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Soft Computing Applications in Aircraft Sensor
Management and Flight Control Law Reconfiguration
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Abstract—A sensor management system based on soft com-
puting techniques has been developed and implemented in the
flight control system of a small commercial aircraft. Unlike in
the conventional sensor management system, the signals from
sensors are assigned weights based on fuzzy membership functions
and the consolidated signal is computed as a weighted average.
This approach improves the quality of the consolidated signal
and reduces transients due to sensor failures. This soft voting is
extended to soft flight control law reconfiguration. In addition, a
virtual sensor has been introduced as an arbitrator which enables
the isolation of the failed sensor in the duplex operation and
the detection of a sensor failure in the simplex operation. The
effectiveness of the proposed methods is demonstrated by using
an extensive simulation model of a small commercial aircraft,
developed by airframe and control system manufacturers on the
basis of an existing business jet. Furthermore, the system has
been successfully evaluated and compared to standard techniques
by means of pilot-in-the-loop simulations on the Research Flight
Simulator of the National Aerospace Laboratory in The Nether-
lands. This application, developed within a Brite/EuRam research
project, is characterized by the effective combination of novel
soft computing techniques with standard, well proven methods of
the aircraft industry. The properties of the conventional sensor
management system have been retained, with the additional
advantage that the quality of the consolidated signal is improved,
the failure-induced transients are reduced, and the consolidated
signal remains available up to the last valid sensor.

Index Terms—Aircraft control, analytical redundancy, con-
troller reconfiguration, fuzzy logic, majority voting, sensor
management, virtual sensor.

I. INTRODUCTION

SENSOR management based on majority voting and point
consolidation of like signals is a proven technology in

modern fly-by-wire flight control systems [1]. The assumption
is that the majority of like signals represent the truth and that
any single dissimilar signal is the result of a failure. Such a
signal must be disconnected as soon as the failure is detected.
In the conventional approach, the decision whether a sensor has
failed or not is crisp. In order to reduce the sensitivity of this
decision to uncertainties like quantization and measurement
noise, a properly adjusted threshold is used. This threshold is
a compromise between two goals: the absence of false alarms
and the ability to detect all possible failures within a certain time
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frame. This inevitably leads to a transient response during which
the consolidated signal temporarily differs from the true value.

The soft sensor management system introduced in this
paper maintains the key properties of the conventional sensor
management system (majority voting) while improving its per-
formance by applying fuzzy logic (FL) techniques. Although
FL techniques have been implemented in other application
domains, such as the process industry [2], [3], their application
in flight control systems has not been extensively investigated
yet. Using fuzzy logic, the decision whether a sensor has
failed or not is no longer crisp. The sensor signals are assigned
weights based on a cross-comparison of like signals by using
fuzzy membership functions. The consolidated signal is then
computed as a weighted average. Compared to the conventional
management system, the soft management system intervenes at
an earlier stage by reducing the weight of the suspected faulty
sensor signal, while the failure declaration occurs at a later
stage. This approach improves the quality of the consolidated
signal with respect to its difference from the true value due to
sensor failures. An attractive additional feature of this approach
is the reduction of the transients due to sensor failures.

Furthermore, a virtual sensor is introduced in order to be able
to identify failed sensors in the duplex operation and to detect
a sensor failure in the simplex operation (which is not possible
with the current sensor management systems). In the literature,
many applications of analytical redundancy for fault detection
and fault isolation in flight control systems have been reported
[4]–[6], however, the use of virtual sensors in aerospace appli-
cations is novel.

The research described in this paper has been performed
within the Brite/EuRam project “Affordable Digital Fly-by-wire
Flight Control Systems for Small Commercial Aircraft”
(ADFCS) [7]. The partners in this project are from the United
Kingdom (BAE SYSTEMS), Israel (Israel Aircraft Industries,
Israel Institute of Technology), Italy (Alenia Aerospazio,
Centro Italiano Ricerche Aerospaziali), and The Nether-
lands (National Aerospace Laboratory, Delft University of
Technology). The goal of the project is to investigate the
application of fly-by-wire flight control systems (FBW FCSs)
in small commercial aircraft in order to proliferate the proven
benefits of the FBW technology, in terms of increased safety,
commonality, productability, and maintainability. One part of
the project investigates whether fuzzy and neural techniques
can contribute to the development of a cost-effective FBW
FCS. This application illustrates that the novel soft computing
techniques can effectively be combined with standard well
proven methods of the aircraft industry.
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Fig. 1. Simplified structure of the longitudinal stability and control augmentation system. Input to the nonlinear model is the commanded elevator deflection�
[deg] and outputs are pitch rateq [deg� s ], attitude� [deg], true airspeedV [knots], and normal accelerationN [g]. The blending in the feedback path is
a function of the pitch column deflection� [deg] and dynamic pressureQ [mbar].

