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Soft Computing for Greenhouse Climate Control
R. Caponetto, L. Fortuna, G. Nunnari, L. Occhipinti, and M. G. Xibilia

Abstract—The methodology proposed in the paper applies ar-
tificial intelligence (AI) techniques to the modeling and control of
some climate variables within a greenhouse. The nonlinear phys-
ical phenomena governing the dynamics of temperature and hu-
midity in such systems are, in fact, difficult to model and control
using traditional techniques. The paper proposes a framework for
the development of soft computing-based controllers in modern
greenhouses.

Index Terms—Fuzzy logic, genetic algorithms (GAs), greenhouse
temperature control, proportional integrative derivative (PID) dis-
tributed control and system modeling.

I. INTRODUCTION

T HE popularity of computers for the management of green-
houses is still increasing even in those countries where the

environmental conditionsarenotprohibitive for thedevelopment
of plants. In The Netherlands, computers are used for different
applications like theclimate, the boiler, and the irrigationcontrol,
but the best known of them is the climate control (temperature,
humidity, CO , artificial lighting). The main improvements in
the computer-based climate control are found in data logging the
determination of climate set-points, monitoring and alarm func-
tions. A large amount of literature is available about the applica-
tion of classical dynamic systems and control theory in the areas
of greenhouse modeling and control (see for example [1]–[3]).

The approach proposed here is oriented in the direction
of artificial intelligence (AI) techniques, intelligent control
methodologies and soft computing for the analysis and synthesis
of intelligent climate controllers. Soft computing [4] is an as-
sociation of computing methodologies centered on fuzzy logic,
neurocomputing, genetic algorithms (GAs), and probabilistic
computing.

Soft computing methodologies are complementary and syn-
ergistic rather than competitive. The guiding principle of soft
computing is to exploit the tolerance for imprecision, uncer-
tainty and partial truth, and the approximation to achieve the
tractability, the robustness, the low solution cost, and the better
rapport with reality. The main advantages obtainable using, for
example, fuzzy logic and control, neural networks, and expert
systems can be summarized as follows.

• The modeling of some complex behavior can easily be
achieved by an input–output (I/O) data learning using
artificial neural networks (ANNs). This will avoid the
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analysis of physical phenomena involving complex dy-
namics [8].

• The use of fuzzy logic controllers (FLCs) for the regula-
tion of climate variables like temperature and humidity in
the artificially conditioned greenhouses represents a pow-
erful way to minimize the energy cost for heating. These
are important greenhouse climate control aspects.

• The expert systems, in particularly the expert systems in-
cluding fuzzy rule-based systems, are essential for the
implementation (and optimization) of the human experts
abilities in the field of computerized greenhouses in order
to avoid significant damage to plants.

• Finally, human experts have the intuitive capability to
evaluate the potential economic return of the plants at
every stage of their development, while experts in biology
can establish the most appropriate actions that have to be
carried out in order to optimize the growth-development
rate of the plants [9].

Even if the fuzzy logic control is hard to use it can be consid-
ered as an alternative to the traditional nonlinear control system
because it has been successfully applied in a lot of applications
[10], [11].

The subject of this work is to give some results in order to
demonstrate the validity of the use of the AI techniques de-
scribed above in the field of greenhouse climate control. A lot of
simulations, referring to different control techniques, have been
done and reported in the paper as it follows: Section III—stan-
dard bang-bang control technique; Section IV—fuzzy controller
designed on the basis of expert description; Section V—fuzzy
controller optimized via GAs; and, finally, in Section VI—dis-
tributed proportional integrative derivative (PID) controller.

II. M ODELING THE GREENHOUSE

The first part of the work is based on the development of
a computer simulator for the greenhouse based on physical
considerations. The simulator has been developed using the
SIMULINK tool within the MATLAB environment on the
basis of the work described in [12], [13] (see Fig. 1).

For the sake of simplicity, all the physical parameters have
been included in a data file referring to a fixed structure.

The environmental conditions have been simulated using a
meteorstation considering average values for the external air
temperature, wind speed, and solar radiation.

