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1. Introduction and Overview

Dams have played a vital role in human civilization for thousands of years, providing
vital resources such as water and electricity, and performing important functions such as
flood control. The scale and complexity of dam projects have increased in recent years,
making their safety evaluation even more challenging. Therefore, it is crucial that dam
engineers consider all potential risks and take appropriate measures to ensure the safety
and stability of these structures [1]. The nature and existence of dams are highly coupled
with concepts such as population growth, climate change, global warming, and water
security [2]. According to the International Commission on Large Dams’s (ICOLD) [3]
most recent update in April 2020, there are about 58,700 registered large dams in the world.
Figure 1 illustrates the global distribution of these large dams.

Figure 1. Global distribution of large dams as of 2020.

Traditional dam safety methods, based on visual inspections and manual monitoring,
have long been the standard for ensuring the stability and safety of dams. However, as
the scale and complexity of dam projects have increased, these methods have become
increasingly insufficient. Major limitations of traditional dam safety methods are the
existence of deficient observation plans and the potential for human error. Inspectors
may miss crucial signs of deterioration or failure, and manual monitoring can be prone to
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inaccuracies. In addition, as the number of (aged and new) dams continues to increase,
it becomes increasingly difficult and resource-intensive to manually inspect and monitor
each one. Another limitation of traditional dam safety methods is that they are typically
reactive rather than proactive. They focus on identifying and addressing problems after
they have already occurred, rather than predicting and preventing them.

In contrast, modern techniques such as remote sensing, drones, and sensor networks
can provide more accurate, real-time data on dam conditions. They can also be used to
continuously monitor dams, providing an early warning of potential problems. Artificial
Intelligence (AI) can be applied to the data collected from these modern techniques for
identifying patterns and anomalies that may indicate a potential problem. AI algorithms
can be used in the decision-making process for dam safety by providing accurate and
updated risk analysis.

2. Soft Computing in Dam Engineering

Soft computing is a collection of techniques in computer science that aim to provide
solutions to problems that are difficult or impossible to solve using traditional, “hard”
methods of computation. Soft computing encompasses various computational techniques
that are designed to replicate human-like problem-solving behavior. It includes a variety
of techniques such as fuzzy logic, neural networks, genetic algorithms, and probabilistic
reasoning, which are used to solve problems that are too complicated for traditional, rule-
based approaches [4]. Soft computing has a wide range of applications in engineering,
including control systems, signal processing, pattern recognition, and optimization. For
example, in signal processing, neural networks and genetic algorithms can be used to
improve the accuracy of signal classification and feature extraction. In optimization, genetic
algorithms and probabilistic reasoning can be used to solve complex optimization problems.

The use of soft computing techniques, such as fuzzy logic and neural networks, in dam
engineering began to gain popularity in the late 1990s and early 2000s. The first application
of these techniques for modeling dam behavior is arguably the work by Bossoney [5],
closely followed by Hattingh L.C. [6]. The main purpose was to overcome the limitations
of the traditional Hydrostatic-Season-Time (HST) model [7] in terms of the identification
of nonlinear behavior and consideration of complex phenomena. This has been the main
application of soft computing in dam engineering to date, favored by the development
of new algorithms and the increase in available monitoring data due to the installation of
automatic data acquisition systems (ADAS). In this line, the ICOLD Benchmark Workshop
held in 2001 was a milestone, since for the first time solutions were presented with methods
such as K-nearest neighbors [8] or nonlinear autoregressive exogenous models (NARX) [9].

Later on, and in parallel with the aforementioned application, soft computing began
to be used as a surrogate for finite element models in analyses with high computational
costs. The typical example is the study of the probability of failure with Monte Carlo-type
methods, which requires executing a extremely high number of numerical simulations [10].
More recently, the use of these techniques in dam engineering has grown significantly,
as specific libraries have become available in different programming languages, which
are easier to implement and apply [11–14]. Today, soft computing is used in a variety of
applications related to dam engineering, such as:

• Early warning systems for dam failure [15];
• Real-time monitoring and control of dam systems [16];
• Predictive maintenance and condition monitoring of dam structures [17,18];
• Hydrological and meteorological forecasting [19];
• Risk assessment and decision making related to dam safety [20];
• Management of dam operation, energy production, and water management [21];
• Dam shape optimization and life cycle cost analysis [22,23];
• Probabilistic safety assessment and uncertainty quantification [24,25];
• Predicting the failure modes under multi-hazard scenarios [26,27].
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With all the above-discussed advantages, the soft computing methods have several
limitations in dam engineering problems. Machine learning models require a large amount
of data to be trained and tested, which can be a limitation in dam engineering, where
data collection can be difficult and expensive. Data availability can be the main obstacle
to the application of machine learning models in numerical simulation of large-scale
dams [28]. The quality of the data used to train and test machine learning models is crucial
for the accuracy and reliability of the models. Data in dam engineering can be noisy,
incomplete (e.g., missing sensor) or biased, which can negatively impact the performance
of the models [29]. Complex machine learning models can be difficult to interpret and
understand [30], which can be a limitation when trying to explain the results of the models
to non-experts. It is important to validate the models using independent data sets, but
this can be difficult and time consuming in dam engineering. Dam systems are dynamic
and subject to change. Machine learning models may not be able to adapt to changing
conditions, which could lead to poor predictions. Dam engineering is a critical field
that affects the safety of human lives, property and the environment. Therefore, the
reliability and safety of the machine learning models used in dam engineering need to be
carefully evaluated.

The challenges are increasingly complex. The differences among dam owners in terms
of financial and human resources is a crucial aspect to consider. The investment is different
between the dam owners and between the dams since new surveillance in old dams are
many times more difficult to carry out than in new dams. Adopting adequate monitoring
plans is mandatory, as is the promotion of surveillance activities by expert engineers. The
constitution of multidisciplinary teams and the exploitation of the possibilities of soft
computing and machine learning techniques are essential to adequately respond to dam
surveillance activities’ needs. Sharing knowledge between scientists and practitioners is
also a key element for improving surveillance activities.

3. About the Special Issue

In May 2020, a team of guest editors specialized in different aspects of dam engineering
and machine learning proposed to launch a Special Issue “Soft Computing and Machine
Learning in Dam Engineering ” to the journal of “Water”. This Special Issue aimed to
capture the recent increase in research activity at the interface of dam engineering and
machine learning methods.

In this Special Issue, we solicited high-quality original research articles focused on
state-of-the-art techniques and methods employed in the design and analysis of dams.
We welcomed both theoretical and application papers of high technical standards across
various disciplines, thus facilitating an awareness of techniques and methods in one area
that may apply to other areas.

This book includes ten contributions to this Special Issue published between 2020 and
2023. The acceptance rate was less than 50%, which is an acceptable rate for a technical
Special Issue, where nearly all the submissions were by invitation. The overall aim of the
collection is to improve our understanding from applications of soft computing in dam
engineering including its challenges.

Figure 2 shows a “word cloud” data-mined from all accepted papers, indicating repe-
tition of relevant keywords. The accepted papers cover a wide range of dam engineering-
related topics. In a very broad classification, one may identify the following major cate-
gories: (1) probabilistic simulations, (2) risk-based methods, (3) stochastic input motion,
(4) uncertainty quantification, and (5) applied machine learning including validation.
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Figure 2. Word cloud from all the accepted papers in this Special Issue journal.

4. Contributions to Current Special Issue

Deterministic analysis never provides a comprehensive performance assessment of
structural systems. Therefore, probabilistic methods have emerged as a promising alterna-
tive. However, such methods, in addition to being computationally expensive, can produce
very different solutions, depending on the input parameters, which can greatly influence
the decision making. The importance of probabilistic methods in dam engineering has
been discussed previously in [31–33]. In the paper by Segura et al. [34], “Accounting for
Uncertainties in the Safety Assessment of Concrete Gravity Dams: A Probabilistic Approach
with Sample Optimization”, the authors proposed a probabilistic-based methodology for
assessing the safety of dams under usual, unusual, and extreme loading conditions. This al-
lows the analysis to be updated while avoiding unnecessary simulation runs by classifying
the load cases according to the annual probability of exceedance and by using an efficient
progressive sampling strategy. They also conducted a variance-based global sensitivity
analysis to identify the most influencing parameters affecting the dam response.

While the probabilistic simulations can be used to extract the structural capacity of
dams, it is not always possible to perform hundreds of simulations for highly nonlinear
systems. The alternative is to use the approximate methods such as endurance time
analysis (ETA) [35]. ETA is a dynamic pushover procedure that evaluates the structural
performance of a system from the linear to nonlinear range using single simulations. In a
paper by Alegre et al. [36], “Seismic Safety Assessment of Arch Dams Using an ETA-Based
Method with Control of Tensile and Compressive Damage”, the authors present an ETA-
based method for seismic safety assessments of arch dams using tensile and compressive
damage models. The seismic performance is evaluated by controlling the evolution of
the damage state of the dam, according to predefined performance criteria, to estimate
acceleration endurance limits for tensile and compressive damage. They evaluated the
dam response at two seismic hazard levels, i.e., Operating Basis Earthquake and Safety
Evaluation Earthquake.

