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Soft Computing Applications in Aircraft Sensor
Management and Flight Control Law Reconfiguration

Marcel OosteromMember, IEEERobert Bab&ka, and Henk B. Verbruggen

Abstract—A sensor management system based on soft com-frame. This inevitably leads to a transient response during which
puting techniques has been developed and implemented in thethe consolidated signal temporarily differs from the true value.
flight control system of a small commercial aircraft. Unlike in The soft sensor management system introduced in this

the conventional sensor management system, the signals from intains the k i f1h ti |
sensors are assigned weights based on fuzzy membership functiond@P€r maintains the key properties ot the conventional sensor

and the consolidated signal is computed as a weighted average.management system (majority voting) while improving its per-
This approach improves the quality of the consolidated signal formance by applying fuzzy logic (FL) techniques. Although
and reduces transients due to sensor failures. This soft voting is | techniques have been implemented in other application
extended to soft flight control law reconfiguration. In addition, a . : . o
virtual sensor has been introduced as an arbitrator which enables 9'0”,“"“”3' such as the process industry [2], [3]_’ thelr appllpatlon
the isolation of the failed sensor in the duplex operation and IN flight control systems has not been extensively investigated
the detection of a sensor failure in the simplex operation. The yet. Using fuzzy logic, the decision whether a sensor has
effectiveness of the proposed methods is demonstrated by usingfailed or not is no longer crisp. The sensor signals are assigned
an extensive simulation model of a small commercial aircraft, weights based on a cross-comparison of like signals by using

developed by airframe and control system manufacturers on the . . . . ;
basis of an existing business jet. Furthermore, the system has fuzzy membership functions. The consolidated signal is then

been successfully evaluated and compared to standard techniquescOmputed as a weighted average. Compared to the conventional
by means of pilot-in-the-loop simulations on the Research Flight management system, the soft management system intervenes at

Simulator of the National Aerospace Laboratory in The Nether- gn earlier stage by reducing the weight of the suspected faulty

lands. This application, developed within a Brite/EuRam research : : : .
project, is characterized by the effective combination of novel sensor signal, while the failure declaration occurs at a later

soft computing techniques with standard, well proven methods of Stage. This approach improves the quality of the consolidated
the aircraft industry. The properties of the conventional sensor Signal with respect to its difference from the true value due to

management system have been retained, with the additional sensor failures. An attractive additional feature of this approach
advantage that the quality of the consolidated signal is improved, s the reduction of the transients due to sensor failures.
the failure-induced transients are reduced, and the consolidated Furth irtual is introduced i der to be abl
signal remains available up to the last valid sensor. } ur Qrmqre, avirtua Sgnsor IS introduce 'n oraerto be able
to identify failed sensors in the duplex operation and to detect
a sensor failure in the simplex operation (which is not possible
with the current sensor management systems). In the literature,
many applications of analytical redundancy for fault detection
and fault isolation in flight control systems have been reported
|. INTRODUCTION [4]-[6], however, the use of virtual sensors in aerospace appli-

ENSOR management based on majority voting and poi@tions is novel.
onsolidation of like signals is a proven technology in The research described in this paper has been performed
modern fly-by-wire flight control systems [1]. The assumptiomithin the Brite/EuRam project “Affordable Digital Fly-by-wire
is that the majority of like signals represent the truth and thitight Control Systems for Small Commercial Aircraft”
any single dissimilar signal is the result of a failure. Such @DFCS) [7]. The partners in this project are from the United
signal must be disconnected as soon as the failure is detectédgdom (BAE SYSTEMS), Israel (Israel Aircraft Industries,
In the conventional approach, the decision whether a sensor lsigel Institute of Technology), Italy (Alenia Aerospazio,
failed or not is crisp. In order to reduce the sensitivity of thi€entro Italiano Ricerche Aerospaziali), and The Nether-
decision to uncertainties like quantization and measuremdsmds (National Aerospace Laboratory, Delft University of
noise, a properly adjusted threshold is used. This thresholdlechnology). The goal of the project is to investigate the
a compromise between two goals: the absence of false alaapplication of fly-by-wire flight control systems (FBW FCSs)
and the ability to detect all possible failures within a certain timia small commercial aircraft in order to proliferate the proven
benefits of the FBW technology, in terms of increased safety,
" o ed March 26. 2001 revised Aoril 22. 2002 Thi commonality, productability, and maintainability. One part of
Wasainnus[():;lg ;eu(:)ep“(;erzted akl)r; the Brite/’ErL?I\g:; pr%rjlect "‘Affordab:z reDSigi?;fﬂe prqec_t investigates whether fuzzy and neural tgchnlques
Fly-by-wire Flight Control Systems for Small Commercial Aircraft’ (ADFCS).can contribute to the development of a cost-effective FBW
The authors are with Control Systems Engineering, Faculty of InformatiqnCS | This application illustrates that the novel soft computing
Technology and Systems, Delft University of Technology, NL-2600 GA Delf'ttechniques can effectively be combined with standard well

The Netherlands (e-mail: r.babuska@its.tudelft.nl). - )
Digital Object Identifier 10.1109/TSMCC.2002.801357. proven methods of the aircraft industry.
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Fig. 1. Simplified structure of the longitudinal stability and control augmentation system. Input to the nonlinear model is the commandedeflestibond,
[deg] and outputs are pitch ratgdeg- s~1], attitudeé [deg], true airspeell 4 s [knots], and normal acceleratiaW. [¢]. The blending in the feedback path is
a function of the pitch column deflection [deg] and dynamic pressutg. [mbar].