Modeling a greenhouse from a physical point of view requires
a large computer effort due to the intrinsic complexity of the
system and of the phenomena involved.

A greenhouse is a distributed parameter system whose effec-
tiveness strongly depends on several nonlinear phenomena. The
heat transferred inside the greenhouse depends, in fact, on the
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Fig. 1. The Simulink model of the greenhouse control system.

Fig. 2. Finite elements approximation of the greenhouse model.

radiative and convectional effects. Moreover, the presence of
many uncontrollable signals which depend on the weather, the
solar radiation, the crop transpiration, and so on, make valida-
tion of the model even difficult.

In order to take into account all these characteristics a mul-
tilayers model of the greenhouse has been considered: it repre-
sents a simple finite-element greenhouse approximation model.
In Fig. 2 it is depicted the structure of the model that divides the
internal volume of the greenhouse in eight sections whose thick-
ness is proportional to the distance from the wall of the structure.
Each layer represents a modeled subsystem which consider the
interaction with the roofing, the ground external environment
and/or the adjacent layers.

The motivations for the distribution of the internal adjacent
layers, which constitute the elements in our finite-element
method (FEM) analysis are, first of all, due to the natural dis-
tribution of thermal and humidity gradients in the north–south
direction (front–rear side, which is also the short side of the
greenhouse in usual position). It is in this direction, in fact,
that the internal climate variables are quite varying from the
side walls to the center area. The need to maintain uniform
the distribution of the temperature and of the humidity, in the
north–south direction is fundamental for the optimal growing of
the plants. Therefore, eight internal layers have been obtained,
so that the modeling of climate variables for each layer allow us
to set up the control dynamics in order to maintain an internal
uniform distribution of the climate variables.

According to that representation the heat balance equation
system, referring to theth layer, can be written as follows:

(1)

where
energy stored in the internal air volume as latency and
sensitive heat;
input heat quantity (heating system);
convective heat exchange with the lateral wall;
transmission heat exchange with frontal walls (only for
layer numbers one and eight);
fraction of heat exchanged with the external air as la-
tent and sensitive heat;
conductive heat exchange with adjacent layer;
convective heat exchange with soil;
fraction of natural heat (solar radiation)

where each term is given by a set of dynamic equation systems.
More detailed equation systems are reported in appendix.

Concerning with the heat quantity stored in theth layer
it can be obtained from the following equation:

(2)

with

where
volume of the th layer (m );
air density (Kg/m);
air specific heat (J/Kg K);
heat latent energy (J/Kg);
specific humidity;
internal temperature (C).

Using this model, a comparative analysis has been carried
out for traditionalbang-bang, fuzzy logic, anddistributed PID
controllers.
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Fig. 3. Variables trend of traditional controller with a threshold of�5 C
temperature bandwidth. Internal temperature (UP Tin) and external temperature
(Tout); supplied heat (DOWN Qin) and control cost (cost).

III. T RADITIONAL CLIMATE CONTROL

The second part of the work deals with the development of
a suitable methodology for the temperature and the humidity
control.

The temperature is controlled by regulating the water temper-
ature within an appropriate set of pipes uniformly distributed in
the greenhouse, while the humidity is controlled indirectly by
the ventilation rate regulation (which affects both temperature
and humidity).

Using the physical model shown in Fig. 1 an initial exper-
iment has been carried out using a traditional control system
based on abang-bangtechnique.

This control system is based on a heater actuator, which is
turned on and off by a thermostat whenever the temperature
error exceeds the fixed regulation band.

The humidity depends on the internal air temperature and on
the ventilation rate. This last variable is simply regulated by
opening the windows of the greenhouse according to the mea-
sured wind speed (this can avoids also some dangerous situa-
tions due to a high wind speed in the external environment).

Figs. 3 and 4 show the obtained results. As it can be seen,
the precision level depends on the thermostat thresholds, which
affects the energy spent for the control.

It could be noted that the error bandwidth decreasing has
an indirect effect on the energy consumption. So, intuitively, a
bang-bang control technique is more expensive than a suitable
soft control technique.

