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ABSTRACT

The goal of this paper is to show the potenl_l of fuzzy sets and

neural networks, often referred to as soft computing, for aiding in all

aspects of manufacturing of advanced materials like ceram_s.

In design and manufactm'ing of advanced materials it is desirable

to find which of the manyprocessing vsriables contribute most to the

desired proper6es of the material. There is also interest in real time

qualitycontrolof parameters that govern matex_alpropertiesduring

_sing stages.This paper brieflyintroducesthe concepts of

fuzzy sets and neural networks and shows how they can be used in

the design and manufacnn_ng processes. These two computational

methods are alternatives to other methods such as the Taguchi

method. The two methods are demoustrated by using data collected

at NASA Lewis Research Center. Future research directions are also

discussed.

INTRODUCTION

In thispaper our intentisto show thepotentialof softcomputing

methods, namely fuzzy setsand neuralnetwocks,in design and

fabricationofceramics.Softcomputing inour framework isutilized

toidentifytrendsindicatingwhich inputvariablecontributesmost to

the increase of a desked output parameter, say strength. Such

identification can potentially speed up the process of designing a
new material. Human designers can easily notice such trends for a

few variables but it becomes very difficult to do so for alarge number
of variables.

Initial/y, we shall briefly introduce fuzzy sets and neural networks.

Then, we shal/illustrate the power of soft computing for fabrication

of new ma_ais by showing some of the resets obr_ned in our

previous work [I, 2] in which we utilizedthe data originally

collectedby Sandersand Baaklini[3].Resultson thedatafrom 273

NASA 6Y silicon nitride [I, 2, 3] modulus of ruptm'e bars tested at

room temperature wi//be given.

Three input variables, namely milHng _ of the composition

powder, the sintering time of the modulus of rupture test bars, and the

nitrogen pressure employed during sintering, are considered. The

relationship between the above listed input variables and the flexural

strength and density as output variables, found by soft computing
methods, will be shown and commented on.

BACKGROUND

The reason of choosing silicon nitride is that it is an important

material for heat engine applications due to its high operating

temperature, reduced weight, resistance to oxidation, thermal shock

resistanceand good high-temperaturestrength[4]. Estimates of

potential efficiency improvements for automotive engines with

s_ucmral ceramic components range from 30 to 50 percent over

corrent engine technology. Coramics consist ofnon-strategic mate-

rials that are relatively inexpensive. Their scatter in strength and low

toughness are generally aUributed to discrete defects such as voids,
inclusions,and cracks introduced during processing [3].Current

cost-effective fabrication procedures also frequently produce ce-

ramicscon_/ningbu]kdeusityvariations andmic_o-su'ucturalanome-

tiesthatcan adverselyaffectperformance [4].

Scatter in mechanical properties of ceramics is a great drawback

from a design/reliability stand point. This scatter is a_'ibuted to

defects and inhomogeneities occun-ing during processing of silicon

nitride powder compositions and during part fabrication. From the
research work on silicon nitride composition at the National Aero-

nantics and Space A_tration Lewis Research Center it was

evident that density gradients were strongly dependent upon sinter-

ing conditions[5].The resultsof an investigationof one silicon

nitridecomposition involving sinteringtrialsof 21 batches of



material are described in [3], and this particular data is utilized here

to show that soft computing is a useful tool which can be either used
on its own or in a hybrid system to provide much needed information

to advanced materials designers.

SOFT COMPUTING METHODS

Basics of Fuzzy_ Sets

Fuzzy sets were developed by Zadeh as means for dealing with

vague information, in everyday language represented by linguistic

variables like high, low, more or less, etc. [6]. Fuzzy set theory

provides a natural approach to problems in which o_jects change
their membership in classes gradually. Fuzzy sets allow us to deal

with phenomena that are vague, imprecise, too complex or too ill

defined to be analyzed by conventional mathematical tools [7].

Definitions essential forsubsequent explanation of the used methods
follow.

Let R be the set of real numbers and U be the conventional (crisp)

set. Let u be a generic element of U. A fuzzy subset A of U is defined

by a membership function _tA: U --_ [0,1 ]. The fuzzy subset A of U
can be expressed as:

A = [I_A(u)lu;u¢U,I_A(u)¢[0,1]} (1)

where P'A is referred to as the grade of membership of u in A.

