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Poincaré symmetry of the background Minkowski spacetime and the soft charges. We

discuss physical meaning and implication of our charges and their algebra.

Keywords: Duality in Gauge Field Theories, Gauge Symmetry, Global Symmetries,

Spontaneous Symmetry Breaking

ArXiv ePrint: 1806.01901

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP08(2018)102

mailto:v.hosseinzadeh@ipm.ir
mailto:ali_seraj@ipm.ir
mailto:jabbari@theory.ipm.ac.ir
https://arxiv.org/abs/1806.01901
https://doi.org/10.1007/JHEP08(2018)102


J
H
E
P
0
8
(
2
0
1
8
)
1
0
2

Contents

1 Introduction 1

2 Maxwell soft charges at spatial infinity 4

2.1 Electric and magnetic soft charges 5

2.2 On-shell covariant phase space and boundary symmetries 9

2.3 Asymptotic symmetries and their algebra 10

3 Maxwell soft charges at null infinity 13

3.1 Radiative phase space: symplectic and Poisson structures 14

3.2 Hamiltonian generators and charges 15

3.3 Algebra of charges 16

4 Duality symmetric electromagnetism, its phase space and soft charges 18

4.1 Reduction to constrained on-shell phase space: spatial foliation 19

4.2 Symplectic structure and soft charges at null infinity 22

4.3 Duality generating charge 24

4.4 Poincare generators, the electric-magnetic soft charges and their algebra 26

5 Discussion and outlook 29

A Contour integrals 35

B An alternative formulation: complexified Maxwell theory 36

1 Introduction

It is by now a well known fact that gauge symmetries are not mere redundancies of de-

scription: while gauge redundancies are usually fixed by gauge fixing, a subset of the gauge

group, consisting of the Large Gauge Transformations (LGT) survive the gauge fixing and

act non-trivially at boundaries of the system. Indeed LGTs form an extension of global

symmetries changing the state of the system. While local gauge invariant observables are

unable to measure LGTs, they may be detected by nonlocal observables like the memory

effect. The role of LGTs in describing and understanding the low energy (infrared) dy-

namics of gauge theories has received an immense attention in recent years (e.g. see [1] and

references therein).

In this paper we focus on the four dimensional Maxwell U(1) gauge theory or the QED

and its LGT. The global U(1) gauge transformation, the gauge transformation which ap-

proaches a non-zero constant at infinity, is the simplest LGT whose corresponding Noether

charge is the usual total electric charge. The LGT in Maxwell theory are generalization of
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this global transformations whose asymptotic value is determined by a scalar function on

the celestial sphere at the boundary of the space.

Using the standard methods, the covariant phase space method [2–4], or the Hamil-

tonian formulation [5–9], one can associate conserved surface charges to the LGT. These

surface charges, upon the equations of motion, decompose into a “soft” and a “hard”

part [10] (the latter is an integral over the external electric currents and include the usual

electric charge). The soft charges depend on the scalar LGT function on the celestial sphere

and on the other hand are functions over the phase space. One can hence compute the

Poisson bracket and the algebra of these charges. The states in the usual “physical” Hilbert

space of QED which are specified by their usual wave-vector and polarization are now to

be viewed as infinitely degenerate by the addition of these soft charges. In other words,

a physical asymptotic state in a theory may have a soft-dressing. While not appearing

in scattering amplitude of usual hard states, the soft-dressing may have other observable

effects, e.g. as Aharnov-Bohm phase in QED or in electromagnetic [11–17] or gravitational

memory effect [18–22]. Moreover, as first noted by Faddeev and Kulish [23] and reempha-

sized recently (see e.g. [24, 25] for a nice overview and summary of this issue), a specific

soft-dressing for the charged states or the vacuum may be needed to satisfactorily address

the IR issues in gauge theory or gravity.

Maxwell theory enjoys Electric-Magnetic Duality (EMD). In the simplest version this

duality is a Z2 which exchanges electric and magnetic fields while it can be promoted to

a U(1) symmetry, continuously rotating the electric and magnetic fields into each other.

Moreover, by the addition of the θ-term this U(1) may be extended to SL(2, R) at the

classical level. The symmetry between the electric and magnetic descriptions is, however,

broken in QED when we introduce the electric charge into the system where we choose

to work with electric degrees of freedom. Nonetheless, one may also introduce magnetic

charge and currents to maintain the symmetry. The EMD is known to extend to non-

Abelian gauge theories and in particular the SL(2, Z) part of it, remains an exact quantum

symmetry in the context of supersymmetric gauge theories [26, 27].

In this work we revisit the question of soft charges in the context of electric-magnetic

duality. Inspired by this duality, the magnetic dual of soft charges were proposed in [28] and

the corrections to soft theorems in the presence of magnetic charges was derived from the

conservation of magnetic soft charges. However, it was shown later [29] that the magnetic

soft charges have a key role even in the absence of magnetic sources. Indeed Weinberg’s

soft theorem implies the existence and conservation of both electric and magnetic soft

charges. This raises the question what is the nature of magnetic soft charges. In Maxwell

theory the electric soft charges appear as the Noether charges associated to a set of LGT

of the theory while the magnetic soft charges have no LGT counterpart. Moreover, the

boundary conditions usually used in construction of radiative phase space of Maxwell theory

excludes magnetic sources and accordingly magnetic soft charges. In section 4, we consider

the duality symmetric formulation of Maxwell theory [30, 31] which gives an answer to

the above two questions at the same time. While the duality symmetric theory is on-shell

equivalent to the Maxwell in the bulk, there is an extra boundary gauge symmetry whose

conserved charges are exactly the magnetic soft charges. We therefore have two sets of
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electric and magnetic soft charges and the associated electric and magnetic LGTs. The

duality symmetric formulation enables us to construct the duality symmetric phase space

and allows us to put the electric and magnetic soft charges at the same footing.

Our main, perhaps surprising, result is while the electric soft charges (and similarly

magnetic soft charges) commute among themselves and form an Abelian algebra, electric

and magnetic soft charges associated with certain electric and magnetic LGT do not com-

mute with each other. To ensure that our results are not artifacts of the way we perform the

analysis, we make the calculations in some different ways: (1) we compute the charges both

at null and spatial infinities; (2) we use the duality invariant Maxwell theory to compute

the charges and their algebra. All these of course yield to the same result.

The rest of this paper is organized as follows. In section 2, we compute the electric

and magnetic soft charges in the Lorenz gauge by imposing appropriate falloff behavior at

spatial infinity. We show that these soft charges could be viewed as Hamiltonian generators

on a phase space and using this we compute the algebra of electric and magnetic soft

charges. We show if we allow LGT which are nonregular at the celestial sphere, electric

and magnetic charges do not commute. We note that these singular gauge transformations

are inevitable if we have charged particles going through the null infinity [32]. In section 3,

we repeat the analysis of section 2 but compute the charges at asymptotic future null

infinity. The analysis of this section reconfirms the same charge algebra. In section 4, we

consider an extension of the Maxwell theory which is invariant under the electric-magnetic

duality and compute the soft charges in this theory. In this case the electric and magnetic

soft charges appear at the same footing. In particular, we discuss the charge associated with

the U(1) global symmetry rotating electric and magnetic fields into each other, the duality

charge. We work out the algebra of this “duality charge” and the soft charges. Moreover,

we analyzed conserved (Noether) charges associated with Poincaré symmetry and study the

algebra of soft charges, the Poinaré charge and the duality charge and show that the spin

(angular momentum) charge is different than the duality charge. Section 5 is devoted to a

summary, discussion and physical implication of our results and the outlook. In appendix A,

we have gathered some technical details of the charge integrals. In appendix B, we discuss

complexified Maxwell theory as a variant formulation the duality symmetric theory.

Notations and conventions. We will be working with a gauge field theory, with dy-

namical field one-form A, and with the field strength two-form F = dA. We decompose this

two-form into a spatial two-form, the magnetic field B, and a spatial vector, the electric

field E.

Field configurations on a constant time slice t, A(x; t), as we discuss, parameterize the

covariant phase space (a la Wald [2]). Tangent space to this phase space can be spanned by

generic field variations. In our conventions, we denote the variations which are one-forms

on the phase space as dA. In general, hence, we are dealing with forms on spacetime and

the phase space. By a (p; q)-form we mean a p-form in spacetime and a q-form on the phase

space. Exterior derivative on the spacetime and phase space will be respectively denoted

by d and d. So, given a (p; q)-form X, dX is a (p+1; q)-form and dX a (p; q+1)-form. The

two spacetime and phase space exterior derivatives commute with each other, ddX = ddX.
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Besides the forms, we also have vectors on the phase space which we denote by δ.

In particular, we denote the vector associated with the function f by δf . The interior

product between forms and vectors on the phase space will be denoted by i, e.g. given the

(p; q)-form X, iδfX is a (p; q − 1)-form.1 We also define Lie derivative on the phase space

along a generic vector δ and denote by Lδ. Given a function on the phase space (i.e. a

(p; 0)-form) φ,

Lδφ = δφ, (1.1)

is nothing but the usual variation of φ. Phase space Lie derivative on generic (p; q)-form

X can then be defined through the Cartan identity:

LδX = d(iδX) + iδdX, (1.2)

and one may show that LδdX = d(LδX) for any X.

Hodge-star operation denoted by ∗, is defined only on spacetime or just the spatial

part; the latter will of course be manifest from the context. Therefore in d space(time)

dimensions and for a generic (p; q)-form X, ∗X is a (d − p; q)-form. As it is clear, d

commutes with Hodge-star operation ∗, ∗dX = d ∗X.

We use the same notation ∧-product for both spacetime and phase space forms. That

is, for a (p; q)-form X and a (r; s)-form Y ,

X ∧ Y = (−1)pr(−1)qs Y ∧X, (1.3)

and

d(X ∧ Y ) = dX ∧ Y + (−1)pX ∧ dY, d(X ∧ Y ) = dX ∧ Y + (−1)qX ∧ dY. (1.4)

We will introduce the rest of notations used in the main text, when they appear.

Note added. Soon after our paper, the reference [33] appeared on arXiv. While the

approaches are different, interestingly the main results agree.

2 Maxwell soft charges at spatial infinity

Consider the Maxwell theory in d dimensional spacetime described by the gauge field one-

form A = Aµdx
µ and the field strength two-form F = dA, governed by the action

S = −1

4

∫
FµνF

µν = −1

2

∫
F ∧ ∗F . (2.1)

To compute the charges one may use the covariant phase space approach [2–4]. To this

end we study variation of the Lagrangian with respect to generic field variations, yielding

the equations of motions and a total derivative term:

dL = −d ∗ F ∧ dA+ dΘ, (2.2)

1In the notation more common in the literature of this field, the exterior phase space derivative is denoted

by δ, rather than d. However, this usual notation does not distinguish between the vector and forms on

the phase space.
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where Θ = −∗F ∧dA is the (pre)symplectic potential density. In the language of forms, the

Lagrangian is a (d; 0)-form, dL a (d; 1)-form and Θ a (d− 1; 1)-form. While the equations

of motion determine dynamics of the system, the second term induces the symplectic

structure of the covariant phase space, see [34, 35] for reviews. From this, one defines the

presymplectic current as a (d− 1; 2)-form

ω = dΘ = − ∗ dF ∧ dA . (2.3)

The presymplectic structure Ω of the theory is the integration of presymplectic current

over a hypersurface Σ,

Ω =

∫
Σ
ω = −

∫
Σ
∗dF ∧ dA . (2.4)

To guarantee that the phase space contains all degrees of freedom, Σ must be a Cauchy sur-

face. The above is called the presympectic form as it has degeneracies: Ω vanishes for field

variations without support on Σ. The phase space with a nondegenerate symplectic form

is then obtained by a symplectic quotient by the degeneracies [2, 36]. However, this simply

means that one should restrict attention to those configurations and associated variations

that have support on the Cauchy surface Σ, i.e they do not vanish on Σ. Hereafter, we will

only consider such configurations over which the (0; 2)-form Ω is the symplectic form.