This is the main reason of FLC—based system, which is the
subject of the next section.

IV. FUZZY LOGIC CLIMATE CONTROL

The second approach implements a nonlinear MISO con-
troller for the regulation of the temperature within the green-
house, extending the concept of the PID fuzzy controller in the
two-dimensional case [14].

As it is known from fuzzy logic principles, an FLC acts as
a nonlinear system implementing human-based reasoning for
computation of the control values.

Fig. 4. Variables trend of traditional control with a threshold of�1 C
temperature bandwidth. UP Tin and Tout; DOWN Qin and cost.

TABLE I
RULES SET OBTAINED BY IMPLEMENTING THE HUMAN EXPERTISE

More precisely, an FLC, which is defined by a set of linguistic
rules and fuzzy sets, is able to compute appropriate values for
the heater actuator by taking into account information data
coming from the actual system.

In the case considered here, we are taking into account the
temperature error and the change in error. The set of fuzzy rules
have been obtained by a human expert by reducing and adjusting
the start-up configuration to a suitable number of fuzzy sets for
each input variable.

The adopted fuzzy rules are in the Mamdani [5] form, with
singleton output fuzzy set. The genericrule assumes the fol-
lowing form:

if is and is and is

then is (3)

where
input variables;
input fuzzy sets;
consequent singletons.

The FLC obtained has two input variables and one output
variable characterized by five fuzzy sets in the universe of
discourse of the error variable and three fuzzy sets for the
change-in-error input variable. As dictated by experience, the
fuzzy rule base is composed of seven rules, as shown in Table I.



756 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 6, DECEMBER 2000

Fig. 5. Error membership functions drawn by expert.

Fig. 6. Change in error membership functions drawn by expert.

Fig. 7. Crisp consequences values fixed by expert.

The set of chosen membership functions and appropriately
modified following a trial and error strategy are shown in
Figs. 5–7, while the obtained internal temperature (average
values) and the supplied control energy to the greenhouse are
described in Fig. 8, showing the good performance obtainable
through quite simple tuning operations. Simulation results have
been achieved using the FS2 SW development tool [15], with
the MATLAB exporter of the FLC.

V. FUZZY LOGIC CONTROLLER OPTIMIZATION THROUGH

GENETIC ALGORITHMS

In order to increase the degree of automation of the fuzzy con-
trol system, a “near-optimal” controller synthesis strategy has
been developed using GAs. This will allow comparative evalu-
ation of the human-based approach described above.

GAs are general-purpose global optimization techniques
based on randomized search and incorporating some aspects
of iterative algorithms [6], [7]. These algorithms have been
inspired by Darwin’s evolution theory and they study the
growth of population in a particular environment. The fittest
individual only will be able to reproduce handing down his
chromosomes. The descendants of the original population

Fig. 8. Variable trend of fuzzy logic control obtained by expert description.
UP Tin and Tout; DOWN Qin and cost.

will inherit the qualities that better fit the environment. GAs
implement optimization strategies based on the simulation of
these natural laws in order to obtain the fittest individual in
the evolutionistic sense. Adopting this analogy, the optimal
solution corresponds to the fittest individual.

GAs search for the best value of the function to be optimized
starting from a “population” of points belonging to the function
domain (not from a single one). This reduces the probability
of finding local minima. Moreover, GAs do not require the first
derivative knowledge of the objective function or of other auxil-
iary information. Finally, GAs use probabilistic transition rules
during iteration. Adopting a natural analogy, the variables in-
volved in the optimization, are codified in a particular structure
similar to a chromosomal one. For example, a parameter can
be translated into a string ofelements (-bit digits) which will
be manipulated by appropriate operators during the evolution of
the algorithm. The basic string operators that will be applied are
as follows.

• Reproduction: consists of duplicating a string.
• Crossover: given two different strings, the operator con-

sists of exchanging substrings defined by some randomly
chosen markers.

• Mutation: a variation of a randomly chosen bit belonging
to a selected string.