The support of A, is the set of elements in U whose memberships

in fuzzy subset A, I.LA(U), are positive:

Supp(A)= [uluzU,l_A(U)>0 } (2)

As an example, let us define a fuzzy subset %ld" on a crisp set of
people of different ages. The support of "old" may be defined on

nine points for ages 10 through 100 (in steps of ten). Grades of

membership for these points can be assigned as .01/10, .05/20, .1/30,

.5/40, .7/50, .8/60, .9/70, lo/80, 1/90,1/100; where _old/U means that

_tol d is a grade of membership of element u in a fuzzy subset "old".

Thus, say, .7/50 means that a person who is 50 years old belongs to

a fuzzy subset "old" with the grade of membership equal to 0.7.

Aggregation of fuzzy sets is an operation by which several fuzzy
sets are combined into a single set. In general, any aggregation

operation is defined by the function

h: [0,1]n --#[0,1] O)

for some n >= 2. When applied to n fuzzy sets defined on U, h

produces an aggregate fuzzy set A by operating on the grades of

membership of each element of U in the sets being aggregated.
From the several classes of avenging operations we chose general-
ized means which is defined as follows:

!
_t

(4)

Radial Basis Furlf_/_ilg

The other type of soft computing comprises neural networks.

A neural network can be made to approximate any given function

provided that the network has a sufficient number of processing
units, called neurons. In this paper we shaUbriefly describe a neural

network algorithm called radial basis function (RB F) network [9]. It

is a three layer network with"locally-tuned" processing unitsin the

hidden layer. RBF neurons are centered at the training data points,

orsome subsetofit,and each neurononlyrespondsto an inputwhich

is closest to its center._The output layer neurons are linear or

sigmoidal functions and their weights may be obtained by using a

supervised ]earning method, such as a gradient descent method.

FigureIshows a generalRBF network withn inputsand one linear

output.This network performs a mapping f:Rn --->R given by the

followingequation[I0]:

nr
f(x)= _ +SUM ki#0x-ci,) (5)

i=1

where x _ R n istheinputvector,_b(.)isafunctionfrom R n _ R, I I

denotestheEuclideannorm, _(0 <= i<= nr)aretheweightsof the

output node, ci(O <= i <= nr) are the R.BF centers, and nr is the
number of the so-called RBF centers.

One of the most common functionsused for_b(.) is the Gaussian

function:

_(Lx-c4)= exp ( - _ciu" ) (6)
s GIz

where o 1 is a constant which detezmines the width of the i-th node.

fC_)

C
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where a s R (a _ 0) is a parameter by which d_ferent means are
distinguished; c_-2 was used.

FIGURE 1. RADIAL BASIS FUNCTION NETWORK WITH

SINGLE OUTPUT.
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FIGURE 2. EXPLANATION OF THE FUZZY PREDICTION METHOD.

This function has a maximum value of 1 when Ix-cil is 0, and drops

off to 0 as Lx-cil approaches infinity.

The centers of the RBF functions, c i, are usually chosen from the

training data points x i ( 1 <= i <= N ). This method is known as the
"neurons at data points" method [11]. For larger data sets, it is not

practical to have an RBF center at each data point, so other methods

were developed to reduce the number of RBFcenters. Some of them

are the random selection of centers, clustering of data points, and

orthogonal least squares reduction [10].

The random selection method simply uses a random selection of nr

centers from N data points, where nr < N. If the desired outputs are

discrete and represent, say, C different classes, then clustering

methods such as k-means clustering [11] may be used to cluster the

data points within each class. A very effective method of choosing
a set of RBF centers from the training data is the orthogonal least

squares reduction method [10] which enables the selection of the

most significant RBF centers from a given training data set.

METHOD OF MAKING PREDICTIONS AND DATA USED

For the room temperature, 18 different combinations of' milling
time, sintering time, and nitrogen pressure yielded the composition

strengths and densities shown in Table I.