2.1 Electric and magnetic soft charges

Electric (Noether) soft charges. A gauge transformation A → A + df induces a

vector field δf over the space of fields. One can then define the Hamiltonian generator QE
f

associated with this gauge transformation,

dQE
f = −iδfΩ . (2.5)

dQE
f is a (0; 1)-form and the charge (Hamiltonian generator) QE

f exists if dQ is integrable,

that it is an exact (0; 1)-form. From (2.4) we find,

dQE
f =

∫
Σ
iδf

[
∗ dF ∧ dA

]
= −

∫
Σ
∗dF ∧ df . (2.6)

Since f is constant over the space of fields, the charge variation (2.6) is integrable and one

can simply integrate the above relation and write the Hamiltonian generator as

QE
f = −

∫
Σ
∗F ∧ df. (2.7)

Had we computed the above on-shell, it simply reduces to the Noether electric charge asso-

ciated to the gauge transformation A→ A+ df . We shall comment on this further below.

The Hamiltonian generator (2.7) and the symplectic structure (2.4) can be written

in terms of electric and magnetic fields E and B. This can be provided by taking the

Minkowski spacetime as M = R × Σt through choosing a time function t and working in

a coordinate such that the metric can be written as

ds2 = −dt2 + habdx
adxb, xa, a = 1, · · · , d− 1, (2.8)

– 5 –



J
H
E
P
0
8
(
2
0
1
8
)
1
0
2

where hab is a Reimannian metric on Σt and xa are coordinates on it. To be more explicit

we will denote the Cauchy surface at constant time slice by Σt. With this decomposition,

we can split F as,

F = B + E ∧ dt (2.9)

where B and E are differential forms of ranks two and one on Σt, representing the magnetic

and electric fields respectively. With the convention ε0123 = 1 for the Levi-Civita tensor, we

have ∗F = −∗E+∗B∧dt, where the ∗ in the left-hand-side is a four dimensional Hodge star

and the one in the right-hand-side is a three dimensional one. The conventional electric and

magnetic vector fields are related to the differential forms E = Ea dx
a, B = Bab dx

a∧dxb as2

Ea = habEb, Ba =
1

2
εabcBbc. (2.10)

The symplectic structure Ω and the generators in terms of this decomposition are,

Ω =

∫
Σt

∗dE ∧ dA =

∫
Σt

dd−1x
√
|h| dEa ∧ dAa (2.11)

QE
f =

∫
Σt

∗E ∧ df =

∫
Σt

dd−1x
√
|h| Ea∂af , (2.12)

where ∗ is Hodge dual operator and must be understood appropriately when acts on forms

on M like F or on spatial forms on Σt like E and B. Note that QE
f is written completely

in terms of electric field and this justifies the index E.

Notation. So far we did not restrict our fields or their variations to any field equation.

Since in our analysis we will need to also impose equations of motion we introduce the

following notation. The off-shell quantities will be denoted by boldface symbols, while

their on-shell value will be denoted with the same notation but not in bold. For example

the Hamiltonian generators QE
f denotes the generator of gauge transformation δf in the

bulk, while its on-shell value QEf is the corresponding charge. Similarly, Ω is the off-shell

symplectic form, while Ω refers to the projection to the space of solutions. Moreover, ≈
means equality on-shell. For example,

QE
f ≈ QEf = −

∮
∂Σ
f ∗ F =

∮
∂Σt

f ∗ E =

∮
∂Σt

dd−2x
√
|h| fEana , (2.13)

where ∂Σt is the boundary of the Cauchy surface Σt and na is the vector normal to the

∂Σt. In our analysis, as is usual, we decompose the spatial metric h (metric on Σt) as

h = n⊗ n+ G where n = dr and r is a radial coordinates (0 ≤ r <∞) and G is conformal

to the metric on the celestial sphere. Here r →∞ corresponds to ∂Σt which is the boundary

of the Cauchy surfaces and in our analysis is the spatial infinity i0, cf. figure 1.

Note that whether QEf is zero or not, depends on the behavior of the associated gauge

symmetry f at the boundary. For the LGT which are non-zero at ∂Σt, Q
E
f is generically

non-zero. These transformations hence label the soft charges of the phase space. Finally we

note that hereafter we restrict ourselves to d = 4 and to Maxwell theory on four dimensional

flat spacetime.

2We use the same notation for space(time) forms and vector fields, which should be understood from

the location of indices.
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Figure 1. Penrose diagram of 4d flat space. I+± denote the past and future boundaries of the null

infinity I+. These boundaries are essentially future time like infinity i+ and the spatial infinity i0.

Magnetic soft charges. Motivated by the electric-magnetic duality, one can define

magnetic dual of the infinite electric conserved charges QEf ’s in (2.13). To this end we note

that JBg = F ∧ dg is a conserved quantity, dJBg = 0, as a result of the Bianchi identity

dF = 0. Therefore, one may define the conserved magnetic charge as∫
Σ
JBg =

∫
Σ
F ∧ dg =

∮
∂Σ
gF =

∮
∂Σt

d2x
√
|h| naBa g, (2.14)

where g is a function on the spacetime. On the other hand, the Bianchi identity dF = 0

can be locally solved in terms of the gauge potential A, F = dA. Inserting this into the

above integral we learn that the above conserved charge will have an integral on celestial

sphere and a contour integral (cf. (4.24)). For g = 1 case the above integral is nothing

but the total magnetic charge of the system. With the discussion above, one may then

propose a Hamiltonian generator for magnetic charges QB
g which is a function of the gauge

potential A, as

QB
g ≡


∮
∂ΣA ∧ dg, g 6= 1

∮
∂ΣB =

∮
cA, g = 1,

(2.15)

where ∂Σ denotes the boundary of Cauchy surface, the celestial sphere, and c denotes

a contour on the sphere which encircles all the singularities. The g = 1 expression, as

pointed out, measures the total magnetic charge of the system, see figure 4. A system

with non-zero magnetic charge can be modeled by a usual Dirac string [37]. The Dirac

string is described by a gauge potential which has a jump (is not single-valued) and
∮
cA

in fact measures this jump, aka the magnetic charge. In this sense the g = 1 measures

the magnetic “hard charge”. The g 6= 1 expression, however, measure the “magnetic soft

charges”. As will become clear below, the non-zero contributions to QBg (2.15) can be

compensated by singular-large gauge transformations, i.e. for A = dλ where λ is non-

vanishing on the celestial sphere and has localized singularities. The latter may be viewed

as points the Dirac strings of the 3d bulk hits the celestial sphere. Note also that, in

contrast to the electric case, the magnetic current is not a Noether current and does not
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stem from a (gauge) symmetry of the usual Maxwell theory.3 We shall discuss this point

further in the last section, after discussing the dual symmetric Maxwell theory in section 4.

Algebra of charges. From the symplectic structure (2.11), we have the following equal

time t = const Poisson brackets,

{Ea(x), Ab(x
′)}t =

hab√
|h|
δ3(x− x′) , {Aa(x), Ab(x

′)}t = 0 , {Ea(x), Eb(x
′)}t = 0. (2.16)

With the above we can compute the Poisson bracket of QE and the gauge field Aa,

{QE
f , Aa(x)} = ∂af, x ∈ Σt. (2.17)

The above means that QE
f is generator of gauge transformations on Σt (this is in accord

with the name Hamiltonian generator). We note that QB
g is not generator of a gauge

transformation in the bulk. Nonetheless, one may check that

{QB
g , ~E(x)} = r̂ ×∇g(x) δ(r −R) , (2.18)

where r is the radial coordinate transverse to the boundary of the Cauchy surface ∂Σ

located at r = R. If ~E at the boundary is of the form ∇ × C then QB
g generates gauge

transformations on C. We shall return to this in more detail in section 4. One can also

compute Poisson bracket of electric and magnetic Hamiltonian generators,

{QE
f ,Q

B
g }t =

∫
∂Σt

d2x′
∫

Σt

d3x
√
|h| εrab{Ec(x), Aa(x

′)}∂cf(x)∂′bg(x′)

=

∮
∂Σt

d2x εab∂af∂bg

=

∮
∂Σt

df ∧ dg , (2.19)

for generic g and {QE
f ,Q

B
g=1}t = −

∮
c df . This latter integral is nonzero only if f has a cut;

it is not single-valued as we go round the contour c. In a similar way one can compute the

algebra of electric and magnetic Hamiltonian generators,

{QE
f1
,QE

f2
}t = 0 , {QB

g1
,QB

g2
}t = 0, {QE

f ,Q
B
g }t =

∮
∂Σt

df ∧ dg = −
∮
c
gdf . (2.20)

To understand the above result better, let us recall (2.18). While the magnetic soft

charge acts trivially in the bulk, it generates an electric field on (and tangent to) the bound-

ary which can be written as the gradient of a boundary potential g
∣∣
∂Σ

. This anomalous

boundary field leads to the central extension (2.19) in the algebra of electric and magnetic

soft charges if one of f or g is nonsmooth at the boundary. A similar argument may

be repeated considering {QE
f ,
~B(x)}. In this case, QEf generates a gauge transformation

A→ A+ df and therefore ~B → ~B +∇×∇f which is trivial when f is a smooth function.

3As we will discuss in section 4, in the dual symmetric description of the Maxwell theory QB
g is also

promoted to a Noether symmetry.
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However, we will see in the next section that the gauge parameters of interest are holo-

morphic functions with poles at some points on the boundary. In that case, one can show

that the singular gauge transformation generates a set of Dirac strings with both ends at

the boundary. Each endpoint resembles a magnetic (multi)pole at the boundary. We will

discuss this point as we go along and in particular in section 5.

2.2 On-shell covariant phase space and boundary symmetries

In previous section we introduced the covariant phase space built on the configuration space

of histories A(x; t) and defined through the symplectic structure (2.4) or (2.11).4 The set

of solutions to the field equations may be (heuristically) considered as a submanifold in the

configuration space and field variations dA(x; t) are one-forms on this phase space. Once

pulled-back on the solutions submanifold where we impose equations of motion on the field

and the linearized field equations on field variations, however, the sympelctic structure is

not invertible [2]. To see this consider the contraction of the symplectic form with a gauge

transformation λ with compact support on Σt, i.e. λ = 0 at the boundary ∂Σt. Then,5

iδλΩ =

∫
Σt

d ∗ F ∧ dλ =

∮
∂Σt

λd ∗ F −
∫

Σt

λ d(d ∗ F ). (2.21)

While nonvanishing in general, iδλΩ vanishes on the solution submanifold. In other words,

local gauge transformations are null directions of the structure on the solution submanifold.

One can consider the solution space as a fiber bundle whose fibers are generated by local

gauge transformations. The symplectic quotient over degeneracies then corresponds to

working with equivalence classes (base manifold), or equivalently choosing a section of

the bundle, i.e. gauge fixing. This procedure, however, leaves us with large (boundary)

gauge transformations considered as physical symmetries of the phase space, as for λ’s

with support on the boundary iδλΩ = −
∮
∂Σ λd ∗ F 6= 0. This is the on-shell covariant

phase space [2, 3].

To see the above construction explicitly, let’s write A = Â + dψ where Â is the

divergence-free part of the gauge field. Gauge transformation corresponds to Â→ Â, ψ →
ψ + λ. The symplectic structure is then given by

Ω = −
∫

Σt

∗dF ∧ dÂ−
∮
∂Σt

d ∗ F ∧ dψ

=

∫
Σt

d3x
√
h dÊi ∧ dÂi +

∮
∂Σt

d2x
√
γ d(E.n) ∧ dψ ,

(2.22)

where in the last equality Êi, the transverse part of the electric field, appears as we have

already imposed the constraint equation ∇ · E = 0. The symplectic reduction is manifest

in the fact that only the boundary value of ψ matters in the symplectic form. Moreover,

4The covariant phase space may be compared with the usual phase space appearing in the Hamilto-

nian formulation which is built over the space of instantaneous configurations A(x) and their canonical

conjugates Π(x).
5Recall that according to our notation Ω refers to the pull-back of the symplectic form Ω onto the space

of solutions. See the remark above equation (2.13).
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we observe that the final symplectic structure breaks into the bulk radiative phase space

of transverse photons and the boundary phase space involving the boundary field ψ with

its canonical pair being the normal component of the electric field. We will see in section 4

that in the dual symmetric version of Maxwell theory, an extra magnetic boundary mode

will naturally appear.