The paper is organized as follows. In Section I, the longitu-
dinal flight control laws are briefly discussed in order to illus-
trate the implementation of the pitch rate and the normal accel-
eration feedback. The conventional sensor management syste
and the flight control law reconfiguration are discussed in Sec-
tion Ill. Section IV introduces the sensor management systerr
and flight control law reconfiguration based on soft computing,
which is extended to include virtual sensors in Section V. Con-
cluding remarks and future research are discussed in Section V!

> svo(ed

[I. LONGITUDINAL FLIGHT CONTROL LAWS ‘ ‘ :
- i IJ I

In this section, a short description is given of that part of the — Lui > )= "_"Z —>| ,,;: ;
longitudinal flight control laws (FCLs) that is relevant for the count rate sount
methods described in the remainder of this paper. The genq;ia_l
objective of the FCLs integrated in a FBW system is to improve

the flylr_1_g qualities of the_ bare aircraft, in part|_cular inthe flelq%rder o be able to augment the stifiness, feedback of the angle-
of stability, control and flight envelope protection [8]. From thlsof-attack is required (the frequency of the short-period mo-
point of view, the dynamics of the longitudinal short-period mo=_ . alsreq d Y - Peri
. . tion is a function of the aerodynamic coefficiefi,, ). Since
tion are of major importance. R

In this paper, the Small Commercial Aircraft (SCA) modelihea—sensor is not accurate enough to be used for control, this

is used as a demonstrator [9]. The SCA model is a realistic a:ﬂ_gnal Is reconstructed by using a bIendllng pf the p|t9h jate
and the normal acceleratia¥. . This blending is a function of

craft model implemented in Matlab/Simulink™, based on an eﬁ%e pitch column deflection, (pilot input) and the dynamic
isting business jet aircraft. The SCA model is equipped with aessureQ (function of airsgeed and altitude). With the pitch

. . . . r
stability and control augmentation system, which is part of e . . .
FCLs. A simplified structure of the longitudinal stability an olumn centered, the feedback signal is only influenced by the

. o R itch rate. The same holds for large pitch column deflections at
control augmentation system is illustrated in Fig. 1. For the prg- . S .
) ow_dynamic pressure. The normal acceleration is entering the
sented results, the pitch damper path and the feedback path are : . : ?
S ; . feedback signal for large pitch column deflections at medium
of main interest, since only the pitch rate and the normal accelgrn- hiah dvnamic pressure
ation sensor failures are taken into consideration. The commanéJl gh dy P '

shaping path and the feedforward path are not addressed.
The pitch damper patfaugments the short-period damping
of the bare aircraft through direct feedback of the pitch rate
to the commanded elevator deflection. The “stiffness” of the Each signal is measured independently by a number of sen-
closed-loop system is augmented throughfdeelback patiy sors. The sensor management system has two tasks, namely the
increasing the frequency of the short-period motion [10]. loomputation of a consolidated signal from these measurements

2. Conventional triplex sensor management system (source: [1]).

I1l. CONVENTIONAL SENSOR MANAGEMENT
AND FCL RECONFIGURATION



OOSTEROMet al: SOFT COMPUTING APPLICATIONS IN AIRCRAFT SENSOR MANAGEMENT 127

6
—
[/}
g 47
k=3 —_
o (=)}
= £
> ”
© 0 @
0 1 2 3 4 5
05 —T . . .
A 3.2 3.4 3.6 3.8 4 4.2
= T T T T
()
S
3 0
E C
o .
< e _ 185
— o
3 I ~
-0.5 : z
0 1 2 3 4 5 = -
NF————— T 161
— q, . ; .
= 1571 = q, | e | | (= _no faut
8 ™ fof S T2 34 3.6 3.8 4 42
© [ T ........ ......... 55 - ™ ; .
: : : | | ' - conv
0 : ' = no fault
0 1 2 3 ; .
3
.-9 2 .................................
©
>
) T
I [ |
0 35 :
0 1 2 3 4 5 3.2 3.4 3.6 3.8 4 4.2

Time [s] Time [s]
Fig. 3. Conventional sensor management: drift failure of a pitch rate sensor. Figures e-g are zoomed in on the failure-induced transients.
(voting) and the validation of each of the sensors (monitoring). In order to keep the presentation simple, the triplex voter will