TABLE I: STRENGTH AND DENSITY AT ROOM TEM-

PERATURE FOR DIFFERENT PROCESSING AND

SINTERING CONDITIONS.

Batch No.of "._g S_=ineg Nitrogen Ac_lal A_tual# speci- press=,=su_.ngth density
n-_ _1 _1 _II'a] [MPa] r_cm_

6YLB 30 • 24 1 2.5 556 3.12
6Y'2B 3O 24 1 2.5 532 3.18
6Y11 15 I(X) 1 2.5 490 3.23
6Y12 15 300 1 2.5 579 3.25
6Y13 15 100 1 2.5 684 33.4
6Y14 14 300 1 2.5 746 3.24
631516 19 24 2 5 664 3.22

16Y17 10 100 2 5 646 3.23
6Y18 10 100 1.5 5 _ 3.21

16Y19 10 100 1.5 5 570 3.22
6Y20 10 100 2 5 650 3.22
6Y23 15 100 1.25 5 631 3-24

6Y24A 15 100 1_25 3.5 586 3.26
6Y2A-B 15 100 2 3.5 619 3.26
6Y25 10 300 2 5 714 3.28
6Y26A 15 100 1 3.5 479 3.20
6Y26B 15 100 1 5 503 3.18

6Y28 10 1130 2 5 671 3.21

In order to validate the soft computing methods predictions, we

needed to test the system using known test vectors to evaluate the

error of predictions. We were particularly interested in the ability of
the network to predict the output values for batch number 6Y25, as

this batch number represented the optimum combination for the

input variables [3].Thus, batch number 6Y25 was first removed

from the data. The data were then pseudo-randomly divided into two

parts: 70% for training and the remaining 30% for testing. Batch
number 6Y25 was then inserted into the test data set.



Next, we wanted to see whether it was possible to find combina-
tions of input variables, other than those used in [3], which would
result in the strength and density values close to the optimal (6Y7.5)
value. Thus, a training data set consisting of all the batch numbers
(100%) except 6Y25 was created. Batch number 6Y25 was then
placed in the training data set and we made predictions for different,
not tried by experiments in [3], combinations of the input vectors.

For the fuzzy sets, the collected data was used to define fuzzy sets
for each batch for both input and output variables. Toe input fuzzy
sets were defined for three values of support (nitrogen pressure,
sintering time, and milling time) while the output fuzzy sets had
support of two elements (flexural strength and density). The grades
of memberships were normalized elumentwise, and the normaliza-
tion was repeated for every step of prediction. The resulting mem-
bership grades were combined by means of generalized mean
operation. After that, adissimilarity measure (a modified Hamming
distance [2]) was used to calculate the difference between the actual
and generalized fuzzy sets of input parameters. Next, the k-fraction
of the measure, where k E (0, I ) w aseither added to or subtracted from

the generalized grades of membersl_ps of the output pazameters.
The graphical explanation of the method is shown in Figure 2. It
shows the 6Y12 test batch. The genereRzed input fuzzy set consists
of grades of membership obtained by generalized mean operation
performed on normalized values of input parameters: milling time
(rot), sintering time (st), and pressure (p). The actual input fuzzy set
represents normalized values of 6Y 12 batch input. The dissimilarity
measure was then used to calculate the sum of the elementwise
differences between grades of membership of actual and generalized

input fuzzy sets. The k-fraction of the measure was then added to the
grades of membenhip of the generalized output fuzzy set. The
generalized output fuzzy set was obtained by generalized mean
operation performed on normalized values of output parameters,
strength (s) and density (d). Addition of k-fraction of dissimilarity
measure results in the predicted fuzzy set. The latter is then com-

pared with the actual grades of mumbership obtained by normaliza-
tion of the values of the 6Y12 batch output thus yielding a measure
of errorfor s_ngth and density.

RESULTS

Utilization of Fuzz_ Sets
The method described above for fuzzy sets wes used to pred/ct, for

randomly chosen values of input variables, the values for output
variables, namely, flexural strength and density of batch samples at
room temperature. This was done in order to estimate the en'or. The
overall results are shown in Table rl" Since the errors were reason-

ably small, we made predictions for selected new, not tried in [3],
combinations of processing and sintering varlablas. Tshle HIshows
the results. We can notice that the resultant strengths and densities
are lower than the one for the optimum batch (6Y25 was the optimum
because of low scatter, not shown in Table I). This result was

expected since fuzzy systems are bounded, which was shown in [ 12].