The paper is organized as follows. In Section II, the longitu-
dinal flight control laws are briefly discussed in order to illus-
trate the implementation of the pitch rate and the normal accel-
eration feedback. The conventional sensor management system
and the flight control law reconfiguration are discussed in Sec-
tion III. Section IV introduces the sensor management system
and flight control law reconfiguration based on soft computing,
which is extended to include virtual sensors in Section V. Con-
cluding remarks and future research are discussed in Section VI.

II. L ONGITUDINAL FLIGHT CONTROL LAWS

In this section, a short description is given of that part of the
longitudinal flight control laws (FCLs) that is relevant for the
methods described in the remainder of this paper. The general
objective of the FCLs integrated in a FBW system is to improve
the flying qualities of the bare aircraft, in particular in the fields
of stability, control and flight envelope protection [8]. From this
point of view, the dynamics of the longitudinal short-period mo-
tion are of major importance.

In this paper, the Small Commercial Aircraft (SCA) model
is used as a demonstrator [9]. The SCA model is a realistic air-
craft model implemented in Matlab/Simulink™, based on an ex-
isting business jet aircraft. The SCA model is equipped with a
stability and control augmentation system, which is part of the
FCLs. A simplified structure of the longitudinal stability and
control augmentation system is illustrated in Fig. 1. For the pre-
sented results, the pitch damper path and the feedback path are
of main interest, since only the pitch rate and the normal acceler-
ation sensor failures are taken into consideration. The command
shaping path and the feedforward path are not addressed.

The pitch damper pathaugments the short-period damping
of the bare aircraft through direct feedback of the pitch rate
to the commanded elevator deflection. The “stiffness” of the
closed-loop system is augmented through thefeedback pathby
increasing the frequency of the short-period motion [10]. In

Fig. 2. Conventional triplex sensor management system (source: [1]).

order to be able to augment the stiffness, feedback of the angle-
of-attack is required (the frequency of the short-period mo-
tion is a function of the aerodynamic coefficient ). Since
the -sensor is not accurate enough to be used for control, this
signal is reconstructed by using a blending of the pitch rate
and the normal acceleration . This blending is a function of
the pitch column deflection (pilot input) and the dynamic
pressure (function of airspeed and altitude). With the pitch
column centered, the feedback signal is only influenced by the
pitch rate. The same holds for large pitch column deflections at
low dynamic pressure. The normal acceleration is entering the
feedback signal for large pitch column deflections at medium
and high dynamic pressure.

III. CONVENTIONAL SENSOR MANAGEMENT

AND FCL RECONFIGURATION

Each signal is measured independently by a number of sen-
sors. The sensor management system has two tasks, namely the
computation of a consolidated signal from these measurements
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Fig. 3. Conventional sensor management: drift failure of a pitch rate sensor. Figures e-g are zoomed in on the failure-induced transients.

(voting) and the validation of each of the sensors (monitoring).
The consolidated (or voted) signal is fed to the flight control
computer and at the same time serves as a reference for sensor
validation.

A. Conventional Voting/Monitoring Scheme

The redundancy levelfor each signal, i.e., the number of re-
dundant sensors in normal operation, is related to the failure
probability of the sensor and the consequence of losing the cor-
responding signal. For example, the consequence of losing the
pitch rate signal is a catastrophic failure. The probability of a
catastrophic failure must be less than 10per hour of flight.
If the failure probability of a pitch rate sensor is 10per hour
of flight, the third consecutive like sensor failure may result in
a catastrophic failure. A sensor failure in the duplex operation
(two sensor signals available) results in losing the signal, since
the conventional voting/monitoring scheme is not able to iden-
tify the failed sensor in this case. This implies that four pitch rate
sensors need to be implemented in order to meet the require-
ments regarding the probability of a catastrophic failure. This
is called the quadruplex system. Similarly, we have the triplex,
duplex and simplex voter for three, two and one physical sensor,
respectively.