The reproduction operator is used to improve the number of
fittest individuals in the population, the crossover operator to re-
combine genetic information between different parents, and the
mutation operator to introduce new information into the knowl-
edge base.

Each string is characterized by a real value named “fitness,”
strictly connected to the function that has to be optimized and
used to select the more promising elements of the population.
The strings applied by the operators are chosen according to
their fitness. The more the fitness function is high, the more
that point belonging to the considered domain will be close to
the optimal minimum/maximum. Therefore, the fitness value is
fundamental to single out the more promising individuals of the
population. From an evolutionistic point of view, we refer to
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those people who are properly fit and who, reproducing, have
more opportunities to hand down their genetic patrimony.

The selection procedure can be implemented by adopting dif-
ferent approaches. The most common is the roulette wheel algo-
rithm [6]. This procedure allows to assign a selection probability
linear proportional to the fitness rank of each individual in the
population.

A basic step-by-step GA is as follows.

1) Choose at random a fixed number of elements repre-
senting the initial population.

2) Evaluate their fitness.
3) Choose the elements of the population according to

their actual probabilities.
4) With the respective probabilities, apply the operators

onto the chosen elements in order to obtain new ones
called offspring.

5) Evaluate the fitness of the string obtained.
6) Create a new population using offspring.
7) Go to step 3) until a stop criterion is verified.

In this paper, GAs have been used to choose the most appro-
priate parameter values characterizing the fuzzy membership
functions and crisp consequence values. More precisely, two
fuzzy controllers have been taken into account; the first one with
three membership functions for both error and change in error
variables (in the following, named CASE I) and the second one
with five membership functions on error and three on change in
error labeled CASE II.

During GAs optimization, Gaussian membership functions
instead of triangular have been adopted.

Each membership function, characterized by two parameters
(center and variance of the Gaussian function) is tuned with a
discretization step of 8 bit. The same number of bits has been
adopted for the crisp consequence values as well. This means
that each chromosome has a fixed length of 248 bit. By fixing
the population size to 80 elements, the optimization is carried
out up to 30 generations. Many simulations with different
number of generations have been done but, due to the fact that
the SIMULINK greenhouse simulation time is very high, it
has been noted that keeping this number close to 30 (20 min
for one optimization on a Pentium 400 MHz), a good tradeoff
between time and accuracy can be obtained.

We have started reducing membership function numbers
with respect to the case reported in the previous section, hy-
pothesizing that the reduced number of memberships could be
balanced by the goodness of Gaussian shape versus triangular
(CASE I). In fact, we expected to achieve good results due to
the smothness of the bell-shaped membership function that
could also saturate the universe of the discourse if the center of
the membership function is on the extreme of the universe.

Figs. 9–11 show the near optimal fuzzy logic membership
functions for the error and for the change-in-error variables and
the obtained results in terms of temperature control and of en-
ergy spent for the control.

CASE I results do not confirm our hypothesis. In fact, while
the error in temperature is acceptable, the cost of the control is
not satisfying.

Fig. 9. Error membership functions obtained by using GAs; CASE I.

Fig. 10. Change in error membership functions obtained by using GAs;
CASE I.

Fig. 11. Variable trend of fuzzy logic control obtained by using GAs; CASE
I. UP Tin and Tout ; DOWN Qin and cost.

So it has been decided to start again GAs optimization as-
signing five membership functions on error and three on change
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Fig. 12. Error membership functions obtained by using GAs; CASE II.

Fig. 13. Change in error membership functions obtained by using GAs;
CASE II.

Fig. 14. Control surface; CASE II.

in error, CASE II. Regarding GAs parameter again 8 b have
been used for each variable-phenotype representation while the
number of generation has increased up to 50.

The results obtained are given in Figs. 12–14 concerning the
near optimal fuzzy logic membership functions for the error and
for the change-in-error variables and the nonlinear control map
obtained, while Fig. 15 shows the results in terms of temperature
control and of energy spent for the control.

As it is evident from these figures, there are only less im-
provements compared to the “human-based” fuzzy logic con-
troller, justifying the robustness of fuzzy logic in directly trans-
ferring human expertise into automatic control laws.