2.3 Asymptotic symmetries and their algebra

To make the general construction of the previous sections explicit we need to specify the

configuration space under consideration and the set of LGT’s. This is usually done by

a suitable choice of boundary conditions and possibly a gauge fixing. We work in the

coordinate system (t, r, z, z̄) in which the Minkowski metric ds2 = −dx2
0 + dx2

1 + dx2
2 + dx2

3

takes the form6

ds2 = −dt2 + dr2 + 2r2γzz̄dzdz̄, (2.23)

where z, z̄ are the stereographic coordinates on the celestial sphere and γzz̄ = 2
(1+zz̄)2 . By

this, we have essentially removed a point (the south pole) from the sphere. An integral

over the sphere then maps to an integral over the complex plane with the boundary (the

south pole of the sphere) at z →∞.

We now propose the following boundary conditions on components of electric and

magnetic fields near spatial infinity r →∞,

Ez,z̄ ∼ O
(

1

r

)
, Er ∼ O

(
1

r2

)
, (2.24)

Bz,z̄ ∼ O
(

1

r

)
, Br ∼ O

(
1

r2

)
. (2.25)

These falloff conditions (2.24) and (2.25) ensure that the electric and magnetic charges are

finite in the bulk. With these boundary conditions the symplectic flux is vanishing at the

spatial infinity, yielding the conservation of electric charges. These boundary conditions

can be derived by the following boundary conditions at spatial infinity i0 on the components

of gauge field A and its time derivative,

At ∼ O
(

1

r

)
, Ar ∼ O

(
1

r

)
, Az,z̄ ∼ O (1) ,

∂tAr ∼ O
(

1

r2

)
, ∂tAz,z̄ ∼ O

(
1

r

)
.

(2.26)

The above can be more explicitly expressed as

At =
∑
n=1

A
(n)
t (t, z, z̄)

rn
, Ar =

∑
n=1

A
(n)
r (t, z, z̄)

rn
, Az,z̄ =

∑
n=0

A
(n)
z,z̄ (t, z, z̄)

rn
, r →∞

(2.27)

6The map between these coordinates is, t = x0, r
2 = x2

1 + x2
2 + x2

3, z = x1+ix2
r+x3

.
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where A
(1)
r and A

(0)
z,z̄ are independent of t. To proceed we fix the Lorenz gauge, ∇µAµ = 0.

This leaves us with the set of residual gauge symmetries λ satisfying,

�λ = −∂2
t λ+ ∂2

rλ+
2

r
∂rλ+

2

r2γzz̄
(∂z∂z̄λ) = 0 . (2.28)

Expanding λ near the boundary ∂Σt as

λ(t, r, z, z̄) =
∑
n=0

λ(n)(t, z, z̄)

rn
, r →∞, (2.29)

up to third order in expansion, we have

∂2
t λ

(0) = 0, ∂2
t λ

(1) = 0, (2.30)

∂2
t λ

(2) − 2

γzz̄
(∂z∂z̄λ

(0)) = 0, ∂2
t λ

(3) − 2

γzz̄
(∂z∂z̄λ

(1)) = 0. (2.31)

The behavior of At in (2.26) implies that ∂tλ
(0) = 0 and hence

λ(2) = t2
∂z∂z̄λ

(0)

γzz̄
+ tα(z, z̄) + β(z, z̄). (2.32)

Moreover, we require the energy on a constant time slice t of the configurations to

remain finite even in the limit |t| → ∞. This is satisfied if

Aa(t, x) ∼ O(t0), t→ ±∞. (2.33)

This further constrains the symmetries. An LGT respecting (2.33) must satisfy ∂aλ = O(t0)

implying ∇2
Sλ

(0) = const, where ∇2
S is the Laplacian on the (unit) sphere. The eigenvalues

of this Laplace operator are either zero, corresponding to eigenfunctions solving ∂z∂z̄λ
(0) =

0 or negative corresponding to spherical harmonics studied in [38]. In this paper, we are

interested in the former, so we take

∂tλ
(0) = 0 , ∂z∂z̄λ

(0) = 0. (2.34)

Assuming smoothness, the solutions are given by holomorphic and antiholomorphic

functions on the sphere. However, the only such function on the sphere is a constant

function. Therefore, we relax the smoothness condition and allow λ to have singularities

at finite number of points on the sphere. Locally, a complete basis is

fP = ln z, fn = zn, n ∈ Z, (2.35)

which have typically poles at the north pole z = 0. Note that our coordinate system

z, z̄ does not cover the south pole which is the boundary of our chart on the sphere. Let

us denote the charges associated with the gauge parameters fn, fP by Qn,P respectively.

Using (2.20) and the formulas in the appendix, we find that

{QE
n ,Q

B
m} = 2πimδm+n,0, {QB

n ,P
E} = 2πiδn,0, {QE

n ,P
B} = 2πiδn,0. (2.36)
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Note that PE is paired with the magnetic charge generator QB
0 . This means that a singu-

lar gauge transformation with a logarithmic gauge parameter produces a magnetic charge.

This is indeed the manifestation of the Dirac monopole construction. For a similar discus-

sion see [32]. More specifically, we note that a logarithmic term in the gauge transformation

means it is not single-valued as we encircle z = 0; the amount of jump is proportional to

the magnetic charge [37]. Likewise we note that

∂∂̄z−n =
2πi

(−1)nn!
∂nδ2(z), n ≥ 1. (2.37)

This implies that a gauge transformation of the form f = z−n (n ≥ 1) generates a source

of the form ∂nδ2(z) at the origin. This is nothing but a multipole charge of order n, i.e.

n = 1 generates a dipole moment, n = 2 a quadrupole, etc. A monopole charge, on the

other hand is generated by the logarithmic gauge parameter, since ∂∂̄ ln z = 2πiδ2(z).

Conservation of charges. It is straightforward to see the pull-back of the symplectic

density (2.11) at the boundary (i.e. at constant r = R� 1 surface) is,

ΩR =

∫
R
ω =

∫
R
dtd2z

[
dFrz ∧ dAz̄ + dFrz̄ ∧ dAz + r2γzz̄dFtr ∧ dAt

]
=

∫
R
dtd2z

[
i(dBz ∧ dAz̄ − dBz̄ ∧ dAz)− r2γzz̄dEr ∧ dAt

]
, (2.38)

where d2z ≡ −idz ∧ dz̄ and in our conventions ε̃trzz̄ = i where ε̃αβµν is the Levi-Civita

symbol.7 Recalling our boundary conditions, this leads to,

ΩR ∼ O
(

1

R

)
. (2.39)

The electric charges are hence conserved. In the above analysis conservation of magnetic

charge is evident as the magnetic field is absent in the symplectic structure.

An alternative argument for charge conservation is as follows. Recall that

JEf = ∗F ∧ df , JBg = F ∧ dg, (2.40)

are conserved current of electric and magnetic charges,

dJEf = 0 , dJBg = 0 . (2.41)

The flux of electric and magnetic charges is then given by

FE = lim
R→∞

∫
R
JEf = lim

R→∞

∫
R
dtd2z

[
i (Bz∂z̄f −Bz̄ ∂zf)− r2γzz̄Er∂tf

]
∼ O

(
1

R

)
→ 0,

(2.42)

and

FB = lim
R→∞

∫
R
JBg = lim

R→∞

∫
R
dtd2z

[
i (Ez∂z̄g − Ez̄ ∂zf) + r2γzz̄Br∂tg

]
∼ O

(
1

R

)
→ 0,

(2.43)

where we used our falloff behavior (2.24) and (2.25). So, the charges are really conserved.

7From this convention choice it follows that ε̃trzz̄ = i.

– 12 –



J
H
E
P
0
8
(
2
0
1
8
)
1
0
2

3 Maxwell soft charges at null infinity

In this section we repeat studying the electric and magnetic soft charges computed at null

infinity, most conveniently analyzed in the (u, r, z, z̄) coordinate system8

ds2 = −du2 − 2dudr + r2γzz̄dzdz̄, (3.1)

in which

Au = −Ar, Ar = Ar −Au, Az =
1

r2γzz̄
Az̄, Az̄ =

1

r2γzz̄
Az. (3.2)

In this coordinate system the future null infinity I+ is given by r →∞. The coordinate u

parametrizes the null direction on I+ and its boundaries at u → ±∞ are denoted by I+
±

as depicted in figure 1.

Our convention is ε̃urzz̄ = i, which leads to ε̃urzz̄ = i, so it follows that,

(∗F )uz = i(Fuz − Frz), (∗F )uz̄ = −i(Fuz̄ − Frz̄), (∗F )zz̄ = −ir2γzz̄Fur. (3.3)

We start with fixing the Lorenz gauge,

−∂uAr − ∂rAu + ∂rAr +
2

r
(Ar −Au) +

1

r2γzz̄
(∂Az̄ + ∂̄Az) = 0, (3.4)

and imposing the asymptotic falloff conditions [1]

Au ∼ O(1/r), Ar ∼ O(1/r2), Az,z̄ ∼ O(1), (3.5)

which imply the following falloff behavior for the field strength

Fru ∼ O(1/r2), Frz ∼ O(1/r2), Fuz ∼ O(1), Fzz̄ ∼ O(1). (3.6)

These falloff conditions are consistent in the sense that they include all solutions of interest,

including radiation generated by localized sources. Moreover, they lead to well-defined

asymptotic symmetry algebra with finite charges.

The gauge condition (3.4) implies that the residual gauge symmetries are solutions to

2λ = 0. Considering the asymptotic expansion λ =
∑∞

n=0

λ(n)

rn
, yields

−2

r
∂uλ

(0) +
∞∑
n=0

1

rn+2

(
2n∂uλ

(n+1) + n(n− 1)λ(n) +
2

γzz̄
∂∂̄λ(n)

)
= 0. (3.7)

The leading order equations are

∂uλ
(0) = 0, ∂∂̄λ(0) = 0. (3.8)

While the leading order λ(0) is decoupled from the rest of λ(n), the subleading functions

λ(n) (n > 1) are specified in terms of λ(1), which is completely unconstrained. λ(0) which

solves (3.8) is then

λ(0) = f(z) + f̄(z̄). (3.9)

8This is related to the Cartesian coordinates as, r2 = x2
1 + x2

2 + x2
3, u = x0 − r, z = x1+ix2

r+x3
.
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Taking the holomorphic sector into account, the solution can be expanded as

f(z) = α0 + p ln z +
∑
n 6=0

αnz
n. (3.10)

These are the LGT and are generators of non-zero soft charges which label points of the

phase space. The subleading transformations are, however, trivial and denote degeneracy

of the presymplectic form and are modded out in the physical phase space. Therefore,

we concentrate only on the leading part given by equation (3.10) and its anti-holomorphic

counterpart. In the following subsections, we will first compute the algebra of charges and

then discuss the physical meaning of LGTs.

3.1 Radiative phase space: symplectic and Poisson structures

Definition of the symplectic structure at null infinity I+ is not as straightforward as the one

over spatial hypersurfaces. The reason is that null infinity is not a Cauchy hypersurface.

