is sent to the client, otherwise (miss) the
request is passed on to the remote server (or to another proxy server, if the
proxy cache belongs to a hierarchy of caches.)

Obviously caching will improve the overall performance of the system as
long as the hit ratio, i.e. the ratio of locally available information to total
volume of requests, is sufficiently high. However, unlike traditional low level
caching, as used in most current computer architectures, a relatively low hit
ratio suffices to make using a web caching system worthwhile. This is true
because the overhead of a miss (getting the object from the remote server)
can be very high compared to the speed of a local search and transfer and thus
the savings on a few hits are sufficient to make up for the overhead needed
for searching the cache storage first.

The potential benefits of caching have sparked commercial and research
interest. Several companies offer a proxy server among their products [a, 31
while government-funded projects have resulted in a freely available cache
implementation [4, 11. Web caching can be divided into two main classes,
namely, push, where the server places information in the network caches [5],
and pull, where proxies operate independently of the servers and store in-
formation as a function of clients requests. In this work we concentrate on
pull-based environments, which are also the most popular in terms of imple-
mentation and research interest [a, 3, 41.

There are several aspects which clearly differentiate web caching from tra-
ditional caching environments. For example the above mentioned low hit ratio
requirement, but also the fact that computation and memory at the proxy
come relatively cheap and thus sophisticated cache management strategies
are possible, including algorithms with different approaches for each class of
objects. Another significant difference is that the bandwidths to the various
servers are different (and indeed can change over time) and thus the cost of a
miss does not depend on the size of the object alone. The goal of this paper
is to motivate that increased levels of performance can be achieved with web
caching strategies specifically geared towards images.

SOFT CACHING
A web cache design addresses two main questions (see [l] for details):

1. Given a requested object that is not locally available, should it be fetched
and stored for future requests? The answer depends for example on the object
type, since dynamic objects (e.g. counters) may not be suitable for caching.
2. Given the current state of the cache, i.e. number of objects and their
characteristics (size, number of times they have been accessed, last access
time, etc), and given the limited storage available, what objects should remain
in the cache and what objects should be erased? This “garbage collection”
or object removal policy (see for examplc [6]) will be the focus of our study.

476

Current design efforts have provided answers to the above questions which
are valid for generic objects, while assuming that object integrity has to be
preserved, i.e. objects cannot be modified. Thus an object is either present or
not in the cache, but cannot be available in part. Here we propose that caching
proxies should be able to perform recoding of the images in the cache so that
lower resolution versions of the images can be stored and made available to
the clients. We call this strategy Sofc Caching, since we now allow a lower
resolution version of an image object to be stored; a soft decision is made
(how many bits to use for a certain image) instead of a hard one (is the image
left in the cache or not).

In our framework, specific caching strategies are derived for images and
other media objects, for which preserving the object integrity is not com-
pletely necessary. While incomplete delivery of text data may render it use-
less, for images it may be sufficient to provide the end user with a lower
resolution version of the image stored at the remote server, especially if this
can be done in significantly less time than it would take to download the
full resolution image. This is one of the reasons for the continuing popular-
ity of progressive image formats such as Progressive JPEG [7] nowadays, or
pyramids [8] and wavelets [9] in the near future.

For access over a fast link, progressive transmission may not offer significant
advantages, but over a slow link a progressive format allows a usable, albeit
reduced resolution, picture to be available even if the transfer is terminated
early. This allows users to stop the transfer when a sufficient quality image has
been downloaded. A study of such a multiresolution imaging system under
simple assumptions can be found in [lo, 111 and motivates the advantages in
terms of average access delay of using a progressive transmission.

Real-time distillation [la, 131 has been proposed to allow proxies to extract
(distill) a low resolution image to serve it to slow clients (e.g. clients connected
to the network via dial-up). While this approach is similar in philosophy, we
consider here a more general case where a shared resource (the cache memory)
is taken into account and other configurations are considered (including for
example a fast local network and a remote access to the server).

CACHE MANAGEMENT STRATEGIES FOR IMAGES
In our framework the cache management task consists of determining both

which images to maintain in the cache and the level of resolution at which
they should be stored. As for generic objects, the objective of the cache
management algorithm should be to minimize the average access time per
image.