In order to keep the presentation simple, the triplex voter will
be used to explain the conventional voting/monitoring philos-
ophy (see Fig. 2). The three sensor signals are first sorted from
the largest value to the smallest one. The mid-value signal is
taken as a reference and the two extreme-value signals are lim-
ited in their deviation from the mid-value signal. When the limits
are not invoked, the voted (consolidated) signal is given by

For two valid signals, aduplexvoter is used, and the voted signal
is a simple average.

The monitor compares each of the three sensor signals
with the consolidated signal . If the absolute difference
is smaller than a predefined threshold, themonitor countis
decreased by one, otherwise it is increased by two:

If then
If then

The updated count value is bounded betweenzeroand thefailure
declaration value. If the count value has reached the failure dec-
laration value, a failure is declared and the signal is latched (see
Fig. 2).



128 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 2, MAY 2002

Fig. 4. Conventional sensor management: cutoff failure of a pitch rate sensor. Figures e-g are zoomed in on the failure-induced transients.

The logic in the conventional sensor management system is
such that a failed sensor output continues to contribute to the
voted signal until it is latched. This results in transients and dis-
continuities in the voted signal, which is illustrated in two non-
linear, closed-loop simulation examples using the SCA Matlab/
Simulink™ model.

B. Simulation Examples

For both simulations, the initial condition is a straight and
level flight at a Mach number of and an altitude of

kft, which is the cruise flight condition for the SCA
model. The pilot input is a block-shaped input of the maximum
positive column deflection starting at s and lasting for 6
s. During this maneuver, the normal acceleration signal is partly
contributing to the feedback path. The corresponding time his-
tories of the first simulation example are illustrated in Fig. 3. At

s, a drift failure of 1 degs occurs in one of the pitch
rate sensors [Fig. 3(a)]. Fig. 3(b) shows the difference
between the voted signal and the true pitch rate. Due to the drift
failure, the voted signal diverges from the true pitch rate until the
contribution of the failed sensor output is limited and the mis-
match remains constant. When the difference between the failed

sensor ( ) and the voted signal ( ) exceeds the monitor
threshold, the monitor count rate increases from1 to 2 (de-
noted by the first vertical dash-dotted line). When the monitor
count [Fig. 3(c)] reaches the failure declaration value (denoted
by the second dash-dotted vertical line) the signal is latched and
the number of valid signals reduces to two [Fig. 3(d)]. The faulty
contribution of is omitted instantaneously, which results in an
undesirable discontinuity in the consolidated signal [Fig. 3(b)].
The resulting transients in the elevator deflection [Fig. 3(e)], the
normal acceleration [Fig. 3(f)], and the true pitch rate [Fig. 3(g)]
signals are evident (solid line) compared to the fault free case
(dash-dotted line).

The second simulation example illustrates a cutoff sensor
failure which occurs at s in one of the pitch rate
sensors [Fig. 4(a)]. Due to the abrupt nature of the sensor
failure, discontinuities in the voted signal occur both when
the failure is inserted and when the corresponding signal is
latched [Fig. 4(b)]. Again the behavior of the voted signal is
undesirable, since it is by no means representing the behavior
of the true signal. The transients in the elevator deflection
[Fig. 4(e)], the normal acceleration [Fig. 4(f)] and the pitch rate
[Fig. 4(g)] are evident (solid line), especially when compared
to the fault free case (dash–dotted line).
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Fig. 5. Conventional sensor management: a drift failure of the second normal acceleration sensor.

C. Flight Control Law Reconfiguration

The voted signal in the duplex operation is computed as the
average of the two sensor signals. If a sensor fails in the duplex
operation, the majority voting principle can no longer be used
to identify the failed sensor. As soon as the difference between
these two signals exceeds a certain threshold, both sensors are
declared invalid and the FCS reconfigures to not using this par-
ticular signal.