TABLE I1: OVERALL RESUL_TS FOR STRENGTH AND
DENSITY FOR ROOM TEMPERATURE.

I] Seength - avaage %en_r for

antest vectors and (6Y25)
5.7 (4.4)

aUre=vectorsand(6Y2._
2.4 (0)

TABLE II1: PREDICTION OF INPUT VARIABLES FOR
HIGHEST STRENGTH AND DENSITY, FOR
ENTIRE TRAINING DATA FROM TABLE I.

Mmmg
time
[br]

150
175
2OO
2OO
250
25O
25O
3O0
3O0
30O

sam=_
time
Cnr]

1.5
1.5
1.5
1.75
1.5
1.5
1.75
1.5
1.75
2

_u_,en
Pmmn
[MPa]

l:_]ktad
Stz=_
[Mpa]

596
6O4
611
634
619
634
649
649
656
686

l_reckted
Vens_
[g/umq

3.15
3.18
3.21
3228
3.25
3.28
3.28
3.28
3.28
3.28

Utilization of Neural Networks

The RBF networkswere trained usingthe same tz_ulng data as
described above. The '_enrons at data points" method was used to
set up the hidden layer. The gradient descent method was used to
train the output layer neurons which use sigmoidal function. The
RBF netwo_ consisted of three input nem_ns and two output

neurons which corresponds to the number of input and output
variables, respectively. The number of neurons in the hidden layer
depended on the number of the training vectors. The overaU results
are shown in Table IV. Table V shows predictions made for selected,
not previously tried [3], combinations of processing and sintering
variables that resulted in strengths and densities similar to that of the
optimum batch (6Y25).

TABLE IV: OVERALL RESULTS FOR STRENGTH AND
DENSITY FOR ROOM TEMPERATURE.

I SUe_h-avenge%e_orfor Density-avenge%en_for

a]]testvec=_ and(6Y_) _ te=ve=_ and(6Y"_)

10,.,_. (10.17) 0.98 (2-_)

TABLE_ PREDICTION OF INPUT VARIABLES FOR
HIGHEST STRENGTH AND DENSITY, FOR
ENTIRE TRAINING DATA FROM TABLE I.

Mm=g
time
[br]

150
t75
2OO
2OO
25O
25O
25O
3OO
3OO
3OO

_m=dng _-m_gm
lime P_e=me
p=] [MPa]

1.5
1._
1.5
1.75
1.5
1.5
1.75
1.5
1.75
2

3
3
3
4
3
4
4
4
4
5

PmJkted
Se=_h
pv_]

692
7OO
7O6
689
7O9
7O5
7O5
711
713
712

Preck_
Den_
_/umq

3.28
3_8
3.2S
3.27
328
328
3.28
328
328
328
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FIGURE 3. AVERAGE ERRORS IN PREDICTING STRENGTH AND DENSITY.

The information in Table V suggests that there may have been

other, than those tried in [3], combinations of sintering and process-

ing variables that would have produced results almost as good as that

obtained for 6Y25 [3] but more efficiently. For example, in Table

V, using a milling time of 250 hours, a sintering time of 1.5 hours,

and a nitrogen pressure of 3 MPa, the network predicts that a strength

of 709 MPa can be obtained. This is only slightly less th.an the

optimal value for 6Y25 but with a reduction in milling time of 50

hours. Aword of caution here. Although the confidence in prediction

results for strength and density lies within 11% and 2.5% (from

Tables H and IV), respectively, these predictions need to be con-

famed by fabrication of ceramics using the suggested in Table V

input parameters. From the theoretical point of view, if the relation
between the input and output variables is a smooth function,either

increasing or decreasing, then RBF predictions will be accurate and

valid for sufficiently large training data set.