The consolidated (or voted) signal is fed to the flight contrdie used to explain the conventional voting/monitoring philos-
computer and at the same time serves as a reference for senpby (see Fig. 2). The three sensor signals are first sorted from

validation. the largest value to the smallest one. The mid-value signal is
taken as a reference and the two extreme-value signals are lim-
A. Conventional Voting/Monitoring Scheme ited in their deviation from the mid-value signal. When the limits

The redundancy levelor each signal, i.e., the number of e 2re not invoked, the voted (consolidated) signal is given by

dundant sensors in normal operation, is related to the failure
probability of the sensor and the consequence of losing the cor-
responding signal. For example, the consequence of losing the =0.25- (51 + 252 + 53).

pitch rate signal is a catastrophic failure. The probability of a o ) )
catastrophic failure must be less thar1@er hour of flight. For two valid signals, duplexvoter is used, and the voted signal

If the failure probability of a pitch rate sensor isToper hour 1S @ Simple average. _

of flight, the third consecutive like sensor failure may result in 1€ monitor compares each of the three sensor sigfials

a catastrophic failure. A sensor failure in the duplex operatig§fth the consolidated signal, ..q. If the absolute difference
(two sensor signals available) results in losing the signal, sinSeSmaller than a predefined threshald the monitor countis

the conventional voting/monitoring scheme is not able to idef€creased by one, otherwise it is increased by two:

tify the failed sensor in this case. This implies that four pitchrate I [Si — Suotea| < A then (count rate); = —1

sensors need to be implemented in order to meet the require- If [Si — Suotea| > A then (count rate); = +2.

ments regarding the probability of a catastrophic failure. ThiEhe updated count value is bounded betwesroand theailure

is called the quadruplex system. Similarly, we have the tripledeclaration valuelf the count value has reached the failure dec-
duplex and simplex voter for three, two and one physical senslaration value, a failure is declared and the signal is latched (see
respectively. Fig. 2).

Svoted =52 +0.25 - (Sl — 52) +0.25 - (Sg — SQ)
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Fig. 4. Conventional sensor management: cutoff failure of a pitch rate sensor. Figures e-g are zoomed in on the failure-induced transients.

The logic in the conventional sensor management systermsensor §;) and the voted signaly(,:.q) exceeds the monitor
such that a failed sensor output continues to contribute to ttieeshold, the monitor count rate increases frefinto +2 (de-
voted signal until it is latched. This results in transients and diseted by the first vertical dash-dotted line). When the monitor
continuities in the voted signal, which is illustrated in two noneount [Fig. 3(c)] reaches the failure declaration value (denoted
linear, closed-loop simulation examples using the SCA Matlaby the second dash-dotted vertical line) the signal is latched and
Simulink™ model. the number of valid signals reduces to two [Fig. 3(d)]. The faulty
contribution ofg; is omitted instantaneously, which results in an
undesirable discontinuity in the consolidated signal [Fig. 3(b)].

) _ o o ) The resulting transients in the elevator deflection [Fig. 3(e)], the
For _both simulations, the initial condition is a str_a|ght andormal acceleration [Fig. 3(f)], and the true pitch rate [Fig. 3(g)]
level flight at a Mach number ol = 0.75 and an altitude of gignals are evident (solid line) compared to the fault free case

h = 40 kft, which is the cruise flight condition for the SCA (dash-dotted line).

model. The pilotinput is a block-shaped input of the maximum The second simulation example illustrates a cutoff sensor
positive column deflection starting at= 1 s and lasting for 6 fajjure which occurs at = 3 s in one of the pitch rate

S. DUring this maneuver, the normal acceleration Signal is parg¥nsors [F|g 4(a)] Due to the abrupt nature of the sensor
contributing to the feedback path. The corresponding time higilure, discontinuities in the voted signal occur both when
tories of the first simulation example are illustrated in Fig. 3. Ahe failure is inserted and when the corresponding signal is
t = 1s, adrift failure of 1 degs~2 occurs in one of the pitch |atched [Fig. 4(b)]. Again the behavior of the voted signal is
rate sensors [Fig. 3(a)]. Fig. 3(b) shows the differengg..ca  undesirable, since it is by no means representing the behavior
between the voted signal and the true pitch rate. Due to the dgftthe true signal. The transients in the elevator deflection
failure, the voted signal diverges from the true pitch rate until tHEig. 4(e)], the normal acceleration [Fig. 4(f)] and the pitch rate
contribution of the failed sensor output is limited and the migFig. 4(g)] are evident (solid line), especially when compared
match remains constant. When the difference between the faitedhe fault free case (dash—dotted line).

B. Simulation Examples
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Fig. 5. Conventional sensor management: a drift failure of the second normal acceleration sensor.