In Fig. 5(a), a drift failure of the second normal accelera-
tion sensor is simulated [Fig. 5(a)]. The voted signal is the av-
erage of the two valid signals. The initial condition is a straight
and level flight at a Mach number of and an altitude
of kft. This flight condition is selected to increase the
contribution of the normal acceleration signal in the feedback
path. The pilot input is a block-shaped input of maximum pos-
itive column deflection starting at s and lasting for 6 s.
When the difference between the two sensor signals exceeds the
threshold, the monitor count of both sensor signals is set to the
failure declaration value instantaneously and both input signals
are latched [Fig. 5(c)]. At this point the consolidated signal is
no longer available and the FCS reconfigures to not using this
signal [Fig. 5(d)]. This implies that only the pitch rate signal is

used in the feedback path for the entire range of the admissible
column deflection and dynamic pressure.

The normal acceleration signal is used to demonstrate the con-
ventionalmanagementsystemin thecaseofasensor failure indu-
plexoperation,sincethere isnoFCLreconfigurationavailablefor
the loss of the pitch rate signal in the SCA model. As mentioned
above, the loss of the pitch rate signal is a catastrophic failure.

The above examples have demonstrated the main shortcom-
ings of the conventional sensor management approach—the
failure-induced discontinuities in the consolidated signal and the
inability to identify sensor failures in duplex operation and/or to
detect a sensor failure in simplex operation. A Fuzzy Logic (FL)
approach can be used to improve the conventional sensor man-
agement system without changing the basic concept of majority
voting. This is described in the remainder of this paper.

IV. SENSORMANAGEMENT AND FLIGHT CONTROL LAW

RECONFIGURATIONBASED ON SOFT COMPUTING

In this section, we focus on reducing, or even eliminating,
the transients in the voted signal due to sensor failures. A new
sensor management scheme is introduced, which makes use of
fuzzy logic.
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Fig. 6. Soft voting in the triplex operation. The current value of each sensor
signal forms the center of its corresponding membership function, which is used
to determine the membership degree of this sensor signal.

A. Soft Voting/Monitoring Scheme

The soft voter is different from the conventional voting
scheme in the sense that each input signal is assigned a weight,
and the consolidated signal is the weighted average of the input
signals

(1)

where denotes the weight assigned to theth input signal
and denotes the number of valid sensors. The weightis the
normalized membership degree

(2)

where . The computation of the membership degree
is explained by using Fig. 6.
The current value of each signal forms the center of its corre-

sponding membership function. The membership degree of the
signal is the largest membership degree of the remaining valid
signals according to this membership function

(3)

In Fig. 6(a), the membership function of is illustrated. With
respect to this membership function, has a membership
degree of and has a membership degree of

. This implies that has a membership degree
of

Clearly, the majority voting concept of the conventional sensor
management system is also used in the soft sensor management
system. The signal is not in agreement with the signals
and , and therefore its weight in the voted signal is reduced.
In Fig. 6(b), the discrepancy between signaland the signals

and is further increased. The corresponding membership
degree is now reduced to .

Both the conventional and the soft voting scheme are based on
majority voting. The major difference is the way the like sensor
signals contribute to the consolidated signal. In the conventional
voting scheme, the contribution of a faulty signal is limited,
while in the soft voting scheme its weight is reduced. The im-
plementation of the soft voting scheme is illustrated in Fig. 7
for a triplex sensor system. The vector of like signals is split
(demux) and sorted (sort). The membership degrees are com-
puted according to (3), put back in the original order (desort)
and combined again in a vector (mux). The voted signal is then
computed according to (1) and (2).

In the monitor part, the count rate of theth signal is the fol-
lowing function of its corresponding membership degree:

If then ;
If then ;
If then .

The main difference from the conventional monitoring scheme
is that here the monitor count rate is not a function of the dif-
ference between theth sensor reading and the voted signal, but
a function of the difference between theth sensor reading and
the other like sensor readings. The count rate of theth sensor
signal becomes positive when the corresponding weight in the
voted signal is equal to zero ( ), therefore no transients
occur once the failure is declared on theth sensor and the cor-
responding signal is latched. This is illustrated with the help of
two closed-loop simulation examples.

B. Simulation Examples

The setting is identical to the simulation examples discussed
in Section III-B except for the sensor management system.