The naive construction
∫
I+ ω fails to define a consistent symplectic form as the massive

particles never reach null infinity, but instead flow through the future infinity i+. To

remedy this, one has to complete the symplectic form by defining it over the complete

Cauchy surface Σ. As shown in figure 2, this can be done in two different ways. One way

is to consider instead of null infinity, a constant time surface t = T and then taking the

limit T → ∞. The other way is to regularize the null infinity by cutting it at a sphere at

large u = U and attaching it to a spacelike section. That is

Σ = I+
reg ∪ Σ′, ∂Σ = I+

− (3.11)

where I+
reg is the future null infinity truncated at a sphere S at large u = U and Σ′ is a

spacelike section whose boundary is the same sphere S at null infinity. In practice, this

is splitting the phase space into radiative modes and massive modes. Accordingly, the

symplectic structure is also decomposed as [28, 39]

ΩΣ = ΩR + ΩM (3.12)

where

ΩR =

∫
I+
reg

(
dFuz ∧ dAz̄ + dFuz̄ ∧ dAz

)
dud2z, (3.13)

ΩM = −
∫

Σ′
∗dF ∧ dA+ ωM (3.14)

where ωM is the symplectic current of the massive charged matter field. For instance, for a

complex scalar, ωM = d(Dϕ)∗∧dϕ+c.c.. Importantly, the completion of I+ into a Cauchy

surface removes surface terms arising from the future boundary of null infinity, namely I+
+ .

An alternative way to do this without completing I+ into a Cauchy surface is to introduce

edge modes at the boundary I+
+ to cancel out the boundary integrals appearing there. This

was nicely formulated in [40] and extended to different theories in [41–43].

– 14 –



J
H
E
P
0
8
(
2
0
1
8
)
1
0
2

Figure 2. Different ways of turning I+ into a Cauchy surface. Either a) consider a constant time

t = T → ∞ as in the left panel, or b) cutting the null infinity at large u and attaching to it a

spacelike surface which extends to r = 0 as in the right panel.

The radiative symplectic structure ΩR leads to the following Poisson brackets over the

fields living on the null infinity,

{Fuz(u, z, z̄), Az̄(u
′, z′, z̄′)} = δ(u− u′)δ2(z − z′),

{Fuz̄(u, z, z̄), Az(u
′, z′, z̄′)} = δ(u− u′)δ2(z − z′) ,

(3.15)

which after integrating over u, lead to [44]

{Az(u, z, z̄), Az̄(u
′, z′, z̄′)} =

1

2
Θ(u− u′)δ2(z − z′) (3.16)

where Θ is the step function,

Θ(x) =


1 x > 0,

−1 x < 0,

0 x = 0.

(3.17)

The value at x = 0 is not implied by (3.15), but given the antisymmetry of the bracket,

our choice is the only way to make sense of (3.16) when u = u′.

3.2 Hamiltonian generators and charges

The gauge transformation A→ A+ dλ generates a Hamiltonian flow over the phase space

which preserves the symplectic structure. Therefore there exists a Hamiltonian function

which generates this flow through the Poisson bracket. The Hamiltonian generator is given

by dQλ = −iδλΩ. It was shown by Wald [45, 46] that for internal gauge symmetries,

i.e. those under which the Lagrangian is strictly invariant, −iδλΩ = dJλ where Jλ is the

Noether current associated to the gauge transformation δλ. If the charged matter field φ

transforms as φ → eieλφ, one can show that Jλ = λj where j is the charge density which
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appears on the r.h.s. of the Lorentz equation d ∗ F = j. Therefore we get

dQλ = −iδλΩ = −
∫

Σ
d ∗ F ∧ dλ+ λdj

=

∫
Σ
λd(d ∗ F − j)−

∮
I+
−

λ ∗ dF. (3.18)

Since the parameter λ is field independent, the charges are manifestly integrable leading

to the Hamiltonian generators Qλ = QR
λ +QΣ′

λ . For later use, we write the contribution

of the radiative phase space QR
λ explicitly

QR
λ = −

∫
Σ
∗F ∧ dλ =

∫
dud2z(Fuz∂z̄λ+ Fuz̄∂zλ). (3.19)

The on-shell value of the Hamiltonian generator, the charge, is then

Qλ = −
∮
I+
−

λ ∗ F =

∮
d2zγzz̄ λF

(2)
ru . (3.20)

To write the last term in terms of the canonical variables we use the Lorenz gauge (3.4).

Noting the boundary conditions (3.5), the leading order of (3.4) appears at O(1/r2),

which is

−∂uA(2)
r −A(1)

u +
1

γzz̄
(∂A

(0)
z̄ + ∂̄A(0)

z ) = 0. (3.21)

Next, note that F
(2)
ru = −A(1)

u − ∂uA(2)
r and therefore, γzz̄F

(2)
ru = −(∂A

(0)
z̄ + ∂̄A

(0)
z ) in the

Lorenz gauge. The expression of the charge is hence,

QEf = −
∮
d2zf(∂zA

(0)
z̄ + ∂z̄A

(0)
z ). (3.22)

As in the previous section, one can define the set of magnetic charges (or Hamiltonain

generators) as

QB
g =

∫
Σ
F ∧ dg =

∮
I+
−

A ∧ dg, (3.23)

for g 6= 1 and for g = 1 (corresponding to total magnetic charge) QB
g=1 =

∮
I+
−
F . Here Σ is

the Cauchy surface depicted in the left diagram in figure 2. Written in (z, z̄) coordinates,

and using dz ∧ dz̄ = id2z we obtain

QB
g = i

∮
d2z(Az∂z̄g −Az̄∂zg). (3.24)

3.3 Algebra of charges

Using the off-shell expressions for the charges and the Poisson brackets, we can compute

the algebra of charges. Since the magnetic charge (3.24) is written as a surface integral
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over I+
− , the relevant part of the electric charge for this computation is the contribution of

the radiative phase space (3.19). Hence for generic f, g we get,

{QE
f ,Q

B
g }= i

∫
dud2z

∮
d2z′{Fuz̄(x),Az(x

′)}∂zf(z)∂z̄g(z′)−{Fuz(x),Az̄(x
′)}∂z̄f(z)∂zg(z′)

= i

∫
dud2z

∮
d2z′δ(u−u′)δ2(z−z′)

(
∂zf(z)∂z̄g(z′)−∂z̄f(z)∂zg(z′)

)
= i

∮
d2z(∂zf∂z̄g−∂z̄f∂zg) =

∮
df∧dg. (3.25)

This matches with the result obtained at spatial infinity. The rest of the commutators can

be also computed:

{QE
f ,Q

E
g } =

∫ ∫
dudu′d2zd2z′∂′uδ(u− u′)δ2(z − z′)

[
∂f∂̄′g′ + ∂z̄f∂

′g′
]

= Λ

∮
d2z(∂zf∂z̄g + ∂z̄f∂zg), (3.26)

where the constant Λ is defined as

Λ =

∫
du

∫
du′∂′uδ(u− u′). (3.27)

This commutator is antisymmetric, only if Λ = 0 which is indeed the case.9 Therefore, we

find {QE
f ,Q

E
g } = 0. On the other hand

{QB
f ,Q

B
g }=

∮ ∮
d2zd2z′

(
{Az(z),Az̄(z

′)}∂z̄f(z)∂z′g(z′)+{Az̄(z),Az(z
′)}∂zf(z)∂z̄′g(z′)

)
.

(3.28)

Using (3.16), the same point u = u′ → −∞ commutator {A−z (z), A−z̄ (z)} = 0 and hence

this commutator also vanishes. The complete algebra is hence

{QE
f ,Q

E
g } = 0, {QB

f ,Q
B
g } = 0, {QE

f ,Q
B
g } =

∮
df ∧ dg. (3.29)

As a prelude to the next section, we finish this section by exploring whether the

magnetic charge generates a transformation on the radiative phase space. To this end let

us compute,

{QB
g , Az(u, z, z̄)} = −i

∮
d2w∂wg{Aw̄(−∞, w, w̄), Az(u, z, z̄)} =

i

2
∂zg,

{QB
g , Az̄(u, z, z̄)} = i

∮
d2w∂w̄g{Az(−∞, w, w̄), Az̄(u, z, z̄)} = − i

2
∂z̄g.

(3.30)

One should note that the above relations have been written for u 6= −∞; they are vanishing

when u = −∞. The above implies that the magnetic charge has a local action on the

radiative phase space, which despite the resemblance, is not a gauge transformation of the

usual form. In section 4.2, we show that this becomes a true symmetry of the theory in

the duality symmetric formulation of Maxwell theory, where we add a magnetic boundary

gauge transformation (denoted through ψC).

9One can show this by replacing the delta function δ(x) by e.g. arctan′(αx) and finally taking the

limit α→∞.
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4 Duality symmetric electromagnetism, its phase space and soft charges

In this section, we review our results in the more natural and electric-magnetic symmetric

context of dual symmetric Maxwell theory. In this picture, the magnetic generators QB
g

are also generators of a U(1) gauge symmetry and QBg are promoted to Noether charges of

this symmetry. We start by reformulation of the Maxwell theory through a dual symmetric

Lagrangian [30, 31, 47, 48].10 This is done by introducing another vector potential C into

the theory. The dual symmetric theory is governed by the Lagrangian

L = −1

2
(F ∧ ∗F +G ∧ ∗G), (4.1)

where F = dA and G = dC. Upon the constraints

Φ = G− ∗F = 0, (4.2)

the equations of motion of this theory becomes that of the Maxwell theory. Meanwhile the

novel symmetry structure of this theory, as we will establish, puts the electric and magnetic

soft charges of previous sections on the same footing.

We start by varying the Lagrangian,

dL = −(d ∗ F ∧ dA+ d ∗G ∧ dC) + dΘ. (4.3)

This leads to the field equations and the presymplectic potential density Θ,

d ∗ F = 0, d ∗G = 0, Θ = −(∗F ∧ dA+ ∗G ∧ dC). (4.4)

Therefore, the presymplectic structure of the duality symmetric theory turns out to be

Ω =

∫
Σ
dΘ =

∫
Σ
ω = −

∫
Σ

(
∗ dF ∧ dA+ ∗dG ∧ dC

)
. (4.5)

The covariant phase space of the duality symmetric theory is parametrized by

Aa(x; t), Ca(x; t). This “extended” phase space is twice as big as that of Maxwell theory.

The Lagrangian as well as the constraints are invariant under the two gauge symmetry

transformations of electric magnetic type

δf : A→ A+ df, δ̃g : C → C + dg (4.6)

The Hamiltonian generators associated to δf and δ̃g are given as,

dQE
f = −iδfΩ = −

∫
Σ
d ∗ F ∧ df (4.7a)

dQB
g = −iδ̃gΩ = −

∫
Σ
d ∗G ∧ dg . (4.7b)

10One could also perform a Hamiltonian analysis of the dual symmetric theory [49, 50]. See [50] for

duality invariant analysis of charged black hole thermodynamics and [51] for a recent analysis of asymptotic

symmetries in this context based on the Regge-Teitelboim idea [52].

– 18 –



J
H
E
P
0
8
(
2
0
1
8
)
1
0
2

These charges are evidently integrable over the covariant phase space of the duality sym-

metric theory. By construction QE
f ,Q

B
g are generators of the electric and magnetic gauge

transformations,

{QE
f , Aa(x)} = ∂af, {QE

f , Ca(x)} = 0, {QB
g , Ca(x)} = ∂ag, {QB

g , Aa(x)} = 0,

(4.8)

and that

{QE
f ,Q

B
g } = 0. (4.9)

There is no surprise that above is different than the expressions of the Maxwell theory, as the

brackets are defined and computed over the extended phase space. We still have to impose

the constraints (4.2) which reduce the theory to a duality symmetric version of Maxwell

theory. The field equations and the bulk part of the symplectic structure of this theory

is equivalent to Maxwell theory. At the same time, the boundary dynamics of this theory

is extended by the addition of a magnetic edge mode, leading to a boundary dynamics

symmetric under duality transformations. As in previous sections here we analyze this

theory and its (soft) charge in the covariant phase space formulation. One may of course

verify that the Hamiltonian formulation leads to the same results.