VI. PID DISTRIBUTED CONTROL

Another approach usually adopted for temperature and hu-
midity control in greenhouses is based on a PID controller. This
type of control can be applied in a distributed way or not. In the
case of the distributed controller the gain of the PID have been
optimized by using GAs. The parameters adopted for the opti-
mization are reported in Table II.

Fig. 15. Variable trend of fuzzy logic control obtained by using GAs; CASE II.
UP Tin and Tout; DOWN Qin and cost.

TABLE II
RULES SET OBTAINED BY IMPLEMENTING THE HUMAN EXPERTISE

As it is showed in Table II, the number of generations has in-
creased if compared to GAs optimization described in the pre-
vious section. In this case, in fact, fitness function computational
time is reduced so we have decided to perform more generations
in the same time.

Further simulations and comparison have been carried out.
The genetic optimized distributed PID control (Fig. 16) is com-
pared with a common bang-bang controller (Fig. 17) and with a
nondistributed PID (Fig. 18). In Table III are reported the root
mean square (rms) error and the required energy in four case
with different values for the external temperature and plants
eighth.

VII. CONCLUSION

The work represents an approach to apply an AI technique
in a greenhouse climate control. Due to the physical dynamics
involved in a greenhouse the synthesis of a climate controller be-
comes a complicated task using traditional control techniques.
Fuzzy logic and distributed PID control represent useful tools
for solving this problem.
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Fig. 16. Internal temperature with distributed PID control versus time (hours).

Fig. 17. Internal temperature with bang-bang control versus time (hours).

Fig. 18. Internal temperature with not distributed PID control versus time
(hours).

GAs have been applied as global optimization procedure to
improve the performance of both applied controllers.

FLC parameters setting, in particular, membership functions
shape and position, has been performed applying GAs to smartly
face the nonlinear plant control problem. Even if the procedure
is time expensive, it is performed off line and, at the end, it
provides a fuzzy controller hardware downloadable. Further im-
provements can surely be obtained by adjusting the fitness func-
tion appropriately including both the rms error and the global
control energy with different weights.

Work is still in progress in order to implement a biological
model of plant growth depending on environmental parameters
so that it will be possible to establish automatically the best
control policy and to compute the optimal values for the set
points.

TABLE III
RMS AND ENERGY CONSUMPTION FORDISTRIBUTED OPTIMAL PID

CONTROLLER, BANG-BANG CONTROLLER AND NON DISTRIBUTED PID
CONTROLLER

APPENDIX

In the following, the equations used to define the greenhouse
model will be introduced [12].

The convective heat exchange with the lateral wall is
modeled with the following equation:

(4)

where
temperature of the wall in contact with the layer;

(W/m C) is the convective heat transfer coefficient;

(m ) is the surface of the wall through which convenc-
tion heat takes place.

The transmission heat exchange with frontal walls is
given by

(5)

where is the total heat transfer coefficient (W/m C), is
the surface of the external walls and and are respectively
the external and internal temperature. This equation is used only
for layer numbers one and eight.

The fraction of heat exchanged with the external air as latency
and sensitive heat can be obtained by using the following
relation:

(6)

This term takes into account the energy loose for forced or nat-
ural ventilation. The term (m /s) represents the air flow from
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the internal to the external part of the green house.is the con-
ductiveheatexchangewith adjacent layer and isgiven by

(7)

where
( ) is the thickness of the layer;
(W/m C) is the thermal conductivity of the air;
( ) is the surface contact between layers.

Also, in this case layers one and eight must be taken into ac-
count.

The convective heat exchange with soil is given by the simple
formula

(8)

where (W/m C) is the convective heat transfer coefficient
and ( ) is area of the soil in contact with the layer.

The last term is the fraction of natural heat or solar radi-
ation. This term can be modeled with

(9)

where
trasmittivity coefficient;
area absorptivity coefficient;

and respectively, south and east layer;
base surface of the greenhouse;

and respectively, fraction of the solar radiation in
the north–south and east–west direction;
radiation perpendicular to the soil.
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