The time histories of the first simulation example are given in
Fig. 8. At s, a drift failure of 1 degs occurs [Fig. 8(a)].
Fig. 8(b) shows the difference between the voted signal and the
true pitch rate . Due to the drift failure the voted signal
diverges from the true pitch rate until the weight of the failed
sensor output is reduced to zero [Fig. 8(c)] and the voted signal
is again equal to the true value (not taking into account uncer-
tainties such as quantization, sensor noise, etc.). One can see
that the voted signal is smoother than in the conventional sensor
management case. By this time the monitor count rate is in-
creased from 1 ( ) to 0 ( ) and from 0 to

2 ( ). When the monitor count reaches the failure dec-
laration value [Fig. 8(d)] the signal is latched, and the number of
valid signals reduces to two (denoted by the second dash–dotted
line). As the weight of the corresponding signal is equal to zero
at the moment of the failure declaration, no transients occur;
see the solid lines of the elevator deflection [Fig. 8(e)], normal
acceleration [Fig. 8(f)], and the true pitch rate [Fig. 8(g)]. For
comparison, the time histories of the simulations of the fault
free case (dash–dotted line) and conventional voting/monitoring
case (dotted line) are also included in Fig. 8(e)–(g).

The second simulation example is illustrated in Fig. 9. At
s, a cutoff sensor failure occurs [Fig. 9(a)]. Due to the

abrupt nature of the sensor failure, the weight of the failed signal
output becomes zero immediately [Fig. 9(c)] and therefore there
are no transients in the elevator deflection [Fig. 9(e)], the normal
acceleration [Fig. 9(f)], and the pitch rate [Fig. 9(g)] signals.
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Fig. 7. Soft triplex sensor management system.

Fig. 8. Soft sensor management: drift failure of a pitch rate sensor. (e)–(g) Zoomed in on the failure-induced transients.

The closed-loop transients due to sensor failures are not of the
same order for each signal. From Fig. 1, it can be seen that the
pitch rate is fed back through a proportional gain in the pitch
damper path and through a proportional and an integral gain
in the feedback path. In the feedback path the normal accel-
eration is fed back in a similar way. However, discontinuities

in the voted normal acceleration signal are suppressed by the
low-pass filter in the normal acceleration feedback path (Fig. 1).
Closed-loop transients are therefore less evident. For this reason
the pitch rate signal is used to demonstrate this additional ben-
efit of the sensor management system based on soft computing
techniques.
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Fig. 9. Soft sensor management. Cutoff failure of a pitch rate sensor. (e)–(g) Zoomed in on the failure-induced transients.

C. Flight Control Law Reconfiguration

The soft voting logic is extended to soft flight control law re-
configuration. Also here, the voted signal is computed as the
average of the two sensor signals. Both sensor signals auto-
matically have the same membership degree, and are therefore
equally weighted in the consolidated signal. However, their mu-
tual membership degree is multiplied with the contribution of
the normal acceleration signal in the feedback path as well. The
blending between the pitch rate and the normal acceleration sig-
nals in the feedback path (see Fig. 1) is now a function of the
column deflection and the dynamic pressure multiplied
by the maximum membership degree of the normal acceleration
signals. When the difference between the two signals is such
that their mutual membership degree becomes equal to zero,
the flight control laws are already reconfigured to not using the
normal acceleration signal in the feedback path.

This is illustrated in Fig. 10, where the time histories of a sim-
ulation of a drift failure of the second normal acceleration sensor
are illustrated [Fig. 10(a)]. The voted signal is the average of the
two input signals. During the maneuver, the signal in the feed-
back path is for 90% derived from the normal acceleration signal
[Fig. 10(d)]. This is reduced to zero due to the growing discrep-
ancy between the two valid normal acceleration sensor signals.

By the time the signal is no longer available [Fig. 10(b)],
the FCLs are reconfigured to not using this signal [Fig. 10(d)].

D. Discussion

The voter has the task to provide a good signal for control
purposes based on the premise that most, if not all, of the avail-
able inputs are healthy. The monitor has the task to detect and
identify any “unhealthy” signals that may cause a problem with
the continued safe control of the aircraft.

In principle, the conventional and the soft sensor management
system are much alike. The soft sensor management system is
a weighted implementation of the conventional sensor system,
retaining all the benefits of this system.

The performance of the soft sensor management system is
always better or equal to that of the conventional sensor man-
agement system with respect to the behavior of the consolidated
signal due to sensor failure and its deviation from the true value,
as has been demonstrated by simulation examples. This ben-
efit is most evident for cutoff failures. The worst case sensor
failure for the soft sensor management system is a step-like
sensor failure that does not result in a membership degree of
the corresponding signal that is equal to zero. Only in this case
a discontinuity in the consolidated signal occurs.
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Fig. 10. Soft sensor management: a drift failure of the second normal acceleration sensor.