The probabilistic seismic performance of dams typically results in fragility curves
or capacity functions that are useful for the engineers [33,37,38]. However, they do not
provide a direct connection between the failure probability at different seismic hazard
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4. Contributions to Current Special Issue

Deterministic analysis never provides a comprehensive performance assessment of
structural systems. Therefore, probabilistic methods have emerged as a promising alterna-
tive. However, such methods, in addition to being computationally expensive, can produce
very different solutions, depending on the input parameters, which can greatly influence
the decision making. The importance of probabilistic methods in dam engineering has
been discussed previously in [31–33]. In the paper by Segura et al. [34], “Accounting for
Uncertainties in the Safety Assessment of Concrete Gravity Dams: A Probabilistic Approach
with Sample Optimization”, the authors proposed a probabilistic-based methodology for
assessing the safety of dams under usual, unusual, and extreme loading conditions. This al-
lows the analysis to be updated while avoiding unnecessary simulation runs by classifying
the load cases according to the annual probability of exceedance and by using an efficient
progressive sampling strategy. They also conducted a variance-based global sensitivity
analysis to identify the most influencing parameters affecting the dam response.

While the probabilistic simulations can be used to extract the structural capacity of
dams, it is not always possible to perform hundreds of simulations for highly nonlinear
systems. The alternative is to use the approximate methods such as endurance time
analysis (ETA) [35]. ETA is a dynamic pushover procedure that evaluates the structural
performance of a system from the linear to nonlinear range using single simulations. In a
paper by Alegre et al. [36], “Seismic Safety Assessment of Arch Dams Using an ETA-Based
Method with Control of Tensile and Compressive Damage”, the authors present an ETA-
based method for seismic safety assessments of arch dams using tensile and compressive
damage models. The seismic performance is evaluated by controlling the evolution of
the damage state of the dam, according to predefined performance criteria, to estimate
acceleration endurance limits for tensile and compressive damage. They evaluated the
dam response at two seismic hazard levels, i.e., Operating Basis Earthquake and Safety
Evaluation Earthquake.

The probabilistic seismic performance of dams typically results in fragility curves
or capacity functions that are useful for the engineers [33,37,38]. However, they do not
provide a direct connection between the failure probability at different seismic hazard
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levels and the associated risk for downstream population and properties. In a paper by
Ferguson [39], “Risk-Informed Design of RCC Dams under Extreme Seismic Loading”,
the author proposed a practical framework for risk-informed design of concrete dams.
The results of 2D and 3D numerical simulations were used to drive the risk metrics and
feasibility level design.

The machine learning techniques can be used to process the results of numerical simula-
tions. They can be used for both “analysis” and “design” purposes. In a paper by Shahzadi
and Soulaïmani [40], “Deep Neural Network and Polynomial Chaos Expansion-Based
Surrogate Models for Sensitivity and Uncertainty Propagation: An Application to a Rockfill
Dam”, the authors used two machine learning techniques to build a surrogate model of
a rockfill dam considering the uncertainties in constitutive soil parameters. Furthermore,
they found that shear modulus and the Poisson coefficient are the parameters that play the
most significant role in the dam’s behavior.

In a separate study by Hariri-Ardebili and Pourkamali-Anaraki [41], “An Automated
Machine Learning Engine with Inverse Analysis for Seismic Design of Dams”, the authors
used automated machine learning (AutoML) for the design of new dams. They first
developed a large database of about 24,000 simulations in which the uncertainties associated
with shape, material properties, water level, and ground motion records are incorporated.
Next, AutoML is used to generate a surrogate model of dam response as a function of input
variables. A simple yet robust inverse analysis method is coupled with a multi-output
surrogate model to design the new dams in which only part of the data are available. The
design shape from the inverse analysis is in good agreement with the design objectives and
also the finite element simulations.