C. Flight Control Law Reconfiguration used in the feedback path for the entire range of the admissible

. . L olumn deflection and dynamic pressure.
The voted signal in the duplex operation is computed as t . . .
. L he normal acceleration signaliis used to demonstrate the con-
average of the two sensor signals. If a sensor fails in the duplex

. . : o ventional managementsysteminthe case of asensor failure in du-
operation, the majority voting principle can no longer be usecT . : . . . .
exoperation, sincethereisno FCL reconfiguration available for

to identify the failed sensor. As soon as the difference betwe,%ne loss of the pitch rate signal in the SCA model. As mentioned

these two signals exceeds a certain threshold, both sensors are . . . L
g abaove, the loss of the pitch rate signal is a catastrophic failure.

gss::rres?glg\;?“d and the FCS reconfigures to not using this Pa™The above examples have demonstrated the main shortcom-

In Fig. 5(a), a drift failure of the second normal acceler ings of the conventional sensor management approach—the
'9- ’ ! 1 ailure-induced discontinuities in the consolidated signal and the

tion sensor is simulated [Fig. 5(a)]. The voted signal is the ai\ﬁability to identify sensor failures in duplex operation and/or to

erage of the two valid signals. The initial condition is a straigl'(l_][ . . . .
. . etect a sensor failure in simplex operation. AF Logic (FL
and level flight at a Mach number @ff = 0.70 and an altitude flure in simplex op ! uzzy Logic (FL)

L N . approach can be used to improve the conventional sensor man-
of h = 25 kft. This flight condition is selected to increase the PP P

L . . ) algement system without changing the basic concept of majority
contribution of the normal acceleration signal in the feedback,. g . . . .
voting. This is described in the remainder of this paper.

path. The pilot input is a block-shaped input of maximum pos-

itive column deflection starting & = 6 s and lasting for 6 s.

When the difference between the two sensor signals exceeds thé: SENSORMANAGEMENT AND FLIGHT CONTROL LAW
threshold, the monitor count of both sensor signals is setto the =~ RECONFIGURATIONBASED ON SOFT COMPUTING

failure declaration value instantaneously and both input signalsin this section, we focus on reducing, or even eliminating,
are latched [Fig. 5(c)]. At this point the consolidated signal e transients in the voted signal due to sensor failures. A new
no longer available and the FCS reconfigures to not using tlsisnsor management scheme is introduced, which makes use of
signal [Fig. 5(d)]. This implies that only the pitch rate signal ifuzzy logic.
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Both the conventional and the soft voting scheme are based on
majority voting. The major difference is the way the like sensor
signals contribute to the consolidated signal. In the conventional
voting scheme, the contribution of a faulty signal is limited,

—> q while in the soft voting scheme its weight is reduced. The im-
0 G Qs plementation of the soft voting scheme is illustrated in Fig. 7
a) py,=1and 0<p,<1 for a triplex sensor system. The vector of like signals is split

(demux) and sorted (sort). The membership degrees are com-

% puted according to (3), put back in the original order (desort)
and combined again in a vector (mux). The voted signal is then
computed according to (1) and (2).
4 In the monitor part, the count rate of tith signal is the fol-
0 q, Qs —>4q lowing function of its corresponding membership degige
b) p,,=1and =0 If 1; = 1then (count rate); = —1;

If 0 < p; < 1then (count rate); = 0;

Fig. 6. Soft voting in the triplex operation. The current value of each sensor If 1; = 0then (count rate); = +2.
signal forms the center of its corresponding membership function, which is usppie main difference from the conventional monitoring scheme
to determine the membership degree of this sensor signal. . . . . .

is that here the monitor count rate is not a function of the dif-
ference between thi¢h sensor reading and the voted signal, but
a function of the difference between tfth sensor reading and

The soft voter is different from the conventional votinghe other like sensor readings. The count rate ofithesensor

scheme in the sense that each input signal is assigned a weigilghal becomes positive when the corresponding weight in the
and the consolidated signal is the weighted average of the inpoted signal is equal to zeras{ = 0), therefore no transients

A. Soft Voting/Monitoring Scheme

signals occur once the failure is declared on title sensor and the cor-
" responding signal is latched. This is illustrated with the help of
Svoted = Z w; S (1) two closed-loop simulation examples.
=1

wherew; denotes the weight assigned to itfeinput signals; B- Simulation Examples
andn denotes the number of valid sensors. The weighis the  The setting is identical to the simulation examples discussed
normalized membership degree in Section 111-B except for the sensor management system.
i The time histories of the first simulation example are given in
Wi =5 @) Fig. 8. Att = 1s, adrift failure of 1 deg s—2 occurs [Fig. 8(a)].
/21 Hj Fig. 8(b) shows the difference between the voted signal and the
= true pitch rateAg,¢.q. Due to the drift failure the voted signal
where0 < ;1; < 1. The computation of the membership degregiverges from the true pitch rate until the weight of the failed
pi is explained by using Fig. 6. sensor output is reduced to zero [Fig. 8(c)] and the voted signal
The current value of each signal forms the center of its corrig-again equal to the true value (not taking into account uncer-
sponding membership function. The membership degree of tagnties such as quantization, sensor noise, etc.). One can see
signal is the largest membership degree of the remaining vafitht the voted signal is smoother than in the conventional sensor

signals according to this membership function management case. By this time the monitor count rate is in-
B 3 creased from-1 (u; = 1)t0 0 0 < 41 < 1) and from O to
Hi = I?;%X(“i(qf))' ® 42 (11 = 0). When the monitor count reaches the failure dec-

