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ABSTRACT

The goal of this paper is to show the potential of fuzzy sets and
neural networks, often referred to as soft computing, for aiding in all
aspects of manufacturing of advanced materials like ceramics.

In design and manufacturing of advanced materials it is desirable
to find which of the many processing variables contribute most to the
desired properties of the material. There is also interest in real time
quality control of parameters that govern material properties during
processing stages. This paper briefly introduces the concepts of
fuzzy sets and neural networks and shows how they can be used in
the design and manufacturing processes. These two computational
methods are alternatives to other methods such as the Taguchi
method. The two methods are demonstrated by using data collected
at NASA Lewis Research Center. Future research directions are also
discussed.

INTRODUCTION

In this paper our intent is to show the potential of soft computing
methods, namely fuzzy sets and neural networks, in design and
fabrication of ceramics. Soft computing in our framework is utilized
to identify trends indicating which input variable contributes most to
the increase of a desired output parameter, say strength. Such
identification can potentially speed up the process of designing a
new material. Human designers can easily notice such trends for a
few variables butit becomes very difficult to do so for alarge cumber
of variables.

Initially, we shall briefly introduce fuzzy sets and neural networks.
Then, we shall illustrate the power of soft computing for fabrication
of new materials by showing some of the results obtained in our
previous work [1, 2] in which we utilized the data originally
collected by Sanders and Baaklini [3]. Results on the data from 273

NASA 6Y silicon nitride [1, 2, 3] modulus of rupture bars tested at
room temperature will be given.

Three input variables, namely milling time of the composition
powder, the sintering time of the modulus of rupture test bars, andthe
nitrogen pressure employed during sintering, are considered. The
relationship between the above listed input variables and the flexural
strength and density as output variables, found by soft computing
methods, will be shown and commented on.

BACKGROUND

The reason of choosing silicon nitride is that it is an important
material for heat engine applications due to its high operating
temperature, reduced weight, resistance to oxidation, thermal shock
resistance and good high-temperature strength [4). Estimates of
potential efficiency improvements for automotive engines with
structural ceramic components range from 30 to 50 percent over
current engine technology. Ceramics consist of non-strategic mate-
rials that are relatively inexpensive. Their scatter in strength and low
toughness are generally attributed to discrete defects such as voids,
inclusions, and cracks introduced during processing [3]. Current
cost-effective fabrication procedures also frequently produce ce-
ramics containing bulk density variations and micro-structural anoma-
lies that can adversely affect performance [4].

Scatter in mechanical properties of ceramics is a great drawback
from a design/reliability stand point. This scatter is attributed to
defects and inhomogeneities occurring during processing of silicon
nitride powder compositions and during part fabrication. From the
research work on silicon nitride composition at the National Aero-
pautics and Space Administration Lewis Research Center it was
evident that density gradients were strongly dependent upon sinter-
ing conditions [5]. The results of an investigation of one silicon
nitride composition involving sintering trials of 21 batches of



material are described in [3]), and this particular data is utilized bere
to show that soft computing is a useful tool which can be either used
onitsownorinahybrid system to provide much needed information
to advanced materials designers.

SOFT COMPUTING METHODS
Basics of Fuzzy Sets

Fuzzy sets were developed by Zadeh as means for dealing with
vague information, in everyday language represented by linguistic
variables like high, low, more or less, ‘etc. [6]. Fuzzy set theory
provides a natural approach to problems in which objects change
their membership in classes gradually. Fuzzy sets allow us to deal
with pbenomena that are vague, imprecise, too complex or too ill
defined to be analyzed by conventional mathematical tools [7].
Definitions essential for subsequent explanation of the used methods
follow.

Let R be the set of real numbers and U be the conventional (crisp)
set. Letube a genericelement of U. A fuzzy subset A of Uis defined
by a membership function p 5 : U — [0,1]. The fuzzy subset A of U
can be expressed as:

A={pp@luuel,py (e01]} )
where |1 o is referred to as the grade of membership of u in A.

The support of A, is the set of elements in U whose memberships
in fuzzy subset A, p (), are positive:

Supp(A) = {ulu e U, po(uw) >0} )

As an example, let us define a fuzzy subset “old” on a crisp set of
people of different ages. The support of “old” may be defined on
nine points for ages 10 through 100 (in steps of ten). Grades of
membership for these points can be assigned as .01/10, .05/20, .1/30,
5/40, .7/50, .8/60, .9/70, 1/80, 1/90, 1/100; where j1 1 4/u means that
Hod is a grade of membership of element u in a fuzzy subset “old”.
Thus, say, .7/50 means that a person who is 50 years old belongs to
a fuzzy subset “old” with the grade of membership equal to 0.7.