4.1 Reduction to constrained on-shell phase space: spatial foliation

To reduce duality symmetric extended phase space to the Maxwell one, we need to impose

the constraints (4.2). As discussed in the previous sections, we can study the off-shell

phase space (a la Wald et al. [2]) and then reduce to on-shell phase space by removing the

bulk gauge transformations. Alternatively, we can follow Ashtekar et al. method [3, 4], by

starting off with the solution phase space. The two methods has been shown to yield the

same on-shell phase space in the end. In this subsection we present the final result and

only discuss the on-shell duality symmetric phase space. In the next subsection, when we

discuss the null-infinity foliation, we discuss the off-shell one too.

To work through the construction of solution phase space and the associated symplec-

tic structure, however, one should analyze the constraint (4.2) more closely. There are two

points to note here: (1) As discussed imposing the constraints amounts to imposing equa-

tions of motion and hence one should work with the on-shell phase space. To this end, as

discussed in section 2.2, in order to remove the degeneracy of the sympelctic structure, one

should fix the bulk gauge transformations; leaving us with boundary (large) gauge trans-

formations. (2) In defining the symplectic structure Ω we need to introduce the Cauchy

surface Σt. What then appears in Ω is an integration of a three-form along Σt. On the

other hand, the constraint Φµν = (F + ∗G)µν = 0 has components along Σt and transverse

to it. Explicitly, let us denote the time-like vector field normal to Cauchy surface Σt by tµ
and the projector on surface Σt by Pµν = δµν +tµtν . The constraint can then be decomposed

into two halves:

ΦΣ
µν ≡ Pαµ P βν Φαβ = 0, Φt

ν ≡ tµΦµν = 0. (4.10)

The part of the constraint relevant to the symplectic structure is ΦΣ. One may then show

that the other half Φt = 0 is guaranteed through ΦΣ = 0, once we impose field equations.
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In our analysis of the on-shell phase space, we hence only focus on the constraints along

Σt, ΦΣ = 0.

To impose the ΦΣ = 0, it is convenient to choose a time coordinate t and to decompose

the field strengths F in terms of electric and magnetic fields as in (2.9),

F 0a = Ea, F ab = εabcBc. (4.11)

The constraint ΦΣ is then written as

G0a =
1

2
εabcFbc = Ba. (4.12)

Note that the other half of constraint Φt = 0, takes the form Gab = εabcF0c and we are not

imposing that; it follows from the equations of motion.

One can solve the constraint (4.12) and eliminate C for A. This will yield “electric”

picture and is expected to bring us back to the on-shell Maxwell theory in the bulk, while

we still remain with two boundary gauge transformations, as we will see.

Imposing the ΦΣ = 0 constraint on the on-shell covariant phase space. Let us

first generalize the facilitating notation introduced in section 2.2. We can decompose the

one-form gauge fields into an exact part and a gauge invariant part:

A = Â+ dψA, C = Ĉ + dψC , (4.13)

where ψA, ψC are two scalar functions and Â, Ĉ are gauge invariant. Under gauge trans-

formations, ψA → ψA + f, ψC → ψC + g. Next, let us compute the extended symplectic

structure Ω (4.5) over the equations of motion (4.4) and the constraint (4.12). To this end,

we note that in the symplectic form (4.5), only the spatial components of ∗F, ∗G appear

in the integral and hence one can eliminate G0a in terms of magnetic field, recalling (4.12).

The symplectic structure over the constraint, denoted by ΩΦ, then takes the form

ΩΦ =

∫
Σt

(
∗ dE ∧ dA+ dB ∧ dC

)
, (4.14)

where B = dA = dÂ, as the constraints (4.12) imply. As we see, ΩΦ is manifestly duality

symmetric.

Charge analysis and boundary gauge transformations, the electric picture. As

discussed the electric picture amounts to imposing ΦΣ = 0 on the on-shell Ω (4.14). Ex-

plicitly, in the electric picture we substitute the “magnetic momentum” G0a in terms of

A (B = dA). The symplectic structure on the on-shell phase space in the electric picture

hence becomes

ΩΦ =

∫
Σt

(
d ∗ E ∧ dÂ+ ddA ∧ dĈ

)
+

∮
∂Σt

(d ∗ E ∧ dψA + dA ∧ ddψC) . (4.15)

From the symplectic structure ΩΦ we can compute the basic Poisson brackets,

{Ea(x), Âb(x
′)}= {Ba(x), Ĉb(x

′)}= δab δ
3(x−x′), x,x′ ∈Σt, (4.16)

{n·E(x),ψA(x′)}= δ2(x−x′), {Ai(x),∂jψC(x′)}= εijδ
2(x−x′) x,x′ ∈ ∂Σt, (4.17)
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where n is the vector normal to the boundary, in our case n = dr, and the electric and

magnetic charges:

QEf =

∮
∂Σt

∗E f, QBg =


∮
∂Σt

A ∧ dg, g 6= 1

∮
∂Σt

B =
∮
cA, g = 1,

(4.18)

The above clearly reproduces the analysis of the section 2 for the Maxwell theory. However,

there is a very important difference: both the electric and magnetic soft charges are now

Noether charges and are associated with electric and magnetic LGTs. In other words,

from (4.17), one can verify that

{QEf , ψA(x)} = f(x), {QBg , ψC(x)} = g(x), x ∈ ∂Σt. (4.19)

That is, the charges QEf , Q
B
g are indeed generators of boundary gauge transformations, as

expected. We can now compute the algebra of charges:

{QEf , QBg } = ΩΦ(δf , δg) = δfQ
B
g =

∮
df ∧ dg = −

∮
c
gdf. (4.20)

Charge analysis in the magnetic picture. Alternatively, one could have taken the

constraint as G = ∗F and hence used Φt = 0 half of the constraints. This amounts to

eliminating the “electric” degrees of freedom for magnetic ones. Explicitly, in the magnetic

picture we replace the “electric momentum” E in terms of C (∗E = −dC).

Notation. To distinguish the on-shell quantities in magnetic picture from the electric

ones, we use the following notation: the quantity X in the electric picture will be denoted

by X̃ in the magnetic picture.

The symplectic structure on the on-shell phase space in the magnetic picture hence

becomes

Ω̃Φ = −
∫

Σt

(
d ∗G ∧ dĈ + ddC ∧ dÂ

)
−
∮
∂Σt

(d ∗G ∧ dψC + dC ∧ ddψA) . (4.21)

Yielding the following charges in the magnetic picture:

Q̃Ef =


−
∮
∂Σt

C ∧ df, f 6= 1

∮
∂Σt
∗E = −

∮
cC, f = 1,

, Q̃Bg = −
∮
∂Σt

∗G g. (4.22)

The algebra of charges in the magnetic picture turns out to be

{Q̃Ef , Q̃Bg } = Ω̃Φ(δf , δg) = −δ̃gQ̃Ef = −
∮
∂Σt

df ∧ dg = −
∮
c
fdg. (4.23)

The minus sign compared to (4.20) is stemming from the fact that the role of QE and QB

are exchanged in the magnetic picture. This may be seen comparing the expression of the

charges in the two pictures, (4.18) and (4.22). These two pictures provide two different

phase space coordinates and basis for expanding the soft charges. We will show later in
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this section that this exchange of pictures can be also derived from (4.20) after performing

a π
2 rotation under the duality symmetry transformation.

We comment that the expression of the value of two charges in different pictures are

not exactly the same:

Q̃Bg = −
∮
∂Σt

∗G g
Φ
=

∮
∂Σt

B g =

∮
A ∧ dg +

∮
d(Ag) = QBg +

∮
d(Ag) , g 6= 1. (4.24)

For g = 1, Q̃Bg=1 = QBg=1 =
∮
dA. That is the total magnetic charge (and similarly for the

total electric charge) is the same in electric and magnetic pictures, as physically expected.

The last term in (4.24) is vanishing if gA has no residue at the possible singular point

z = 0. This is because in the presence of singularities, this integral can be written as a

contour integral around the singularities.

Interpreting the singularities as source for magnetic/electric surface multipoles, then

this term is in fact a measure of these sources. One can use the above to show that all the

charges in the two pictures commute

{QXf , Q̃Yg } = 0 , (4.25)

where X,Y can be either E or B. This will be of importance when we discuss the duality

transformations in section 4.3.

4.2 Symplectic structure and soft charges at null infinity

In this section, we extend the analysis of the section 3.2 to the duality symmetric version

of the Maxwell theory given by (4.1). This analysis will shed further light on the role of

the extra (magnetic) boundary degree of freedom in the duality symmetric Maxwell theory.

Also, we will see how the constraints reduce to local relations at null infinity unlike the

case of spatial foliation discussed earlier.

As in the previous subsection, we use equation (4.13) to decompose the gauge fields

into an exact part and a gauge invariant parts. However, due to the boundary condition

Au, Cu ∼ O(1/r), we find that ψA, ψC are u independent

A(u, z, z̄) = Â(u, z, z̄) + dψA(z, z̄), C(u, z, z̄) = Ĉ(u, z, z̄) + dψC(z, z̄) (4.26)

Substituting in the symplectic structure and using the equations of motion d∗F = 0, d∗G =

0 we arrive at

Ω = −
∫

Σ
d ∗ F ∧ dÂ+ d ∗G ∧ dĈ −

∮
∂Σ

d ∗ F ∧ dψA + d ∗G ∧ dψC (4.27)

The electric picture. By imposing the constraints Φ = ∗G+F and eliminating C for A,

we adapt the electric picture. Note that as in previous section, only half of the constraints

naturally appear in the above integral. The constrained symplectic form is

ΩΦ = −
∫

Σ
d ∗ F ∧ dÂ− dF ∧ dĈ −

∮
∂Σ

d ∗ F ∧ dψA − dF ∧ dψC (4.28)
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In components, the constraints used are ΦΣ = {Φuz,Φuz̄,Φzz̄}. These constraints can be

also used to trade C for A. In particular, recalling equation (3.3) the first two imply

∂u(Cz − iAz) = 0, ∂u(Cz̄ + iAz̄) = 0 (4.29)

Given the decomposition (4.26), these lead to constraints between the hatted parts11

Ĉz(u, z, z̄) = iÂz(u, z, z̄), Ĉz̄(u, z, z̄) = −iÂz̄(u, z, z̄). (4.30)

Using these in the symplectic form, we arrive at

ΩΦ = 2

∫
I+

dud2z
(
dFuz ∧ dÂz̄ + dFuz̄ ∧ dÂz̄

)
−
∮
S2

(
d ∗ F ∧ dψA − dA ∧ ddψC

)
, (4.31)

where in the last term we have used an integration by parts. We note that while the

magnetic gauge field C and its momentum conjugate have been substituted for the electric

gauge field A and while the bulk part of (4.31) is gauge invariant, there are two U(1)

boundary gauge transformations, manifested in the ψA, ψC terms in the above. Let us

write the boundary part in components

Ωb =

∮
S2

d2zγzz̄dF
(2)
ru ∧ dψA + i

∮
S2

d2z(dAz ∧ d∂z̄ψC − dAz̄ ∧ d∂zψC) (4.32)

The Hamiltonian generators for the boundary electric and magnetic gauge transformations

can then be computed using (4.31):

QEf = −
∮
I+
−

f ∗ F =

∮
I+
−

d2zfγzz̄F
(2)
ru , QBg =

∮
I+
−

A ∧ dg = i

∮
I+
−

d2z(Az∂z̄g −Az̄∂zg).

(4.33)

We note that, as before, QBg=1 different than above, and is given by QBg=1 =
∮
I+
−
F .