) ) ) . _laration value [Fig. 8(d)] the signal is latched, and the number of
In Fig. 6(a), the membership function gf is illustrated. With ;i signals reduces to two (denoted by the second dash—dotted
respect to this membership functiog, has a membershlp ine). As the weight of the corresponding signal is equal to zero
degree ofus(¢1) = 0.35 and ¢, has a membership degree oL o moment of the failure declaration, no transients occur;
p3(g2) = 0.65. This implies thatg; has a membership degreeqq e solid lines of the elevator deflection [Fig. 8(e)], normal
of acceleration [Fig. 8(f)], and the true pitch rate [Fig. 8(g)]. For
comparison, the time histories of the simulations of the fault
free case (dash—dotted line) and conventional voting/monitoring
Clearly, the majority voting concept of the conventional sensoase (dotted line) are also included in Fig. 8(e)—(g).
management system is also used in the soft sensor managemenhe second simulation example is illustrated in Fig. 9. At
system. The signajs is not in agreement with the signajs ¢ = 3 s, a cutoff sensor failure occurs [Fig. 9(a)]. Due to the
andq., and therefore its weight in the voted signal is reducedbrupt nature of the sensor failure, the weight of the failed signal
In Fig. 6(b), the discrepancy between sigpaknd the signals output becomes zero immediately [Fig. 9(c)] and therefore there
q1 andgs is further increased. The corresponding membershgpe no transients in the elevator deflection [Fig. 9(e)], the normal
degree is now reduced g = 0. acceleration [Fig. 9(f)], and the pitch rate [Fig. 9(g)] signals.

ps = max(ps(q), ps(gz)) = 0.65.
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Fig. 8. Soft sensor management: drift failure of a pitch rate sensor. (e)—(g) Zoomed in on the failure-induced transients.

The closed-loop transients due to sensor failures are not of thehe voted normal acceleration signal are suppressed by the
same order for each signal. From Fig. 1, it can be seen that tbe-pass filter in the normal acceleration feedback path (Fig. 1).
pitch rate is fed back through a proportional gain in the pitdBilosed-loop transients are therefore less evident. For this reason
damper path and through a proportional and an integral gaire pitch rate signal is used to demonstrate this additional ben-
in the feedback path. In the feedback path the normal accefit of the sensor management system based on soft computing

eration is fed back in a similar way. However, discontinuitieechniques.
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Fig. 9. Soft sensor management. Cutoff failure of a pitch rate sensor. (e)—(g) Zoomed in on the failure-induced transients.

C. Flight Control Law Reconfiguration By the time theN = signal is no longer available [Fig. 10(b)],

The soft voting logic is extended to soft flight control law reIhe FCLs are reconfigured to not using this signal [Fig. 10(d)].

configuration. Also here, the voted signal is computed as the
average of the two sensor signals. Both sensor signals alfo-
matically have the same membership degree, and are thereforéhe voter has the task to provide a good signal for control
equally weighted in the consolidated signal. However, their mpurposes based on the premise that most, if not all, of the avail-
tual membership degree is multiplied with the contribution adble inputs are healthy. The monitor has the task to detect and
the normal acceleration signal in the feedback path as well. Tidentify any “unhealthy” signals that may cause a problem with
blending between the pitch rate and the normal acceleration dige continued safe control of the aircraft.
nals in the feedback path (see Fig. 1) is now a function of theln principle, the conventional and the soft sensor management
column deflections. and the dynamic pressufg. multiplied system are much alike. The soft sensor management system is
by the maximum membership degree of the normal acceleratmmveighted implementation of the conventional sensor system,
signals. When the difference between the two signals is sugtaining all the benefits of this system.
that their mutual membership degree becomes equal to zeroThe performance of the soft sensor management system is
the flight control laws are already reconfigured to not using treways better or equal to that of the conventional sensor man-
normal acceleration signal in the feedback path. agement system with respect to the behavior of the consolidated
Thisisillustrated in Fig. 10, where the time histories of a sinrsignal due to sensor failure and its deviation from the true value,
ulation of a drift failure of the second normal acceleration sensas has been demonstrated by simulation examples. This ben-
are illustrated [Fig. 10(a)]. The voted signal is the average of teét is most evident for cutoff failures. The worst case sensor
two input signals. During the maneuver, the signal in the feefhilure for the soft sensor management system is a step-like
back path is for 90% derived from the normal acceleration sigregnsor failure that does not result in a membership degree of
[Fig. 10(d)]. This is reduced to zero due to the growing discrefhe corresponding signal that is equal to zero. Only in this case
ancy between the two valid normal acceleration sensor signalgiscontinuity in the consolidated signal occurs.