Aggregation of fuzzy sets is an operation by which several fuzzy
sets are combined into a single set. In general, any aggregation
operation is defined by the function

b: [0,1]® = [0,1] 3)

for some n >= 2. When applied to n fuzzy sets defined on U, b
produces an aggregate fuzzy set A by operating on the grades of
membership of each element of U in the sets being aggregated.
From the several classes of averaging operations we chose general-
ized means which is defined as follows:

1
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where & € R (@ # 0) is a parameter by which different means are
distinguished; a=2 was used.

Radial Basis Functi
The other type of soft computing comprises neural networks.

A neural network can be made to approximate any given function
provided that the network has a sufficient number of processing
units, called neurons. In this paper we shall briefly describe a neural
network algorithm called radial basis function (RBF) network [9]. It
is a three layer network with “locally-tuned” processing units in the
hidden layer. RBF neurons are centered at the training data points,
orsome subsetofit, and each neurononly responds to an input which
is closest to its center. The output layer neurons are linear or
sigmoidal functions and their weights may be obtained by using a
supervised learning method, such as a gradient descent method.

Figure 1 shows a general RBF network with n inputs and one linear
output. This network performs a mapping f:R® — R given by the
following equation [10]:

f(x)=2g+ sg?xf{x A 8(x - ;) (5)
1=

where x € R? is the input vector, §(.) is a function fromR® > R, 1 |
denotes the Euclidean norm, A;(0 <= i <=n,) are the weights of the
output node, ¢;(0 <= i <= n;) are the RBF centers, and n, is the
number of the so-called RBF centers.

'One of the most common functions used for ¢(.) is the Gaussian
function:
2
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where 0} is a constant which determines the width of the ﬁ-th node.
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FIGURE 1. RADIAL BASIS FUNCTION NETWORK WITH

SINGLE OUTPUT.
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FIGURE 2. EXPLANATION OF THE FUZZY PREDICTION METHOD.

This function has a maximum value of 1 when Ix-¢;! is 0, and drops
off to 0 as Ix-¢;| approaches infinity.

The centers of the RBF functions, ¢;, are usually chosen from the
training data points x; ( 1 <=i <= N ). This method is known as the
“peurons at data points” method [11]. For larger data sets, it is not
practical to bave an RBF center at each data point, so other methods
were developed toreduce the number of RBF centers. Some of them
are the random selection of centers, clustering of data points, and
orthogonal least squares reduction [10].

The random selection method simply uses a random selection of n,
centers from N data points, where n <N. If the desired outputs are
discrete and represent, say, C different classes, then clustering
methods such as k-means clustering [11] may be used to cluster the
data points within each class. A very effective method of choosing
a set of RBF centers from the training data is the orthogonal least
squares reduction method [10] which enables the selection of the
most significant RBF centers from a given training data set.

METHOD OF MAKING PREDICTIONS AND DATA USED

For the room temperature, 18 different combinations of milling
time, sintering time, and nitrogen pressure yielded the composition
strengths and densities shown in Table I.

In order to validate the soft computing methods predictions, we
needed to test the system using known test vectors to evaluate the
error of predictions. We were particularly interested in the ability of
the network to predict the output values for batch number 6Y25, as

TABLE I: STRENGTH AND DENSITY AT ROOM TEM-
PERATURE FOR DIFFERENT PROCESSING AND

SINTERING CONDITIONS.

Batch |No.of | Milling | Sintering | Nitrogen| Actual | Actual

# speci- time time pressure | Strength | density

men | [br] (] (MP2] | [MPa] | [gfem’]
6Y1B | 30 - A 1 25 556 312
6Y2B | 30 A 1 25 532 318
6Y11 15 100 1 25 490 33
6Y12 15 300 1 25 579 325
6Y13 15 100 1 25 634 324
6Y14 14 300 1 25 746 34
6Y1516; 19 24 2 5 664 32
6Y17 10 100 2 5 646 3B
6Y18 10 100 15 5 608 321
6Y19 10 100 15 5 570 32
6Y20 10 100 2 5 650 322
Y23 15 100 125 5 631 324
6Y24A( 15 100 1251 35 586 3.26
6Y24B| 15 100 2 35 619 326
6Y25 10 300 2 5 714 328
6Y26A| 15 100 1 35 479 320
6Y26B | 15 100 1 5 503 3.18
6Y28 10 100 2 5 671 321

this batch number represented the optimum combination for the
input variables [3]. Thus, batch number 6Y25 was first removed
from the data. The data were then pseudo-randomly divided into two
parts: 70% for training and the remaining 30% for testing. Batch
number 6Y25 was then inserted into the test data set.



Next, we wanted to see whether it was possible to find combina-
tions of input variables, other than those used in [3], which would
result in the strength and density values close to the optimal (6Y25)
value. Thus, a training data set consisting of all the batch numbers
(100%) except 6Y25 was created. Batch number 6Y25 was then
placed in the training data set and we made predictions for different,
not tried by experiments in [3], combinations of the input vectors.