To further analyze the charges and their algebra we need the basic Poisson brackets

which may be read off from (4.31):

{Fuz(u, z, z̄), Âz̄(u
′, z′, z̄′)} = {Fuz̄(u, z, z̄), Âz(u

′, z′, z̄′)} = 2δ(u− u′)δ2(z − z′) , (4.34)

{F (2)
ru (z, z̄), ψA(z, z̄)} = δ2(z − z′), {Az(z, z̄), ∂z̄ψC(z, z̄)} = −iδ2(z − z′). (4.35)

Using the Poisson brackets, one can check that the above expressions correctly generate

the boundary gauge transformations

{QEf , Ai(x)} = ∂if(x), {QBg , Ci(x)} = ∂ig(x), x ∈ I+
− , i ∈ (z, z̄). (4.36)

Moreover, the Poisson brackets between electric and magnetic charges yields the same

as before

{QEf ,QBg }=

∮ ∮
d2zd2wf(w,w̄)

(
{Fru(w,w̄),∂zψA(z, z̄)}∂z̄g−{Fru(w,w̄),∂z̄ψA(z, z̄)}∂zg

)
= i

∮
I+
−

(∂zf∂z̄g−∂z̄f∂zg)d2z=

∮
I+
−

df∧dg. (4.37)

11That is, Cz(u, z, z̄) = iAz(u, z, z̄) + iDz(z, z̄), Cz̄(u, z, z̄) = −iAz̄(u, z, z̄) − iDz̄(z, z̄), where D is a

u-independent 1-form. Using the Hodge decomposition theorem on the sphere, D can be decomposed as

D = dα+ ∗dβ where α, β are functions on the sphere. In components Dz = ∂zα+ i∂zβ, Dz̄ = ∂z̄α− i∂z̄β.

These two functions however, can be absorbed into the exact parts of gauge fields i.e. ψA, ψC .
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4.3 Duality generating charge

One of the byproducts of taking the dual-symmetric version of the Maxwell theory is

emergence of a new continuous global symmetry U(1)θ which rotates electric and magnetic

fields into each other. We note that the Lagrangian (4.1) and the constraint (4.2) are

invariant under the U(1)θ transformation

F → F cos θ +G sin θ , G→ G cos θ − F sin θ, (4.38)

which in terms of A and C,

A→ A cos θ + C sin θ , C → C cos θ −A sin θ, (4.39)

up to a gauge transformation.

It can be shown that this vector field which is tangent to the constraint Φ, is actually

(pre)symplectomorphism of Ω. The duality symmetry generator δθ then acts on fields as

δθ(A,C) = (C,−A), δθ(F,G) = (G,−F ). (4.40)

Off-shell duality symmetry and its charge. Denoting the Lie derivative with respect

to the vector δθ in the space of fields by Lδθ , it is readily seen that LδθΩ = 0, with Ω given

in (4.5). Generator of the duality-symmetry symplectomorphism is the duality charge

Qθ (which, for the reasons becoming clear in the next subsection, is also called optical

helicity [48]) is computed as

dQθ = −iδθΩ =

∫
Σt

[d(∗G ∧A)− d(∗F ∧ C)] . (4.41)

As is manifestly seen the above charge is integrable and hence we find the generator of the

duality transformation as

Qθ =

∫
Σt

d3x
√
|h|(F 0aCa −G0aAa) . (4.42)

The above is nothing but the standard Noether charge associated with U(1)θ.

The algebra between Qθ and electric and magnetic soft charges can be computed using

the Poisson brackets deduced from (4.5),

{Qθ,Q
E
f } = QB

f , {Qθ,Q
B
f } = −QE

f . (4.43)

This algebra may be written in the (2.35) basis:

{Qθ,Q
E
n } = QB

n , {Qθ,Q
B
n } = −QE

n ,

{Qθ,P
E} = PB , {Qθ,P

B} = −PE .
(4.44)

This algebra was also discussed in [53] and has infinite iso(2) sub-algebras for any given

n. Similar, but not exactly identical, iso(2) algebras was also discussed in [54]. We shall

make further comments on the latter below in this section.
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Optical helicity operator Qθ. As the next step, we impose the constraint (4.2) which

also amounts to going on-shell. Alternatively, one can impose equations of motion and

ΦΣ (4.12). ΩΦ (4.14) is formally invariant under duality symmetry transformation. How-

ever, one should note that this is at formal level; depending on whether we are in electric

or magnetic pictures, respectively either B = dA or ∗E = −dC, we lose this “manifest”

duality. The above may be put in a different wording: sympletic structure of the dual-

ity symmetric on-shell phase space could be represented in different basis, (4.15) or (4.21).

While the phase space itself and hence the set of soft charges are invariant under θ-rotations,

the phase space coordinate used is not. Explicitly, Qθ is the generator of this coordinate

transformation on the phase space. In the particular case of electric of magnetic basis, it is

evidently seen that (4.15) and (4.21) rotate into each other. Nonetheless, as we will show

below, the algebra of charges does remain duality invariant irrespective of the basis used,

as expected.

The duality charge Qθ is then given by the same expression as in (4.42), explicitly

Qθ =

∫
Σt

d3x
√
|h|(EaCa −BaAa) , (4.45)

where in the electric picture G0a = Ba ≡ (∇× A)a, while in the magnetic picture F 0a ≡
Ea = −(∇×C)a. Therefore, under the duality transformation (4.38), δθ( ~E, ~B) = ( ~B,− ~E).

It is well known that Qθ measures the total helicity, namely the difference of the number

of right handed and left handed photons [49]. This can be understood by expanding the

field in plane waves, and observing that the duality transformation is indeed a rotation in

the transverse plane for each wave. Accordingly the corresponding charge for each mode

coincides with its helicity. This will become more explicit in the end of section 4.4.

One can then compute the algebra of charges in electric picture, using (4.15), or in

magnetic picture, using (4.21). As discussed commutation with Qθ besides changing electric

charges to magnetic (and vice versa), also changes the electric picture to magnetic one.

Explicitly, in terms of the notation introduced in section 4.1,

{Qθ, QEn } = Q̃Bn , {Qθ, PE} = P̃B ,

{Qθ, QBn } = −Q̃En , {Qθ, PB} = −P̃E ,
(4.46)

where we used the f = zn, ln z basis. We have similar Poisson brackets between Qθ and

charges in the magnetic picture Q̃f .

Using the charge algebra (4.20), (4.23) and (4.25) one can represent Qθ in terms of Q’s

and Q̃’s as

Qθ =
1

2πi
(QE0 P̃

E + Q̃E0 P
E −QB0 P̃B − Q̃B0 PB) +

∑
n 6=0

1

2πin
(QB−nQ̃

B
n −QE−nQ̃En ). (4.47)

That is, Qθ in (4.47) reproduces {Qθ, QEf }, {Qθ, QBg } commutators. This expression

and (4.23) may be used to verify that {Qθ, Q̃En } = QBn , {Qθ, Q̃Bn } = −QEn . This is consistent

with the picture that the role of QE and QB are exchanged in the electric and magnetic

pictures. One should note that the expression (4.47) only captures the part of Qθ which
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satisfies (4.46); Qθ may in general have a part which commutes which the charges which

does not appear in (4.47).

We close this subsection by remarking that the set of three charges (Qθ, Q
E
f , Q̃

B
f ), and

likewise (Qθ, Q̃
E
f , Q

B
f ), for any given f , form an iso(2) algebra. That is, we have infinitly

many iso(2) algebras. As we see the compact part of these iso(2)’s is the duality charge

generator Qθ and the non-compact parts are the electric and magnetic soft charges. While

resembling the algebra discussed in [15, 54], this iso(2) is not exactly the same. We shall

discuss this point further in the end of next subsection 4.4.

4.4 Poincare generators, the electric-magnetic soft charges and their algebra

The theory we are considering, the Maxwell theory or its dual symmetric version on four

dimensional flat space, besides the gauge symmetries and the U(1)θ global symmetry dis-

cussed above, has other global symmetries associated with the background Minkowski

spacetime. These are the 10 generators of the Poincaré algebra, which are generated by

Killing vectors ξ. Following [46] the variation of Poincare generators Qξ is as follows,

dQξ = −iδξΩ =

∫
Σ
dJξ −

∫
i0
ξ ·Θ . (4.48)

Adopting the boundary conditions (2.24) and (2.25) at i0, the boundary term ξ · Θ dose

not contribute12 and we have,

Qξ =

∫
Σ
Jξ = −

∫
Σ

(∗F ∧ LξA+ ∗G ∧ LξC)− 1

2
ξ · (F ∧ ∗F +G ∧ ∗G) , (4.49)

where Lξ denotes the Lie derivative along ξ and Jξ = Θ(δξ) − ξ · L is the Noether cur-

rent associated with ξ’s. This Noether current can also be constructed explicitly using

the standard Noether procedure, leading to dJξ = TαβLξgαβ = 0, where Tαβ is the sym-

metrized energy-momentum tensor of the theory and Lξgαβ denotes the Lie derivative of

the background Minkowski metric along ξ. This latter vanishes as ξ are isometries of

the background. This leads to conservation of Poincare charges which is achieved by the

boundary condition at i0.

Given expression of the Hamiltonian generators one can compute the charge algebra:

{Qξ,Q
E
f } = −QE

Lξf , {Qξ,Q
B
g } = −QB

Lξg ,

{Qξ1 ,Qξ2} = Q[ξ1,ξ2] , {Qξ,Qθ} = 0 ,
(4.50)

where [ξ1, ξ2] = Lξ1ξ2 = −Lξ2ξ1 gives the Poincare algebra. We note that in the analysis

above we did not crucially use ξ’s to be Poincaré generators, for most of our analysis ξ

could be any diffeomorphism which keep Maxwell action invariant and respect mild bound-

ary falloff behavior needed for our charge analysis. A similar analysis in the Hamiltonian

12This may be explicitly verified by writing the ten killing vector fields in the (t, r, z, z̄) coordinates, for

example ( ∂
∂x1

)µ = 1
1+zz̄

(0, z + z̄, r, r), computing the integral of ξ ·Θ on a t, r = const. surface, and taking

the r → ∞ limit using falloff conditions (2.24) and (2.25). Notice that for those vector fields which are

tangent to the surface t, r = const. like rotations, the pull back of ξ · Θ to the surface is vanishing and so

its integral is manifestly zero.
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formulation has been recently carried out in [8, 9]. The algebra (4.50) is only a manifes-

tation of the fact that the soft charges are scalars, depending on a scalar function f and

that the duality charge Qθ is a scalar over the spacetime. In particular, for the Maxwell

theory one may consider ξ to be the conformal Killing vectors, generating the conformal

group SO(4, 2).

One should note that these Hamiltonian generators will become conserved charges

once computed on-shell and that these on-shell charges act as generators of associated

transformations on the on-shell phase space consisting of physical transverse as well as

the boundary (soft) photons. The charge Qξ are computed for the duality symmetric

theory (4.1). For the on-shell Maxwell theory, besides the equations of motion we need to

impose the constraint ΦΣ = 0. Using the usual decomposition into E and B and choosing

the Cauchy surfaces Σt, we have,

Qξ =

∫
Σt

(∗E ∧ LξA+B ∧ LξC) =

∫
Σt

d3x
√
|h|(Ea(LξA)a +Ba(LξC)a) , (4.51)

where as previous sections, depending on choosing electric or magnetic picture, B = dA or

E = −dC, respectively.

One may then check the algebra of Qξ with electric or magnetic charges in the elec-

tric (4.20) or magnetic (4.23) frame and also with duality symmetry charge Qθ (4.45).

In the electric frame a straightforward computation using electric symplectic struc-

tures (4.15) yields

{Qξ, QEf } = −QELξf , {Qξ, QBg } = −QBLξg ,

{Qξ1 , Qξ2} = Q[ξ1,ξ2] , {Qξ, Qθ} = 0 .
(4.52)

In the above we have used the fact that Lξ(na)f where na = dr is the normal vector to

the celestial sphere is of order (1/r) and hence does not contribute. Similarly one may

compute the algebra in magnetic frame using (4.21).