Discussion
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Fig. 10. Soft sensor management: a drift failure of the second normal acceleration sensor.

The conventional voting/monitoring system has two separataly driven by the sensor characteristics. Expensive sensors are
crisp thresholds, one to limit the contribution of a suspectedore accurate and may need narrower membership functions.
faulty sensor signal and one for the failure declaration. The SEhe additional computation due to the soft sensor management
lected thresholds are a compromise between two goals: the system is considered to be negligible. The thresholds used in the
sence of false alarms and the ability to detect all possible failuEmulation examples were selected by the authors such that the
within a short time frame. The latter is important to minimizeharacteristics of both voting/monitoring systems become clear.
the effect of a sensor failure. This inevitably leads to a transiefie crisp threshold in the conventional voting system is in be-
response during which the consolidated signal temporarily difveen the upper and lower bound of the fuzzy threshold of the
fers from the true value. Although it is possible to reduce traseft voting/monitoring system.
sients by introducing filters, the soft sensor management is dnformation on the membership degree can be used for main-
more direct solution to this problem. In the soft sensor matenance purposes. If a sensor has regularly a membership degree
agement system, the compromise between false alarms anddkeer than one, this is an indication that something is wrong and
ability to detect sensor failures within a certain time frame ihat the corresponding sensor needs to be replaced.
avoided by introducing a fuzzy threshold. Through the fuzzy
threshold objectives of no false alarms and the minimization
of the effect of a sensor failure are well separated. When the
failure declaration procedure is activated, the weight of the cor-The conventional sensor management system works well
responding sensor signal is equal to zero and the negative ohown to two signals, where any discrepancy can no longer be
pact of the suspected faulty sensor is already taken care of. Takated to a “majority”. In this instance, the system will either
soft sensor management system is representative for the realdéiect both signals and reconfigure to not using this information,
situation of decision making process in general, and fault detex; for essential data, a simple average will be used as the best
tion and isolation in particular. As transients are reduced or eveompromise. However, there is additional information available
removed, the tuning of the membership function parameterdlist can be used to identify the failed sensor in the duplex

V. VIRTUAL SENSORS ANDDYNAMIC THRESHOLDS
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operation and to detect a failure in the simplex operation. Thi| virtual Sensor for
additional information can be employed to estimate the signi| Flaps/Slats 00/00 0 12 20 40

of interest, by using the so-called virtual sensor. Monitoring o 5ﬂ N T
the hardware sensor(s) in the duplex and simplex operation |Virtual Sensor for N \
then performed by comparison with the virtual sensor output. | Flaps/Slats 12/25 \ Wrs
. > N
A. Analytical Redundancy Virtual Sensor for| _| N / \
Flaps/Slats 20/25 ©

In the literature, many applications of analytical redundanc
for fault detection and isolation in flight control systems
i i Virtual Sensor for
have been reporteq. Most frequently _applled are linear ot Flaps/Slats 40/25

server-based techniques [4], [11], parity-space methods [EL
[12]-[14], and parameter-estimation schemes [6], [15]. The use _ _
. . . S Fig. 11. Architecture of the virtual sensor.

of nonlinear virtual sensors in aerospace applications has ndt

been extensively investigated yet, although this technique has

been successfully applied in other domains like process control Ib Nz,
and engine control [16], [17]. ub
In [18] we proposed a virtual sensor of the Takagi-Sugeno \

(TS) fuzzy model type [19] that uses dissimilar consolidated

sensor readings as inputs to estimate the normal acceleration. | > Nz

The structure of the virtual sensor, based on the physical model 0 Nz, Nz,

of the aircraft, is as follows: a) p,=1 and 0<p,<1
N,z:%-(u‘}—u-q—i—g-cosﬁcosd)) Nz,

whereu denotes the forward velocity; the downward velocity,

q the pitch rateg the pitch attitude¢ the bank angle andthe

gravitational acceleration. The time derivative of the downward }

velocity can locally be described by the following linear expres- 0 Nz, Nz,

sion b) p,=1 and p,=0
w = Zyu+ Zy,w+ Z,Iq + Zyl + Z(se be + Z(ss b

) N Fig. 12. Soft voting in the duplex operation. The virtual sensor output forms
whereé,. denotes the elevator deflection aéidthe stabilizer the center of a membership function, which is used to determine the membership

deflection. The parametets, throughZs, are the so-called degree of the hardware sensor outputs.