For the fuzzy sets, the collected data was used to define fuzzy sets
for each batch for both input and output variables. The input fuzzy
sets were defined for three values of support (nitrogen pressure,
sintering time, and milling time) while the output fuzzy sets had
support of two elements (flexural strength and density). The grades
of memberships were normalized elementwise, and the normaliza-
tion was repeated for every step of prediction. The resulting mem-
bership grades were combined by means of generalized mean
operation. After that, a dissimilarity measure (a modified Hamming
distance [2]) was used to calculate the difference between the actual
and generalized fuzzy sets of input parameters. Next, the k-fraction
of the measure, where k €(0,1) was either added to or subtracted from
the generalized grades of memberships of the output parameters.
The graphical explanation of the method is shown in Figure 2. It
shows the 6 Y12 test batch. The generalized input fuzzy set consists
of grades of membership obtained by generalized mean operation
performed on normalized values of input parameters: milling time
(mt), sintering time (st), and pressure (p). The actual input fuzzy set
represents normalized values of 6Y 12 batch input. The dissimilarity
measure was then used to calculate the sum of the elementwise
differences between grades of membership of actual and generalized
input fuzzy sets. Thek-fraction of the measure was then added to the
grades of membership of the generalized output fuzzy set. The
generalized output fuzzy set was obtained by generalized mean
operation performed on normalized values of output parameters,
strength (s) and density (d). Addition of k-fraction of dissimilarity
measure results in the predicted fuzzy set. The latter is then com-
pared with the actual grades of membership obtained by normaliza-
tion of the values of the 6Y12 batch output thus yielding a measure
of error for strength and density.

RESULTS
Utilizati {E Set

The method described above for fuzzy sets was used to predict, for
randomly chosen values of input variables, the values for output
variables, namely, flexural strength and density of batch samples at
room temperature. This was done in order to estimate the error. The
overall results are shown in Table I Since the errors were reason-
ably small, we made predictions for selected new, not tried in 31,
combinations of processing and sintering variables. Table IIl shows
the results. We can notice that the resultant strengths and densities
are lower than the one for the optimum batch (6 Y25 was the optimum
because of low scatter, not shown in Table I). This result was
expected since fuzzy systems are bounded, which was shownin[12].

TABLE Il: OVERALL RESULTS FOR STRENGTH AND
DENSITY FOR ROOM TEMPERATURE.

TABLE lll: PREDICTION OF INPUT VARIABLES FOR
HIGHEST STRENGTH AND DENSITY, FOR
ENTIRE TRAINING DATA FROM TABLE I.

Milling | Sintering | Nitrogen | Predicted Predicted

[lr] [br (MPa] Mpa] (gfam’]
150 15 3 596 315
175 15 3 604 3.18
200 15 _ 3 611 321
200 175 4 634 38
250 15 3 619 325
250 15 4 634 328
250 175 4 649 328
300 15 4 649 328
300 175 4 656 328
300 2 5 686 328

Utilizati {N i Net }

The RBF networks were trained using the same training data as
described above. The “neurons at data points™ method was used to
set up the hidden layer. The gradient descent method was used to
train the output layer neurons which use sigmoidal function. The
RBF networks consisted of three input neurons and two output
neurons which corresponds to the number of input and output
variables, respectively. The number of neurons in the hidden layer
depended on the number of the training vectors. The overall results
are shownin Table IV, Table V shows predictions made for selected,
not previously tried {3], combinations of processing and sintering
variables that resulted in strengths and densities similar to that of the
optimum batch (6Y25).

TABLE IV: OVERALL RESULTS FOR STRENGTH AND
DENSITY FOR ROOM TEMPERATURE.

Strength - average % error for
all test vectors and (6Y2S)
1054 (10.17)

Density - average % exor for
al] test vectors and (6Y25)
098 (2.50)

TABLE V: PREDICTION OF INPUT VARIABLES FOR
HIGHEST STRENGTH AND DENSITY, FOR
ENTIRE TRAINING DATA FROM TABLE I

Strength - average % exror for
all test vectors and (6Y25)
57 (44)

Density - average % exror for
all test vectors and (6Y25)
24 (0)

Milling | Sintering | Nitrogen | Predicted Predicted
(br] [be] [MPs] (MPa] [gfem’]
150 15 3 92 328
175 15 3 700 328
200 15 3 706 3
200 175 4 689 kW4
250 15 3 709 328
250 15 4 705 328
250 175 4 705 38
300 15 4 ni 3
300 175 4 13 328
300 2 5 712 328
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FIGURE 3. AVERAGE ERRORS IN PREDICTING STRENGTH AND DENSITY.