Construction of angular momentum J in terms of soft charges. One may try

to give a representation of the Poincaré charges Qξ appearing in (4.52) in terms of the

soft charges QE , QB. While the algebra (4.52) contains all of Poincarè generators on the

same footing, the electric and magnetic soft charges are functions of f which is defined

on the celestial sphere. To make the analysis simpler we hence only focus on two of the

Poincaré generators which respect the asymptotic decomposition of the spacetime; among

the ten Qξ we only consider the one associated with energy, ξ = ∂t and the one associated

with “angular momentum” ξ = −i(z∂z − z̄∂z̄); the generators of these will be respectively

denoted by H and J .13

13It is worth noting that (4.51) reduces to the familiar expressions of the energy for ξ = ∂t and to spin

angular-momentum of electromagnetic field for rotations. For ξ = ∂t, LξAa = ∂tAa = Ea + ∇aΦE and

LξCa = ∂tCa = Ba + ∇aΦB where ΦE ,ΦB are electric and magnetic scalar potentials. Plugging these

into (4.51), we obtain the “total” Hamiltonian H =
∫

Σt
[(E2 + B2) + ~∇ · ~EΦE + ~∇ · ~BΦB ]. Similarly, for

the three rotation generators ξ(a) = εabcxb∂c, if we take the internal part of LξAa i.e. Ab∂aξ
b and similarly

for the magnetic counterpart, we obtain ~S =
∫

Σt
( ~E × ~A + ~B × ~C) which gives the “spin” (non-orbital)

part of the angular momentum. It is manifestly seen that these expressions for H, ~S are invariant under

electric-magnetic duality transformation (4.38), (4.39).
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For these on-shell boundary generators and in the basis (2.35) for f , the algebra takes

the form:

{H, QEn } = 0 , {H, QBn } = 0 ,

{H, PE} = 0 , {H, PB} = 0 .
(4.53)

The above confirms that QEn , P
E and their magnetic counterparts QBn , P

B are indeed soft

charges, as they commute with the Hamiltonian. Or, alternatively the above confirms

conservation of these charges. The commutators involving J are

{J , QEn } = inQEn , {J , PE} = iQE0 ,

{J , QBn } = inQBn , {J , PB} = iQB0 ,
(4.54)

As (4.54) indicates the electric and magnetic charges QE0 , Q
B
0 commute with J . As in the

Qθ case, one may try to represent J in terms of QE , QB. One may easily check that14

J =
1

2π

∑
n

QE−nQ
B
n , (4.55)

satisfies the algebra (4.54) and its counterpart in magnetic picture. To verify commutation

of spin operator and Qθ, one should introduce a “total” angular momentum operator which

acts both on Q’s and Q̃’s, i.e. Jtotal = J + J̃ . Recalling (4.23) one can show that,

J̃ = − 1

2π

∑
n

Q̃E−nQ̃
B
n ,

and hence {Jtotal, Qθ} = 0.

As a side comment we note that J is a component of spin operator and recalling Bohr

quantization, it is semiclassically quantized in units of ~. In particular, the zero mode of

J , J0 = 1
2πQ

E
0 Q

B
0 is quantized:

QE0 Q
B
0 = 2πn~, n ∈ Z. (4.56)

The above is remarkably just the usual Dirac quantization of the electric or magnetic charge.

Optical helicity versus spin. The charge Qθ and the spin are not totally independent.

To see this we note that the integrand of (4.42) after imposing the constraint ∗G = −F
reveals the so called helicity-spin conserved current Jµθ = (h, s) [47, 48, 55]

∂µJ
µ
θ = 0, h = E · C −B ·A, s = E ×A+B × C (4.57)

While the time component is the density of the optical helicity Qθ, the spatial component

is nothing but the density of the spin s, i.e. the internal part of the angular momentum

(cf. footnote 13). Integrating the conservation law over a spacetime region implies

d

dt
Qθ = −

∮
B
s · ~n da (4.58)

14We are reading the expression J (4.55) from the commutation relations (4.54). In principle the angular

momentum J may have a part which commutes with the soft charges. Our expression (4.55) does not

capture this latter. Existence of this part, however, does not alter our discussions.

– 28 –



J
H
E
P
0
8
(
2
0
1
8
)
1
0
2

Accordingly, each photon escaping the boundary B of the region, reduces Qθ by the value of

s ·n, i.e. its helicity. This is notable as s is only the internal part of the angular momentum

and its sum with the orbital part reveals another conserved quantity. Moreover, as argued

in our setting Qθ is a conserved charge which dovetails with (4.58) recalling that with our

falloff behavior
∮
~n · s = 0.

More on the iso(2) algebras. In [54] two sets of iso(2) algebras were discussed; one

is the quantum version of our classical results at the end of section 4.315 and the other

is associated with the little group of the Poincare group for photons. These two iso(2)

algebras were then discussed to be identical. Here we argue that this latter cannot be

true. Consider a single photon state of frequency ω moving in direction ~k in the radiation

gauge. It is straightforward to show that for this state ~k.( ~E × ~A) = ω ~B · ~A. That is,

density of Qθ (4.45) and the helicity density of the photon (~k · ~s/ω) are equal to each

other. Next, we note that this expression is zero for a linearly polarized photon and its

value for clockwise and counterclockwise circularly polarized photons differs by a sign.

Therefore, by superposition, Qθ for a system of photons measures the difference between

number of two circular polarizations. We also learn that for a generic system of photons

the angular momentum J is not equal to Qθ. This discussion implies that, while the

compact generator in both of the iso(2) algebras discussed in [54] is the optical helicity

(i.e. expression (4.45) reduces to (2.18) in [54]), the non-compact ones, i.e. QEf , Q
B
f , are

not related to the iso(2) generators associated with the little group of Poincare group

for massless photons. One simple reason to see this is that the electric and magnetic soft

charges are linear in the gauge field A and its time or space derivatives, whereas the Poincare

generators are quadratic in fields. It is known that non-compact iso(2) generators of the

little group act on photon fields as gauge transformations [56], nonetheless, the parameter

of this gauge transformation is field dependent (it is linear in A) and is not among the set

of functions f, g we considered here.

5 Discussion and outlook

In this paper we analyzed the soft charges of Maxwell theory, which has been extensively

studied in the literature, further focusing on the magnetic soft charges. In particular, we

analyzed the charges as functions over the phase space of the theory and computed their

Poisson brackets, allowing for gauge transformations which are singular at the celestial

sphere. We found that while electric soft charge (and magnetic soft charges) commute

and form an Abelian algebra the magnetic and electric charges do not commute. Of

course the non-Abelian algebra appears if we allow the gauge transformations which have

localized mild singularity on the celestial sphere at infinity. These gauge transformations

are typically the ones which are used in the soft charge analysis [1], and/or in the similar

analysis in gravity, yielding BMS algebras [57–59]. Here we would like to discuss some of

the physical implications of our algebras and some possible future directions.

15Note that this iso(2) in [54] is written in terms of creation-annihilation operators of photons reaching I+.
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Physical interpretation of large gauge transformations. Besides QE0 , Q
B
0 charges

which correspond to electric or magnetic monopole charges and are associated with global

gauge transformations, all the other soft charges we discussed here correspond to LGTs

which are singular either at south or north pole of the celestial sphere. In particular, these

LGTs are meromorphic (locally holomorphic) functions in the Poincaré coordinates of the

sphere. The electric and magnetic charges associated with such singular LGTs form infinite

copies of Heisenberg algebra (2.36). The flow generated by these LGTs on the phase space

has been depicted in figure 3.

For the physical interpretation of this result consider e.g. PE , QB0 which do not com-

mute. PE is generator of boundary gauge transformation A→ A+d ln z and QB0 measures

the total magnetic monopole charge. The difference between the reference solution A = 0

and A = d ln z which is generated by the mentioned gauge transformation can be attributed

to a Dirac string piercing the celestial sphere at north and south poles. The (2 + 1) di-

mensional observer at the boundary who uses the coordinates z, z̄ has only access to one

of the two intersection points and sees this as a boundary magnetic monopole, as depicted

in figure 4. This interpretation can be extended to the other conjugate pairs in the set of

generators. For instance QE−1 generates the gauge transformation A → A + d(1
z ). Since

1
z = limε→0(ln(z + ε)− ln z)/ε, this LGT generates two opposite sign magnetic monopoles

with magnitude 1/ε at a separation ε. This is nothing but a magnetic dipole at z = 0

at the boundary. Therefore, QE−1 generates a boundary magnetic dipole, or equivalently

two Dirac strings of opposite orientation. In general, the electric charges QE−n, n > 0 gen-

erate boundary magnetic 2n-poles, while the magnetic charges QB−n generate boundary

electric multipoles.

Aharonov-Bohm phase and its generalizations as possible observables associ-

ated with soft charges. As we saw, PE generates boundary gauge transformation

A → A + d ln z on the boundary and can be seen as adding a Dirac string which hits the

boundary at the north and south pole. We also discussed that this transformation can be

measured by the boundary observer who can measure the flux of magnetic field through

the enclosed part of the boundary by the contour c, QB0 =
∮
cA, which can be non-zero only

if c encircles the singular point z = 0. For an observer who does not have access to the

singular point, this can be observed as a Ahanarov-Bohm (AB) quantum mechanical phase

in a suitable quantum mechanical experiment; the AB effect provides a physical observable

setup for the A→ A+ d ln z gauge transformation; see [15, 54] for further discussions.

One can imagine a generalization of the AB phase ΦAB =
∮
cA to other singular gauge

transformations associated with Qn, n 6= 0 charges. In analogy with the expression of

higher n charges, the generalized AB factor associated with residual gauge parameter λ

may be defined as

Φλ =

∮
c
λA . (5.1)

Note that although the net flux of the magnetic field is zero for higher n charges, Φλ can

be non-zero for specific choice of λ (note that Φλ=1 = ΦAB). This in principle can label

some unique and well-defined quantum effects which in the case of λ = 1 is the AB effect.
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Figure 3. The phase space of soft charges and a depiction of (2.36). The horizontal planes depict

configurations of given constant magnetic charge. PE moves us between these horizontal planes

while QE
n , QB

n and PB move us on each constant QB
0 plane. Vertical arrows show flows generated

by PE and corresponds to addition of a Dirac string piercing the celestial sphere and appears as a

surface magnetic charge for the local boundary observers. One could have drawn a similar figure

using any other conjugate pairs of charges instead of PE and QB
0 , e.g. PB and QE

0 . This figure

may be contrasted with the “just electric” residual gauge symmetry phase space which is usually

considered in the Maxwell theory. In the absence of magnetic soft charges, the electric soft algebra

is Abelian and hence action of residual electric gauge transformations does not create a flow on the

phase space.

For example in the case of two nearby Dirac strings of opposite orientations, as discussed

above we have a “dipole AB phase”, which could lead to its own specific quantum effect

such as the effects on the quantum scattering as discussed in [60].

Memory effect and algebra of charges. As reviewed in the introduction, memory

effect is usually stated as a way to detect soft charges. On the other hand, as our analysis

in this work provides an example, the information of the soft charges is fully reflected

in their algebra. It is hence very desirable to provide an algebraic presentation of the

memory effect. The key in our analysis is (4.50) which involves a set of “hard charges”

(here Poincare charges Qξ) which do not commute with a set of “soft charges” (here

QE ,QB). In experiments/observations we can directly measure Qξ and since they do not

commute with the soft charges, a change in the soft charges yields a change in Qξ. The

same argument can of course be made for gravitational memory effect. We intend to study

develop further the algebraic statement of the memory effect.

More on dual symmetric theory and electric and magnetic frames. In section 4

we introduced a theory in which both electric and magnetic soft charges appear as residual
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Figure 4. A depiction of the pure gauge transformation which at the celestial sphere becomes ln z.

This gauge transformation may be viewed as a Dirac string connecting the south and north poles

of the celestial sphere with some bulk extension. It produces a “magnetic charge” at the north pole

and an “anti-magnetic charge” at the south pole. The observer at the north pole who uses complex

coordinates z, z̄ however, does not have access to the charge in the south pole and hence only sees

a net magnetic charge. Similar picture may also be drawn for other higher pole charges. Note that

in 2 + 1 spacetime (boundary observers), there are three residual gauge symmetry components, two

for the electric one-form (or vector) and one for the magnetic two-form (or scalar). Therefore, for

the boundary observer the net magnetic monopole is computed as the integral of two-form B on

the region confined by the contour c, or equivalently,
∮
c
A.