aerodynamic derivatives. However, due to the nonlinearity of

the aircraft, the aerodynamic derivatives are not constant, Ifar each antecedent variable, two membership functions are de-
depend on the Mach numbeé{, the dynamic pressu®. and fined. The rule-base therefore consists 28 rules. The de-

the angle-of-attack.. Taking this dependence into account, thgree of fulfillment of each of the rules is computed by taking the
structure of thei estimator becomes product of the membership degrees of each of the three premise

trs =Zo(M, Qe, @) + Zu(M, Qe, @) - u+ Zop(M, Qoy ) w0 1OIMS
+ Zq(Mv Qcaa) g+ Z&(Mv Qcaa) -0
+ Z¢(M7 Qcaa) “P+ Zée(Mv Qcaa) b
+ Zs, (M, Qc, @) - 5. (4)
Note the additional offsefy (M, )., @), introduced to com-
pensate for steady-state values of the input signals. The term  #8 =tren(M) - pian(Qc) - prien ().

Z¢(_M, Qc, @) - was added after the first flight simulator eval-r,, output of the TS fuzzy model is the weighted output of the
uation, because the virtual sensor was unable to estlmateI e

i . . cal linear models
downward acceleration correctly during high bank maneuvers.

p1 =prow (M) - prow(Qe) - prow (a)
p2 =prow (M) - prow(Q.) - prram (o)

The nonlinear function&; (M, Q)., «), representing the aero- 8 7

dynamic derivatives, are approximated by TS fuzzy rules of the El Hi » 20,

following form: Zo="—5 - ®)
1) If M is LOWand @, is LOWand « is LOW 2t

1

?

then ZO1 = Z010 + ZO1 o M + Z01Q Qc + Z01n « ) . . ) . .
2) If M is LOWand Q. is LOWand « iSHIGH Each aerodynamic derivative in (4) is described by a separate
then Zo, = Zy, + Zo, M + Zo, , Qc+ Zo, « TS fuzzy model. The models, however, share a common set of
v @e ® membership functions which were obtained through fuzzy clus-
: tering and fine-tuned by genetic optimization [20]. More details
3) If M isHIGH and Q. is HIGH and « is HIGH on the design of the TS fuzzy model virtual sensor are given in
then Z()S = ZOSO + Zo. M+ ZOSQC Qc + ZOSQ «. [18]

SM
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Fig. 13. Soft sensor management. Second drift failure of a normal acceleration sensor.

The above virtual sensor has been designed for different d- Dynamic Thresholds

craft configurations, namely flaps/slats 00/00 (clean configura-\yhen using virtual sensors, the residuals resulting from

tion), 12/25, 20/25 (take-off configuration), and 40/25 (landinghe cross-comparison are more sensitive to uncertainties than
configuration) degrees. The outputs of these four virtual sensg4Sthe case when only real sensors are used, especially with
are then scheduled as a function of the flaps defledtjonsee  respect to unmodeled dynamics. Dynamic thresholds have been

Fig. 11. implemented to be able to deal with these uncertainties without
With the virtual sensor, it is possible to identify the failedcompromising the fault detection sensitivity. Typically the esti-
sensor even in the duplex operation. mation error of the normal acceleration virtual sensor is small

As soon as the difference between the two remaining norntilring steady-state flight and increases during (aggressive)
acceleration sensor signals exceeds a certain threshold, themaneuvering. For this reason the support of the membership
tual sensor serves a reference to compute the membershipfdeetions widens during maneuvering. In this way, a dynamic
gree of both signals, by using a membership function centerédeshold is realized [see also Fig. 12(b)]. For the normal
aroundN z,,;+uat, S€€ Fig. 12. In Fig. 12(a), the signillz, is  acceleration, the parameters of the membership function are
diverging fromN zyir+uat, and its membership degree with  adjusted as follows:
respect to the membership functior_u B%irtuar IS therefore I = min(Whmas, oin + Cio - Nzvored)
less than one, namely, = 0.10. The signalVz; andN 2, rtuai ]
are in agreement and the corresponding membership degree is ub =min(ubmax, Winin + Cub - N2voted)
thereforey,; = 1. In Fig. 12(b), the signalVz, has further di- wherelb andub denote the lower and upper bound of the mem-
verged fromN z,,+uq1 @and the corresponding membership depership function, respectively [see Fig. 12(&)]}, andC,,;, are
gree is reduced tp, = 0. It should be stressed that in this casecaling factors. The dynamic thresholds have minimiig;(,
the virtual sensor only serves as an arbitrator and is not catis,;;,) and maximum ..., ubnax) Values, where the max-
tributing to the consolidated signal. imum values are typically reached during maneuvering. The
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Fig. 14. Soft sensor management. Second drift failure of a normal acceleration sensor including sensor noise and severe turbulence.