We consider a scenario where the user is served each image first at what-
ever resolution is available in the cache (or full resolution if the image is not
available there) and then can request the full resolution image to be fetched by
pressing “reload”. From an implementation standpoint this can be achieved
by filtering all the requests involving images and handling them separately
from other objects. Serving the reload request can be done by requesting

477

from the server either (A) the full resolution object or (B) the missing layers
to complete full resolution d e ~ o d i n g . ~

Information available at the proxy Assume a total of N different images
have been accessed recently. Denote Ri the size in bits of the i-th image
and let Ai be the number of times that the image has been requested during
the observation period. Let ~i be the size in bits of the reduced resolution
version of the i-th image currently stored in the cache and let Ri be the set
of all available resolutions for this image. In a general scenario the cache
serves J clients (Cl, . . . , Cj, . . . , C J) , which access information stored in K
servers (SI, . . . , S k , . . . , SK). Let Di(ri) represent the number of bits required
to obtain the full resolution image given that the ~i bits are available in the
cache. Under scenario (A) above Di(r;) = Ri, while in the more efficient case
(B), Di = Ri - ri. Among the data available to the cache manager will be
the estimated bandwidth in bitlsec to a given server or client, bSk and BcJ ,
respectively. This information can be obtained by recording the time the
corresponding sockets remain open and the image sizes (both are available in
log files of typical proxy caching software). Bandwidths associated to each
server have been considered and proven to be useful for management of general
web caches [14, 151. Here we consider the particular case of image caches.

Single. object case Assume that an image object is present a.t the cache a.nd
we would like to determine at what resolution it, shoiild be kept t,here. Assume
that, for any value of ri we can estimate p r (r i) , the probabilit,y that a reload
will occur if the image is stored at resolution ~ i . Note that we expect p r (r i)
to become small as ri gets close to Ri. Conversely, p, . (r i) should increase as
ri decreases.

We can define, for a choice of ri, the expected download time for a given

where we have assumcd that object i is stored in server k and we use the
Di(ri) value defined above. Further we have simplified things by considering
that all clients have the same access bandwidth to the proxy. This is a real-
istic assumption for caches located at the bottom of a hierarchy, for example
proxies that serve a set of clients within a company or campus network.

A qi~est~ion of interest is to find r; such E[t(r;)] is minimal among all
possible choices of ri. This formulation is similar to the one considered in
[lo, 111. The optimal value r: will depend on the form of p , (r i) and the
relative values of B,, and b,. Under scenario (A) the solution can sometimes
be r: = Ri, i.e. it is best to cache the whole image to minimize the delay.

3Note that while (B) is clearly more attractive, since only the additional information is
downloaded, it requires that the server be able respond to these types of requests, something
that, is currently not supported in most practical systems. This may become possible as
new formats and protocols specific to images become available (e.g. FlashPix from Kodak).

478

However, even if this is the case, global storage limits for the set of N images
will mean that a lower resolution image may have to be stored.

Dynamic behavior We have so far assumed that there is knowledge of
the bandwidths (B S k and 6,) and the p,.(r;) function. This information has
to be gathered as images are accessed. It is possible for exarnple to use
methods such as those described in [14] or [15] to estimate the bandwidths.
Estimating p,.(ri) is not as simple. If ri were maintained constant it would be
possible to count the instances when a reload is requested and p,.(ri) could
be approximated for that particular ri. However in an actual scenario the
value of r; would change and so would the bandwidth to the proxy. The best
alternative might thus be to have a predetermined family of curves for p,. (ri)
from which a specific curve can be chosen. For example curves of the form

for a given parameter m can be used, with the parameter m chosen to best
match the observed characteristics.

Multiple object case If storage was not an issue it would be possible to
store all the images at their optimal ri as determined by their own statistics.
Obviously storage is an issue in any practical system and thus when consider-
ing the limited resources we need to select r; for each image to ensure global
optimality.

In fact, if one considers only individual images the reductmion in delay
achievable when caching an intermediate resolution image instead of Ri might
be very small (in particular under scenario (A)) and it is tempting to conclude
that soft caching has limited value. However, because soft caching allows im-
ages to be stored at lower resolution it also frees up storage for other images.
Thus the performance improvement (w.r.t. hard caching) in the system we
propose will come through an increase in the number of objects that can be
cached for a given storage capacity.