DISCUSSION

If in the process of designing new ceramics the designers were to

use soft computing in order to notice the correlations between the

inputand outputvariables,itmight greatlyshortenthefabrication

cycle.We have shown thatthiswas trueforeven thesmallnumber

ofinputvariables.Iflargernumber ofinputvariablescouldbe used

thatwould certainlyimprove the reliabilityofpredictionsand their

accuracy. Soft computing can be also seen as an alternativeto the

Taguchi method [13].

Predicting bulk density of ceramics was more successful than

predicting strength. This may be explained by noticing that bulk

density is more directly related to milling lime, sint_ing time, and

pressure, whereas the flexural strength is additionally dependent on

pore morphology, on microsla_cmre, and on thepresenee of failure
causing defects.

Comparison of results obtained by using fuzzy sets [2] with those

obtained by using neural networks [1] indicates that both were

successfulinmodelling relationshipsexisting between the process-

ingvariablesand outputvariables.Thisisshown graphically,based

on Tables1/and IV, inFigure3. As can be seen,smalldiHerences

exist in terms of errors. Fuzzy sets were slightly better than neural

networks in predicting strength,which isstatisticallyvaried as a

resultofthefabricationprocess.On theotherhand,themore precise

relationship between the input variables and density was modelled

better using neural networks.

When we triedto predictthe untriedcombinationsof inputvari-

ableswhich might yieldthehighest("optimum") valuesforstrength

and density,Tables 171 and V, the resultswere again slightly

different. Now, however, in order to make a statement which method

givesmore accuratepredictions,the real experiments will needtobe

performed and errors calculated. In an absence of such an experi-

ment we cannot compare the two methods of predictions. We can

only say, from Tables 1/and IV, that our confidence in predicting

strength is larger for fuzzy sets, while for predicting density it is

larger for neural networks.

CONCLUSIONS

We have shown that soft computing, if it were the part of the design

process, could help in optimizing the process of fabricating ceramics

with high strength, accompanied by low scatter. We approached the

problem by concentrating on three input variables and two output

parameters. The available data set was divided into training and test

parts. The former was used for training neural networks and defining

fuzzy sets, and the second to validate them on the test part as to how

accurately they can predict the strength and density of the test set
given new "unknown" inputs.

Then, we have shown that it was possible to indicate other, than

those tried, combinations of input variables which resulted in at least

as strong material as the one fzom the known training data (5Y25),
but more "optimal" in terms of either shorter milling and sintering

times, or lower pressure.

Soft computing methods may not necessarily yield the optimal

solution,butmost of thetime theywillgivean acceptable,low cost

solution.Inmany situations,a robustlyobtained"good" solutionis

preferredto an optimal solutionwhich may take a lotof time to

compute.

The obtainedresultsindicatethatsoftcomputing can be apowerful

toolforbothprocessmodeling and processcontrol.Itcan speedthe

development and fabricationofemerging ceramic materials.Thus,

soft computing might help to capatre imprecise relationships be-

tween the input variables and output parameters. In turn, these



learned relationships can be used for predicting strength and density

for new combinations of the input variables. The reliability of our

predictions was validated by calculating the errors on the test data
encompassing 30% of available data. The maximmn combined

error, for both methods, for the strength was less than or equal to

10.54%, and for density it was less than or equal to 2.4%. However,
between the two methods, the combined minimum error was less

than or equal to 5.7% for strength, and 0.98% for density. The latter

clesrly shows that by using a hybrid approach one can achieve better
results.

FUTURE RESEARCH DIRECTIONS

In the future we envision a more versatile and powerful hybrid

system which will combine the two soft computing methods with

genetic algorithms and n_al optimization methods. Genetic
algorRhn_ will enable exploration of the entire design space in

search for global optimum. Such a system would rapidly optimi2e

the process of ceram_ fabrication as a function of input variables

and process parameters. The hybrid system should also incorporate

the existing knowledge of the ceramics fabrication experts. After

such system has been developed the next step would be to move to

the problem of optimal design of other composite materials such as

ceramic- and metal- matrix composites.

Soft computing, however, is not a panacea for solving problems. It

should not be used in situations where mathematically sotmdmodels

are known. However, since the two soft computing methods are

inherently parallel, and thus easily implementable in hardware, they

might prove advantageous for real-time applications.
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