The information in Table V suggests that there may have been
other, than those tried in [3], combinations of sintering and process-
ing variables that would have produced results almost as good as that
obtained for 6Y25 [3] but more efficiently. For example, in Table
V, using a milling time of 250 bours, a sintering time of 1.5 hours,
and a nitrogen pressure of 3 MPa, the network predicts thata strength
of 709 MPa can be obtained. This is only slightly less than the
optimal value for 6Y25 but with a reduction in milling time of 50
hours. A word of caution here. Although the confidence in prediction
results for strength and density lies within 11% and 2.5% (from
Tables II and IV), respectively, these predictions need to be con-
firmed by fabrication of ceramics using the suggested in Table V
input parameters. From the theoretical point of view, if the relation
between the input and output variables is a smooth function, either
increasing or decreasing, then RBF predictions will be accurate and
valid for sufficiently large training data set.

DISCUSSION

If in the process of designing new ceramics the designers were to
use soft computing in order to notice the correlations between the
input and output variables, it might greatly sborten the fabrication
cycle. We have shown that this was true for even the small number
of input variables. If larger number of input variables could be used
that would certainly improve the reliability of predictions and their
accuracy. Soft computing can be also seen as an alternative to the
Taguchi method [13]).

Predicting bulk density of ceramics was more successful than
predicting strength. This may be explained by noticing that bulk
density is more directly related to milling time, sintering time, and
pressure, whereas the flexural strength is additionally dependenton
pore morphology, on microstructure, and on the presence of failure
causing defects.

Comparison of results obtained by using fuzzy sets [2] with those
obtained by using neural networks [1] indicates that both were
successful in modelling relationships existing between the process-
ing variables and output variables. This is shown graphically, based
on Tables I and IV, in Figure 3. As can be seen, small differences
exist in terms of errors. Fuzzy sets were slightly better than neural
networks in predicting strength, which is statistically varied as a
result of the fabrication process. On the other hand, the more precise

relationship between the input variables and density was modelled
better using neural networks.

When we tried to predict the untried combinations of input vari-
ables which might yield the highest (“optimum") values for strength
and density, Tables III and V, the results were again slightly
different. Now, bowever, in order to make a statement which method
gives more accurate predictions, the real experiments will need to be
performed and errors calculated. In an absence of such an experi-
ment we cannot compare the two methods of predictions. We can
only say, from Tables II and IV, that our confidence in predicting
strength is larger for fuzzy sets, while for predicting density it is
larger for neural networks.

CONCLUSIONS

We have shown that soft computing, if it were the partof the design
process, could help in optimizing the process of fabricating ceramics
with high strength, accompanied by low scatter. We approached the
problem by concentrating on three input variables and two output
parameters. The available data set was divided into training and test
parts. The former was used for training neural networks and defining
fuzzy sets, and the second to validate them on the test part as to how
accurately they can predict the strength and density of the test set
given new “unknown” inputs.

Then, we have shown that it was possible to indicate other, than
those tried, combinations of input variables which resulted in atleast
as strong material as the one from the known training data (6Y25),
but more “optimal” in terms of either shorter milling and sintering
times, or lower pressure.

Soft computing methods may not necessarily yield the optimal
solution, but most of the time they will give an acceptable, Jow cost
solution. In many situations, a robustly obtained “good” solution is
preferred to an optimal solution which may take a lot of time to
compute.

The obtaiped results indicate that soft computing can be a powerful
tool for both process modeling and process control. It can speed the
development and fabrication of emerging ceramic materials. Thus,
soft computing might help to capture imprecise relationships be-
tween the input variables and output parameters. In turn, these



learned relationships can be used for predicting strength and density
for new combinations of the input variables. The reliability of our
predictions was validated by calculating the errors on the test data
encompassing 30% of available data. The maximum combined
error, for both methods, for the strength was less than or equal to
10.54%, and for density it was less than or equal to 2.4%. However,
between the two methods, the combined minimum error was less
than or equal to 5.7% for strength, and 0.98% for density. The latter
clearly shows that by using a hybrid approach one can achieve better
results.

FUTURE RESEARCH DIRECTIONS

In the future we envision a more versatile and powerful hybrid
system which will combine the two soft computing methods with
genetic algorithms and numerical optimization methods. Genetic
algorithms will enable exploration of the entire design space in
search for global optimum. Such a system would rapidly optimize
the process of ceramics fabrication as a function of input variables
and process parameters. The hybrid system should also incorporate
the existing knowledge of the ceramics fabrication experts. After
such system bas been developed the next step would be to move to
the problem of optimal design of other composite materials such as
ceramic- and metal- matrix composites.

Soft computing, however, is not a panacea for solving problems. It
should not be used in situations where mathematically sound models
are known. However, since the two soft computing methods are
inherently parallel, and thus easily implementable in hardware, they
might prove advantageous for real-time applications.
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