Our goal is to find T; for each image (note that 0 and R, are both in Ri)
such that

N N

where Cachesize is the available storage capacity. pi is the probability of
having a request for image i and can be for example approxirriated as pi =
A;/ A;. Note that the expected delay for each image is assumed lo be
independent and thus we can use well known Lagrangian techniques [16] to
find the optimal solution. In this case we can minimize for each image and a
given X > 0 the cost J;(X) = p ; E [~ (T ;)] -+ XR;. The overall solution can then
be achieved by firiding X which provides an overall cache occupancy equal (or
close) to Cachesize . Note that Lagrangian techniques only sclect points on
the convex hull of the set of operating points. Thus if E[t(ri)] is minimized
for a given ra all the values of ~i > T: are automatically discarded, since they
increase both the rate and the expected delay.

479

We are currently implementing an experimental system that will allow
us to measure the reload probabilities when using a multiresolution system
(this data is not available from current implementations [4]). Simulation and
experimental results will be made available as they are generated and will be
stored in http://sipi.usc.edu/”ortega/SoftCaching/index.ht~l.

References
[l] A. Chankhunthod et al., “A hierarchical internet object cache,” in USENIX

[a] “Netscape homepage.” (http: //home.netscape .com/).
[3] “Middleware homepage.” (http: //www .netcache. corn/).
[4] “Squid internet object cache.” (http: //squid.nlanr.net/Squid/).
[5] J. Gwertzman and M. Seltzer, “The case for geographical push caching,” in

Proceedings of the 1995 Workshop on Hot Operating Systems., 1995.
(http://www.eecs.harvard.edu/-vino/web/hotos.ps).

[6] S. Williams et al., “Removal policies in network caches for world-wide web
documents,” in Proc. of ACM SIGCOMM’96, (Stanford, CA), pp. 293-305,
Aug. 1996. (http://www.cs.vt.edu/~chitra/docs/96sigcomm/).

[7] W. Pennebaker and J. Mitchell, JPEG Still Image Data Compression Standard.
Van Nostrand Reinhold, 1994.

[8] P. J. Burt and E. H. Adelson, “The laplacian pyramid as a compact image
code,” IEEE Trans. o n Commun., vol. 31, pp. 532-540, Apr. 1983.

[9] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet coefficients,”
IEEE Trans. on Signal Proc., vol. 41, pp. 3445-3462, Dec. 1993.

[lo] A. Ortega, Z. Zhang, and M. Vetterli, “A framework for optimization of a mul-
tiresolution remote image retrieval system,” in Znfocom’94, (Toronto, Canada),
pp. 672-679, June 1994. (http: / /s ipi .usc. edu/-ortega/Infocom94.html).

[11] A. Ortega, Optimization Techniques for Adaptive Quantization of Image and
Video under Delay Constraints. PhD thesis, Dept. of Electrical Engineering,
Columbia University, New York, NY, 1994.

[12] A. Fox and E. A. Brewer, “Reducing www latency and bandwidth requirements
by real-time distillation,” in Proc. Intl. W W W Conf., (Paris, France), May
1996. (http://http.cs.berkeley.edu/-fox/www96/0verview.html).

[13] A. Fox e t al., “Adapting to network and client variability via on-demand
dynamic distillation,” in Proc. ASPLOS- VII, (Cambridge, MA), Oct. 1996.
(http://http.cs.berkeley.edu/-fox/papers/adaptive.ps.gz).

[14] P. Scheuermann, J. Shim, and R. Vingralek, “A case for delay-conscious caching
of web documents,” in Proc. Zntl. W W W Conf., (Santa Clara, CA), Apr. 1997.

[15] R. P. Wooster and M. Abrams, “Proxy caching that estimates page
load delays,” in Proc. I d . W W W Conf., (Santa Clara, CA), Apr. 1997.
(http://www.cs.vt.edu/~chitra/docs/www6r/).

[16] Y. Shoham and A. Gersho, “Efficient bit allocation for an arbitrary set of
quantizers,” IEEE Trans. on Signal Proc., vol. 36, pp. 1445-1453, Sept. 1988.

Tech. Conf., 1996. (http: //catarina.usc. edu/danzig/cache/cache. html).

480

http://www.eecs.harvard.edu/-vino/web/hotos.ps
http://http.cs.berkeley.edu/-fox/www96/0verview.html
http://http.cs.berkeley.edu/-fox/papers/adaptive.ps.gz