The conventional voting/monitoring system has two separate
crisp thresholds, one to limit the contribution of a suspected
faulty sensor signal and one for the failure declaration. The se-
lected thresholds are a compromise between two goals: the ab-
sence of false alarms and the ability to detect all possible failures
within a short time frame. The latter is important to minimize
the effect of a sensor failure. This inevitably leads to a transient
response during which the consolidated signal temporarily dif-
fers from the true value. Although it is possible to reduce tran-
sients by introducing filters, the soft sensor management is a
more direct solution to this problem. In the soft sensor man-
agement system, the compromise between false alarms and the
ability to detect sensor failures within a certain time frame is
avoided by introducing a fuzzy threshold. Through the fuzzy
threshold objectives of no false alarms and the minimization
of the effect of a sensor failure are well separated. When the
failure declaration procedure is activated, the weight of the cor-
responding sensor signal is equal to zero and the negative im-
pact of the suspected faulty sensor is already taken care of. The
soft sensor management system is representative for the real life
situation of decision making process in general, and fault detec-
tion and isolation in particular. As transients are reduced or even
removed, the tuning of the membership function parameters is

only driven by the sensor characteristics. Expensive sensors are
more accurate and may need narrower membership functions.
The additional computation due to the soft sensor management
system is considered to be negligible. The thresholds used in the
simulation examples were selected by the authors such that the
characteristics of both voting/monitoring systems become clear.
The crisp threshold in the conventional voting system is in be-
tween the upper and lower bound of the fuzzy threshold of the
soft voting/monitoring system.

Information on the membership degree can be used for main-
tenance purposes. If a sensor has regularly a membership degree
lower than one, this is an indication that something is wrong and
that the corresponding sensor needs to be replaced.

V. VIRTUAL SENSORS ANDDYNAMIC THRESHOLDS

The conventional sensor management system works well
down to two signals, where any discrepancy can no longer be
related to a “majority”. In this instance, the system will either
reject both signals and reconfigure to not using this information,
or, for essential data, a simple average will be used as the best
compromise. However, there is additional information available
that can be used to identify the failed sensor in the duplex
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operation and to detect a failure in the simplex operation. This
additional information can be employed to estimate the signal
of interest, by using the so-called virtual sensor. Monitoring of
the hardware sensor(s) in the duplex and simplex operation is
then performed by comparison with the virtual sensor output.

A. Analytical Redundancy

In the literature, many applications of analytical redundancy
for fault detection and isolation in flight control systems
have been reported. Most frequently applied are linear ob-
server-based techniques [4], [11], parity-space methods [5],
[12]–[14], and parameter-estimation schemes [6], [15]. The use
of nonlinear virtual sensors in aerospace applications has not
been extensively investigated yet, although this technique has
been successfully applied in other domains like process control
and engine control [16], [17].

In [18] we proposed a virtual sensor of the Takagi-Sugeno
(TS) fuzzy model type [19] that uses dissimilar consolidated
sensor readings as inputs to estimate the normal acceleration.
The structure of the virtual sensor, based on the physical model
of the aircraft, is as follows:

where denotes the forward velocity, the downward velocity,
the pitch rate, the pitch attitude, the bank angle and the

gravitational acceleration. The time derivative of the downward
velocity can locally be described by the following linear expres-
sion

where denotes the elevator deflection andthe stabilizer
deflection. The parameters through are the so-called
aerodynamic derivatives. However, due to the nonlinearity of
the aircraft, the aerodynamic derivatives are not constant, but
depend on the Mach number , the dynamic pressure and
the angle-of-attack . Taking this dependence into account, the
structure of the estimator becomes

(4)

Note the additional offset , introduced to com-
pensate for steady-state values of the input signals. The term

was added after the first flight simulator eval-
uation, because the virtual sensor was unable to estimate the
downward acceleration correctly during high bank maneuvers.

The nonlinear functions , representing the aero-
dynamic derivatives, are approximated by TS fuzzy rules of the
following form:

1) If is LOWand is LOWand is LOW
then

2) If is LOWand is LOWand is HIGH
then
...

3) If is HIGH and is HIGH and is HIGH
then .

Fig. 11. Architecture of the virtual sensor.