U(1) symmetries. This was achieved through a duality symmetric Maxwell theory. While

we start with two electric and magnetic gauge fields A,C, the constraint (4.2) reduces

the theory to usual Maxwell on-shell. However, this leaves us with the boundary gauge

transformations (LGTs) for both electric and magnetic degrees of freedom. To work out

the soft charges and the associated phase space, we need to start from a (pre)symplectic

structure, which is a (3; 2)-form integrated over a Cauchy surface Σ. On the other hand the

constraints (4.2) can be decomposed into two halves on-shell: a constraint on Σ and the

time evolution of this constraint. We should therefore only impose half of the constraints

on Σ (while the other half are guaranteed on-shell). Depending on the half we choose to

impose on Σ we end up with an electric or magnetic pictures. The expression of symplectic

structure, the charges and their algebra then depend on the picture (cf section 4.3). These

two pictures are hence to be viewed as two different basis for expanding the same set of

charge and the duality charge Qθ should be viewed as the operators rotating these two

pictures (basis) into each other. As we discussed in section 4.4, in the literature of duality

symmetric Maxwell theory Qθ has been dubbed as optical helicity [47, 48] and the name is

justified as it denotes the overall helicity (number of left polarized minus right polarized)

of photons.
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The symplectic structure of the theory in electric or magnetic pictures has a bulk

term (integrated over Σ) and a boundary term (integrated over the celestial sphere). The

boundary term may then be viewed as the symplectic structure of a “boundary theory”

whose degrees of freedom are labeled by the soft charges.16 This boundary theory, as its

symplectic structure indicates, resembles a Chern-Simons theory whose degrees of freedom

are the boundary value of A,C fields and Qθ is expected to act as a symmetry on the

associated phase space. This theory certainly deserves to be studied more closely along the

lines of [41–43].

Quantization of the algebra and the phase space. To give a semiclassical description

of the theory, we should replace the Poisson bracket with Dirac brackets by replacing

{·, ·} → −i[·, ·]. Therefore the semiclassical version of the algebra is

[QE
n ,Q

B
m] = 2πnδm+n,0, [QE

0 ,P
B] = [QB

0 ,P
E ] = −2π. (5.2)

The algebra (5.2) is of the form of creation-annihilation algebra associated with a free 2d

scalar theory or a one-dimensional closed string worldsheet field, consisting of a left and

a right mover and Q0,P’s show its “center of mass” motion. To see this explicitly, let

us introduce

αLn =
1√
4π

(QE
n +QB

n ), αRn =
1√
4π

(QE
−n −QB

−n),

πL =
−i√
4π

(PE + PB), πR =
i√
4π

(PE −PB),

(5.3)

where one can readily check that the left and right sectors decouple and

[αLn ,α
L
m] = [αRn ,α

R
m] = nδm+n,0, (5.4)

[αL0 ,π
L] = [αR0 ,π

R] = i. (5.5)

The above algebra admits the following Hermitian conjugation:

(QE
n )† = QE

−n, (QB
n )† = QB

−n, (PE)† = −PE , (PB)† = −PB, (5.6)

and hence (αRn )† = αR−n, (αLn)† = αL−n and (πR)† = πR, (πL)† = πL.

The “vacuum state” of the Hilbert space is then specified by the value of electric and

magnetic charge, |QE0 , QB0 〉 such that

QE
0 |QE0 , QB0 〉 = QE0 |QE0 , QB0 〉, QB

0 |QE0 , QB0 〉 = QB0 |QE0 , QB0 〉,
αLn |QE0 , QB0 〉 = αRn |QE0 , QB0 〉 = 0, n > 0

We may take this vacuum state to have norm one. The “excited states” in the “soft

electromagnetic Hilbert space” are then constructed by the action of αL−n or αR−n, n > 0.

However, one should note that as (5.3) shows, while αLn , n > 0 is related to Qn’s with

16This boundary theory may be defined on I+ as in [61, 62]. In this case the “boundary theory” will be

a Euclidean 2d theory defined on the celestial sphere.
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n > 0, the αRn , n > 0 is related to Q−n’s. As we will discuss below, we expect to have the

following Dirac quantization condition,

QE0 Q
B
0 = 2π~Z, QEnQ

B
−n = 2π~Z. (5.7)

Therefore, the vacuum state and other excited states in the soft Hilbert space are expected

to be specified by discrete labels.

Virasoro and Kac-Moody algebras from electromagnetic soft charges. Given

the two αLn ,α
R
n operators one may construct two left and right Virasoro algebras using

Sugawara construction

LL
n =

1

2

∑
p

: αLpα
L
n−p :, LR

n =
1

2

∑
p

: αRp α
R
n−p : (5.8)

where : : denotes normal ordering. Each sector forms a U(1) Kac-Moody algebra at central

charge one

[Ln,Lm] = (n−m)Ln+m +
1

12
(n3 − n)δn+m,0 ,

[Ln,αm] = −mαm+n, [αm,αn] = mδm+n,0,
(5.9)

and the left and right sectors commute with each other. Had we started with a multi-

Maxwell theory with N non-interacting U(1) gauge fields, we would have obtained a Vira-

soro of central charge N . Of course there is another way to obtain a Virasoro with arbitrary

central charge: to add a “twist term” to the Virasoro generators Ln = 1
2

∑
pαpαn−p +

iβnαn (see e.g. [63–65]) to obtain a Virasoro at central charge c = 1 + 12β2. This twist

term is behaving like a linear dilaton background. In this twisted construction, however,

αn’s do not remain as U(1) current of weight one, [L,α] commutator will have an anomaly

term [65].

One can show that the combination (LL
0 − LR

0 ) generates the same algebra with soft

charges as the spin J as in (4.55).17 After expanding in electric and magnetic charges,

we find

LL
0 −LR

0 =
1

2π

∑
p∈Z

: QE
−pQ

B
p : (5.10)

As it is related to the spin operator, the spectrum of LL
0 −LR

0 is expected to be quantized,

as in (5.7); in our construction the Bohr-type quantization of the angular momentum gives

rise to the Dirac quantization of electric and magnetic charges. We comment that,

[L0,Q
E
n ] = −nQB

n , [L0,Q
B
n ] = +nQE

n , L0 ≡ LL
0 + LR

0 . (5.11)

The above shows that L0 is different from the duality charge operator Qθ; the latter is

more like a number operator which counts the difference between number of left and right

helicities, as discussed above.

17One should note that here we are working in the electric picture and consistently dropping the magnetic

picture charges, Q̃’s.
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Extension to higher forms. The analysis of this paper can be extended to (p+1)-form

theories in 2p + 4 dimensions. The electric soft charges of such form theories was carried

out in [66] where it was shown that for generic p > 0 cases the residual gauge symmetry

charges appear in three classes, one of which, the “exact charges” in the terminology of [66],

has no counterpart in the Maxwell theory. These exact charges satisfy a non-commuting

algebra. We expect our result for the Maxwell case, that the electric and magnetic charges

are non-commuting, extends to these higher form cases. Therefore, we expect there are

two classes of non-commuting soft charges for p > 0 cases. It is desirable to verify this

expectation and study its physical implications.
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A Contour integrals

In our analysis of the charge algebra we need to compute the following integrals:

I =

∫
(dαn) ∧ (dβm) = 2πim

[
(αnβm − ᾱnβ̄m)δm+n,0 + lim

rc→0
r2m
c (ᾱnβm − αnβ̄m)δm,n

]
,

(A.1)

with,

αn = αnz
n + ᾱnz̄

n, βn = βnz
n + β̄nz̄

n. (A.2)

To compute I we have used the formulas,∫
C

dzn ∧ dzm = 2πimδm+n,0, (A.3)∫
C

dz̄n ∧ dzm = lim
rc→∞

r2m
c 2πimδm,n, (A.4)

where rc is the radius of the contour around poles.

One can check the first and the second formula by directly computing the integral of

surface element dzn∧dzm or by using the Stokes theorem and turn it to a contour integral

around poles. The second method is as follows,∫
C

dzn ∧ dzm =

∫
U0

dzn ∧ dzm =

∫
U0

d[zndzm]

=

∫
∂U0

zndzm =

∫
∂U0

mzm+n−1dz = 2πimδm+n,0

(A.5)
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where U0 is a region of C while {0} ∈ U0. Note that dzn ∧ dzm is a zero two-form on

C−{0} and has singularity at {0}. So the integral of this two-form over any region except

U0 is zero. The other way to calculate this integral is using the identities,

∂z̄(z
−m) =

2πi

(−1)m−1(m− 1)!
∂m−1
z δ2(z), m > 0 (A.6)

∂z̄(z
−m) = 0, m ≤ 0 (A.7)

zm∂nz δ(z) = (−1)nn!δ(z)δm,n , m > 0 (A.8)

z−m∂nz δ(z) =
(m+ n− 1)!

(m− 1)!
z−(m+n)δ(z), m > 0. (A.9)

Note that when both m and n are positive or negative, the integral is zero. So, we assume

without losing of generality that n < 0 and m > 0.∫
C

dzn ∧ dzm =

∫
C

m∂z̄(z
n)zm−1dz̄ ∧ dz =

∫
C

2mπizm−1

(−1)−n−1(−n− 1)!
∂−n−1
z δ2(z)dz̄ ∧ dz

=

∫
C

2mπi(−1)−n−1(−n− 1)!

(−1)−n−1(−n− 1)!
δ2(z)δm+n,0dz̄ ∧ dz = 2πimδm+n,0 (A.10)

for the case n > 0,m > 0 the integral is manifestly zero. But for the case n < 0,m < 0,

we have,∫
C

dzn∧dzm =

∫
C

(∂zz
n∂z̄z

m−∂z̄zn∂zzm)dz∧dz̄=

∫
C

2πi[−(n+m+1)]!δ2(z)z(n+m)

×
[

1

(−1)−(m+1)(−m−1)!(−n)!
− 1

(−1)−(n+1)(−n−1)!(−m)!

]
dz∧dz̄= 0

(A.11)

B An alternative formulation: complexified Maxwell theory

In this section, we show that the construction above arise in a natural way in the complex-

ification of Maxwell theory [47]. Assume that dynamical gauge field is complex instead

of real, i.e. define the complex gauge field as A = A + iC. The complex field strength is

defined as F = dA = F + iG; F is a two-form under usual Lorentz transformations. The

constraint G = ∗F is demonstrated here as

∗F = −iF , (B.1)

which is like the self-duality condition in ordinary Euclidean Maxwell theory. The La-

grangian can be written as

L = −1

2
F ∧ ∗F̄ , (B.2)

and the equations of motion are

∂µFµν = 0, ∂µF̄µν = 0. (B.3)
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The theory is invariant under the gauge transformation

A → A+ dΛ, (B.4)

where Λ = f + ig and Λ̄ = f − ig is the complex conjugate of Λ. The duality symme-

try transformation (4.39) appears as a global U(1) symmetry A → e−iθA. This global

symmetry cannot be gauged [67].

Now one may compute the Noether charges associated to these gauge symmetries.

One finds

QΛ = −1

2

∮
dΣµν(ΛF̄µν + Λ̄Fµν) =

∮
(Λ ∂zAz̄ + Λ̄ ∂z̄Az). (B.5)

Note that the charge is a real function. One may alternatively compute the electric and

magnetic charges at null infinity:

QΛ = QEf +QBg . (B.6)

The above is of course compatible with (2.13) and (2.15).

Algebra of all charges. Given two complex gauge variables Λ = f + ig and Λ̃ = f̃ + ig̃,

we can compute the algebra of charges, e.g. in spatial slicing using the analysis of section 2,

{QΛ,QΛ̃} = {QE
f ,Q

B
g̃ } − {QE

f̃
,QB

g } =

∮
(df ∧ dg̃ − df̃ ∧ dg) (B.7)

= Im

∮
dΛ ∧ dΛ̃ (B.8)

The above for pure real or pure imaginary Λ reproduces (3.29). Algebra of charges at null

infinity may also be worked out along the lines of section 3. This yields (B.7) which may

be shown to be exactly the same as (3.29).
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