Aside from the application of soft computing methods in regression and classification
of data, they can be used for the sensitivity analysis of dams too. In a paper by Hariri-
Ardebili et al. [42], “An RF-PCE Hybrid Surrogate Model for Sensitivity Analysis of Dams”,
the authors proposed two techniques for the sensitivity assessment of concrete dams with
heterogeneous concrete, i.e., a polynomial chaos expansion and random forest. They used
these techniques to identify the areas of dam in which the variation of material properties
have the highest impact on the vibration response. Their findings can improve the process
of system identification for old dams.

Another complex aspect, which is seldom analyzed, is the effect of ice loads on dam
displacements. This, which obviously affects dams in cold regions, was studied with
an innovative approach in a paper by Hellgren et al. [43], “Estimating the Ice Loads on
Concrete Dams Based on Their Structural Response”. The authors estimated the magnitude
of ice loads on five dams in Sweden, four concrete buttress dams and one arch dam. The
results suggested that the estimates of ice loads from measurement sensors and from design
guidelines are over-conservative.

Soft computing techniques are also capable of jointly analyzing a set of monitoring
records. In a paper by Salazar et al. [44] “Anomaly Detection in Dam Behaviour with Ma-
chine Learning Classification Models”, machine learning classifiers based on support vector
machines and random forests are tested for detecting anomalies in a double-curvature
arch dam. Results show the potential of this approach as a robust procedure for novelty
detection. The main limitation, also identified, is the need for high-quality monitoring data.

The dissemination of machine learning techniques has promoted the development of
new models for dam behavior prediction. However, validating these models based on the
dam engineer’s knowledge is fundamental for their adequate use. This issue is tackled in
the paper by Mata et al. [45] “Validation of Machine Learning Models for Structural Dam
Behaviour Interpretation and Prediction”. The authors present a methodology based on
several validation techniques, including historical data validation, sensitivity analysis, and
predictive validation for the practical application of data-based models for structural dam
behavior prediction in daily dam surveillance activities.

Finally, in a paper by Mata et al. [46] “Characterization of Relative Movements between
Blocks Observed in a Concrete Dam and Definition of Thresholds for Novelty Identification
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Based on Machine Learning Models”, the authors present a methodology for the earlier
detection of novelties through the analysis of the residuals of prediction models, taking
into account the evolution of the records over time and the simultaneity of the structural
responses measured in a concrete dam, namely through the threshold definition based on a
singular record, a moving time period, and multivariate records.

5. Future Research Directions

The dissemination and implementation of the scientific and technological advances
achieved in the dam surveillance area during the last decade are not yet effective for most
dam owners, even for large dams. The trend towards the installation and use of ADAS,
recommended in monitoring plans of new large dams, is a great opportunity to assess safety
conditions in real time, but it requires tools to process big data sets. Machine learning and
deep learning provide dam safety engineers with essential functionalities for an efficient
and effective enhancement of these tools, in order to adequately satisfy the needs resulting
from dam surveillance activities. Some of the future advances in this area to fill existing
gaps may include the development of methodologies and tools for:

• The validation of manual measurements in real-time, allowing manual record errors
to be immediately identified (resulting from human error or defects in measuring
devices). This enables the technicians, in-situ and in real-time, to have the opportunity
to repeat the measurement before making the final record.

• The validation of the automated measurements from ADAS taking advantage of the
multi-dimensionality of the measurements carried out.

• The definition/confirmation of the best location of the measurement devices that
better identify potential failure scenarios, enhancing the definition of subsystems of
devices that allow the confirmation of scenarios.

• The construction of advanced predictive models of physical quantities that present
a nonlinear behavior, such as seepage and leakage, uplift pressures, and joint move-
ments, among others.

• Multivariate and simultaneous analysis of quasi-static and dynamic quantities for
interpreting observed behavior.

• The short-term prediction of the structural behavior under extreme flood scenarios,
taking into account the short-term evolution of water level.

• The development of key operational indicators to assess the performance of the
observed structural behavior. For example, to assess the efficiency of the waterproofing
concrete curtain.

• The development of dashboards that allow, in an easy way for the end user, to assess
the quality of the forecast models adopted (including the quantification of the effect of
each of the main actions in the final response through sensitivity analyses).

• The identification of potential failure scenarios based on monitoring data.
• Validation, verification, and uncertainty quantification of probabilistic numerical

simulations that are used in soft computing models.

We hope that this Special Issue would shed light on the recent advances and devel-
opments in the area of soft computing and dam engineering, and attract attention by the
scientific community to pursue further research and studies on simulation and modeling of
dams and appurtenant structures.
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