Fig. 12. Soft voting in the duplex operation. The virtual sensor output forms
the center of a membership function, which is used to determine the membership
degree of the hardware sensor outputs.

For each antecedent variable, two membership functions are de-
fined. The rule-base therefore consists of 2 rules. The de-
gree of fulfillment of each of the rules is computed by taking the
product of the membership degrees of each of the three premise
terms

...

The output of the TS fuzzy model is the weighted output of the
local linear models

(5)

Each aerodynamic derivative in (4) is described by a separate
TS fuzzy model. The models, however, share a common set of
membership functions which were obtained through fuzzy clus-
tering and fine-tuned by genetic optimization [20]. More details
on the design of the TS fuzzy model virtual sensor are given in
[18].
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Fig. 13. Soft sensor management. Second drift failure of a normal acceleration sensor.

The above virtual sensor has been designed for different air-
craft configurations, namely flaps/slats 00/00 (clean configura-
tion), 12/25, 20/25 (take-off configuration), and 40/25 (landing
configuration) degrees. The outputs of these four virtual sensors
are then scheduled as a function of the flaps deflection, see
Fig. 11.

With the virtual sensor, it is possible to identify the failed
sensor even in the duplex operation.

As soon as the difference between the two remaining normal
acceleration sensor signals exceeds a certain threshold, the vir-
tual sensor serves a reference to compute the membership de-
gree of both signals, by using a membership function centered
around , see Fig. 12. In Fig. 12(a), the signal is
diverging from , and its membership degree with
respect to the membership function of is therefore
less than one, namely . The signal and
are in agreement and the corresponding membership degree is
therefore . In Fig. 12(b), the signal has further di-
verged from and the corresponding membership de-
gree is reduced to . It should be stressed that in this case
the virtual sensor only serves as an arbitrator and is not con-
tributing to the consolidated signal.

B. Dynamic Thresholds

When using virtual sensors, the residuals resulting from
the cross-comparison are more sensitive to uncertainties than
in the case when only real sensors are used, especially with
respect to unmodeled dynamics. Dynamic thresholds have been
implemented to be able to deal with these uncertainties without
compromising the fault detection sensitivity. Typically the esti-
mation error of the normal acceleration virtual sensor is small
during steady-state flight and increases during (aggressive)
maneuvering. For this reason the support of the membership
functions widens during maneuvering. In this way, a dynamic
threshold is realized [see also Fig. 12(b)]. For the normal
acceleration, the parameters of the membership function are
adjusted as follows:

where and denote the lower and upper bound of the mem-
bership function, respectively [see Fig. 12(a)], and are
scaling factors. The dynamic thresholds have minimum ( ,

) and maximum ( , ) values, where the max-
imum values are typically reached during maneuvering. The



136 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 32, NO. 2, MAY 2002

Fig. 14. Soft sensor management. Second drift failure of a normal acceleration sensor including sensor noise and severe turbulence.

dynamic thresholds enable acceptable sensitivity to failure de-
tection, without increasing the false alarm rate, by keeping the
soft threshold tight during steady-state flight only.

The dynamic thresholds are not enabled in the quadruplex
and triplex operation, where the sensor management is based
only on cross-comparison of real (hardware) sensors.

C. Simulation Examples

The virtual sensor enables the sensor management system to
identify the failed sensor in duplex operation, see Fig. 13 for
a drift failure of a second normal acceleration sensor. While
signals and are in agreement, starts to
diverge from [Fig. 13(a)]. In Fig. 13(b), the differ-
ence between the voted signal and the true normal acceleration

is shown. Due to the drift, the voted signal diverges
from the true normal acceleration until the weight of the
failed sensor output is again reduced to zero [Fig. 13(c)]. The
absolute differences between the sensor signals and the virtual
sensor output ( ) are illustrated in Fig. 13(d) together
with the dynamic lower and upper bounds of the membership
function connected to the virtual sensor signal. Here it is also
illustrated that the dynamic thresholds indeed correlate with
the estimation errors during maneuvering.

This scenario is repeated with sensor noise on all signals, in-
cluding the inputs signals of the virtual sensor, and severe at-
mospheric turbulence; see Fig. 14. The soft sensor management
system still performs well. The reason why in Fig. 14(b) the dif-
ference between the voted and true signal is equal to zero, even
with sensor noise and severe turbulence, is because during the
simulations represents the true value.