dynamic thresholds enable acceptable sensitivity to failure de-This scenario is repeated with sensor noise on all signals, in-
tection, without increasing the false alarm rate, by keeping tbiiding the inputs signals of the virtual sensor, and severe at-
soft threshold tight during steady-state flight only. mospheric turbulence; see Fig. 14. The soft sensor management
The dynamic thresholds are not enabled in the quadrupleystem still performs well. The reason why in Fig. 14(b) the dif-
and triplex operation, where the sensor management is bag&ence between the voted and true signal is equal to zero, even

only on cross-comparison of real (hardware) sensors. with sensor noise and severe turbulence, is because during the
) ) simulationsN z3 represents the true value.
C. Simulation Examples Using the virtual sensor, the sensor management system is

The virtual sensor enables the sensor management systemvien capable of identifying a failure of the last available sensor,
identify the failed sensor in duplex operation, see Fig. 13 favhich is illustrated in Fig. 15 for a drift failure of the third
a drift failure of a second normal acceleration sensor. Whitermal acceleration sensor [Fig. 15(a)]. The monitor count is
signals Nz3 and Nz,;wq; are in agreementNz, starts to disengaged during simplex operation. As soon as the member-
diverge fromN z,;+uei [Fig. 13(a)]. In Fig. 13(b), the differ- ship degree ofV:z3 becomes equal to zero, the monitor count
ence between the voted signal and the true normal acceleratieaches théailure declaration valuemmediately [Fig. 15(d)]
AN zy0teq IS Shown. Due to the drift, the voted signal divergeand the signal is no longer available. In Fig. 15(c), it is shown
from the true normal acceleration until the weight of théow the feedback path of the FCLs smoothly reconfigures to not
failed sensor output is again reduced to zero [Fig. 13(c)]. Thising the normal acceleration signal.
absolute differences between the sensor signals and the virtudt should be noted that even when a sensor failure is de-
sensor outputA Nz, 5) are illustrated in Fig. 13(d) togethertected during simplex operation, it could be both the last
with the dynamic lower and upper bounds of the membershépailable hardware sensor or the virtual sensor. In both cases
function connected to the virtual sensor signal. Here it is altioe best strategy is to reconfigure to not using the normal ac-
illustrated that the dynamic thresholds indeed correlate witleleration signal. The implementation of the virtual sensor is
the estimation errors during maneuvering. not limited to the soft sensor management system, and could
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Fig. 15. Soft sensor management. Third drift failure of a normal acceleration sensor.

also be implemented in the conventional sensor managemEntDiscussion

system. In the conventional sensor management system the consoli-

dated signal is no longer available after a sensor failure in the
duplex operation, even if one of the sensors is still healthy. The
The soft sensor management system, including the virtuaiplementation of a virtual sensor makes it possible to monitor
sensor, has been successfully evaluated in pilot-in-the-loop sitime last available hardware sensor. Since the virtual sensor is im-
ulations at the National Aerospace Laboratory (NLR) Researpfemented in the software, the same safety level can be accom-
Flight Simulator. plished with less hardware. The cost reduction is more than the
Fig. 16 illustrates the result of one particular pilot-in-the-loopost of the sensor itself, since it requires less supporting equip-
flight simulator test. During the simulations the data werment and maintenance. Of course the development cost will in-
recorded in batches containing mainly the insertion of th@ease because of the design of the virtual sensor.
sensor failures and the more aggressive maneuvers performefinother issue concerning the virtual sensor is its dependence
by the pilot. The task of the test pilot was to try to find problemsn a number of consolidated signals. Losing one of its inputs,
in the system and the virtual sensor, in the latter case by exitiiigs most likely that the virtual sensor is lost as well. In that
the normal acceleration. Failures in two of the normal accelem@ase the corresponding consolidated signal is lost after a sensor
tion sensors were introducedsat 95 s andt = 300 s. The test failure in duplex operation, since there is no longer an arbitrator
pilot took his job very seriously, which can be concluded froravailable to isolate the failed sensor. However, the combined
the fact that the normal acceleration exceeded the maximpnobability of losing one of the it inputs of the virtual sensor
allowed value ofNz = 2.5 g [Fig. 16(a)] and the bank angleand getting down to a sensor failure in duplex operation for its
reached a maximum value gf = 87 deg [Fig. 16(b)]. Note corresponding signal is less then™f0and it is therefore “ac-
that in normal flight the maximum bank angle will be limitedceptable” that a catastrophic failure occurs in this case.
to ¢ = 33 deg. Even in these extreme situations, the soft sensolVirtual sensors are implemented to increase the capability
management system performed as expected. of the available hardware sensors, or to be able to reduce the

D. Flight Simulator Results
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Fig. 16. Flight simulator test results.

number of hardware sensors without compromising the avaurthermore, tuning of the parameters of the membership func-
ability of the FCS. tions, or dynamic thresholds, in a more structured way is still an
open issue.

VI. CONCLUSIONS
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