Using the virtual sensor, the sensor management system is
even capable of identifying a failure of the last available sensor,
which is illustrated in Fig. 15 for a drift failure of the third
normal acceleration sensor [Fig. 15(a)]. The monitor count is
disengaged during simplex operation. As soon as the member-
ship degree of becomes equal to zero, the monitor count
reaches thefailure declaration valueimmediately [Fig. 15(d)]
and the signal is no longer available. In Fig. 15(c), it is shown
how the feedback path of the FCLs smoothly reconfigures to not
using the normal acceleration signal.

It should be noted that even when a sensor failure is de-
tected during simplex operation, it could be both the last
available hardware sensor or the virtual sensor. In both cases
the best strategy is to reconfigure to not using the normal ac-
celeration signal. The implementation of the virtual sensor is
not limited to the soft sensor management system, and could
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Fig. 15. Soft sensor management. Third drift failure of a normal acceleration sensor.

also be implemented in the conventional sensor management
system.

D. Flight Simulator Results

The soft sensor management system, including the virtual
sensor, has been successfully evaluated in pilot-in-the-loop sim-
ulations at the National Aerospace Laboratory (NLR) Research
Flight Simulator.

Fig. 16 illustrates the result of one particular pilot-in-the-loop
flight simulator test. During the simulations the data were
recorded in batches containing mainly the insertion of the
sensor failures and the more aggressive maneuvers performed
by the pilot. The task of the test pilot was to try to find problems
in the system and the virtual sensor, in the latter case by exiting
the normal acceleration. Failures in two of the normal accelera-
tion sensors were introduced at s and s. The test
pilot took his job very seriously, which can be concluded from
the fact that the normal acceleration exceeded the maximum
allowed value of g [Fig. 16(a)] and the bank angle
reached a maximum value of deg [Fig. 16(b)]. Note
that in normal flight the maximum bank angle will be limited
to deg. Even in these extreme situations, the soft sensor
management system performed as expected.

E. Discussion

In the conventional sensor management system the consoli-
dated signal is no longer available after a sensor failure in the
duplex operation, even if one of the sensors is still healthy. The
implementation of a virtual sensor makes it possible to monitor
the last available hardware sensor. Since the virtual sensor is im-
plemented in the software, the same safety level can be accom-
plished with less hardware. The cost reduction is more than the
cost of the sensor itself, since it requires less supporting equip-
ment and maintenance. Of course the development cost will in-
crease because of the design of the virtual sensor.

Another issue concerning the virtual sensor is its dependence
on a number of consolidated signals. Losing one of its inputs,
it is most likely that the virtual sensor is lost as well. In that
case the corresponding consolidated signal is lost after a sensor
failure in duplex operation, since there is no longer an arbitrator
available to isolate the failed sensor. However, the combined
probability of losing one of the it inputs of the virtual sensor
and getting down to a sensor failure in duplex operation for its
corresponding signal is less then 10and it is therefore “ac-
ceptable” that a catastrophic failure occurs in this case.

Virtual sensors are implemented to increase the capability
of the available hardware sensors, or to be able to reduce the
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Fig. 16. Flight simulator test results.

number of hardware sensors without compromising the avail-
ability of the FCS.

VI. CONCLUSIONS

Fuzzy logic techniques have been applied in the sensor man-
agement system, FCL reconfiguration, and the virtual sensor
for normal acceleration. The improvement with respect to the
conventional sensor management system is in the quality of the
consolidated signal and results in a reduction of transients due
to sensor failures. Furthermore, the virtual sensor increases the
capability of the available hardware sensors, since it adds the
ability to identify the failed sensor in the duplex operation and
to detect a sensor failure in the simplex operation. This has
been demonstrated by means of closed-loop simulation exam-
ples using a realistic aircraft model.

Final evaluation of the soft sensor management system and
the TS fuzzy model based virtual sensor has taken place with
pilot-in-the-loop simulations at the Research Flight Simulator
of the National Aerospace Laboratory (NLR).

Future research will focus on the use of virtual sensors to
identify multiple (equivalent) sensor failures and extension of
the soft sensor management approach to actuator management.

Furthermore, tuning of the parameters of the membership func-
tions, or dynamic thresholds, in a more structured way is still an
open issue.
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