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Abstract. Multidisciplinary research into statistical and soft computing models is detailed 

that analyses data on inmissions of atmospheric pollution in urban areas. The research 

analyzes the impact on atmospheric pollution of an extended bank holiday weekend in Spain.  

Levels of atmospheric pollution are classified in relation to the days of the week, seeking to 

differentiate between working days and non-working days by taking account of such aspects 

as industrial activity and traffic levels. The case of study is based on data collected by a 

station at the city of Burgos, which forms part of the pollution measurement station network 

within the Spanish Autonomous Region of Castile-Leon. 

Keywords. Artificial neural networks; soft computing; meteorology; atmospheric pollution; 

statistical model. 

1. Introduction 

It has been accepted for some years now that air pollution not only represents a health risk, but 

that it also, for example, reduces food production and vegetative growth due to its negative effects 

on photosynthesis.  

Systematic measurements in Spain, which are usually taken within large cities, are 

fundamental, due to the health risks caused by high levels of atmospheric pollution. European 

legislation, will in the long term establish how and where such pollutants should be measured. 

Thus, all efforts that are directed towards studying these phenomena [1, 2] may improve our 

understanding and help us to prevent the serious problematic nature of atmospheric pollution. 

Several years ago, certain public, regional and municipal bodies adopted the principles of the V 

Programme Framework of the European Union and those of the Rio Conference concerning the 

application of community and international directives; in particular, those on environmental air 

quality in our cities. Previous directives were based on European legislation with which Spain, as 

a member of the European Community, was expected to comply. 

The basis of this study is the application of a series of statistical and soft computing models for 

studying the evolution of air pollution throughout the week as a function of chosen variables. 

Soft computing [3, 4, 5] consists of various technologies which are used to solve inexact and 

complex problems [6]. It is used to investigate, simulate, and analyze complex issues and 

phenomena in an attempt to solve real-world problems [7]. 



2. Soft Computing and Statistical Models 

Several statistical and soft computing models are used in this study to analyze data taken from 

cases studies on aerosol pollutants in order to assess their performance. 

Exploratory Projection Methods (EPP) 

EPP [8, 9, 10] is a more recent statistical method aimed at solving the difficult problem of 

identifying structure in high dimensional data. It does this by projecting the data onto a low 

dimensional subspace in which we search for its structure by eye. However not all projections will 

reveal the data's structure equally well. EPP therefore defines an index that measures how 

“interesting” a given projection is, and it then represents the data in terms of projections that 

maximize that index. “Interesting” structure is usually defined with respect to the fact that most 

projections of high-dimensional data onto arbitrary lines through most multi-dimensional data give 

almost Gaussian distributions [11]. Therefore, in order to identify “interesting” features in data, it 

is necessary to look for those directions onto which the data-projections are as far from the 

Gaussian as possible.  

A simple measure of deviation from a Gaussian distribution is based on the higher order 

moments of the distribution. Kurtosis is based on the normalized fourth moment of the distribution 

and measures the heaviness of the tails of a distribution. A bimodal distribution will often have a 

negative Kurtosis and therefore negative Kurtosis can signal that a particular distribution shows 

evidence of clustering.  

Principal Component Analysis (PCA) 

PCA [10] gives the best linear compression of the data in terms of least mean square error and can 

be implemented by several artificial neural networks [12, 13]. The basic PCA network [14] 

applied in this study is described by “Eq. (1)” and “Eq. (2)”: an N-dimensional input vector at time 

t, x(t), and an M-dimensional output vector, y, with ijW being the weight linking input j to output i, 

and η being the learning rate. Its activation and learning may be described as follows: 

Feedforward step, “Eq. (1)”: 
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Feedback step, “Eq. (2)”: 
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Change weights, “Eq. (3)”: 
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This algorithm is equivalent to Oja’s Subspace Algorithm [19], “Eq. (4)”: 
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EPP [11, 15] projects the data onto a low dimensional subspace which allows its structure to be 

examined by eye. As explained before, this is done by means of an index that measures the 

“interestingness” of a given projection, the data for which is then represented by projections that 

maximize the most “interesting” vectors. “Interestingness” is usually defined by the fact that most 

projections of high-dimensional data onto arbitrary vectors through a majority of multi-



dimensional data give almost Gaussian distributions [11, 16], which allows a search to be made 

for those directions onto which the data-projections are as far from the Gaussian as possible. 

ε - Insensitive Hebbian Learning 

It has been shown [17] that the nonlinear PCA rule, “Eq. (5)”: 
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Can be derived as an approximation of the best non-linear compression of the data. Initially, 

therefore, there is a cost function, “Eq. (6)”: 
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Which may be minimized to give, “Eq. (5)” [18] using the residual in the linear version of, “Eq. 

(8)” to define a cost function of the residual, “Eq. (7)”: 
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Where 2

1 .f is the (squared) Euclidean norm in the standard linear or nonlinear PCA rule. 

With this choice of f1( ), the cost function is minimized with respect to any set of samples from the 

data set on the assumption that the residuals are chosen independently and identically distributed 

from a standard Gaussian distribution. The minimization of J is equivalent to minimizing the 

negative log probability of the residual, if e is Gaussian, “Eq. (8)”: 
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Then, p will denote a general cost function associated with this network as in, “Eq. (9)”: 

KpJ  2)()(log ee
 

(9)

Where K is a constant. A gradient descent is performed on J, in “Eq. (10)”: 
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In which a less important term has been discarded [11]. 

In general [19], the minimization of such a cost function may be understood to increase the 

residual probability, depending on the Probability Density Function (pdf) of the residuals. Thus, if 

the pdf of the residuals is known, this knowledge could be used to determine the optimal cost 

function. [20] investigated this possibility using the (one dimensional) function, “Eq. (11)”: 
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Where, “Eq. (12)”: 
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With ε being a small scalar. 

With this model of the residual pdf, the optimal f1( ) function is the ε-insensitive cost function, 

“Eq. (13)”: 
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In the case of the negative feedback network, the learning rule is shown in “Eq. (14)”: 
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Which gives “Eq. (15)”: 
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Applying Maximum Likelihood Hebbian Learning (MLHL) 

The MLHL [21, 22] algorithm is defined as follows. Let the residual pdf after feedback be as in 

“Eq. (16)”:  
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Where p is a parameter which relates the pdf to the learning rule “Eq. (20)”. 

There is a general cost function associated with this network, “Eq. (17)”: 
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Where K is a constant that is independent of W and the expectation is taken over the input data 

set. A gradient descent is performed on J: “Eq. (18)” 
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Where T denotes the transpose of a vector, and the operation of taking powers of the norm of e 

is on an element wise basis as it is taken from a derivative of a scalar with respect to a vector. If 

the conditions of stochastic approximation [23] are satisfied, it may be approximated with a 

difference equation. The function to be approximated is clearly sufficiently smooth, the learning 

rate is acceptable and the rule is as follows, “Eq. (19)”: 
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Researchers [9, 10] have shown that it is less important to obtain the exact distribution when 

searching for a specific source than it is to arrive at a distribution that is approximately correct. 

Therefore, the network operation is as follows: initially there is a feedforward step as in “Eq. 

(1)”and a feedback step as in “Eq. (2)” followed by a weights change, “Eq. (20)”: 
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By maximizing the likelihood of the residual with respect to the actual distribution, MLHL is 

matching the learning rule to the residual. 

Cooperative Maximum Likelihood Hebbian Learning (CMLHL) 

An extended version of the MLHL model is the Cooperative Maximum Likelihood Hebbian 

Learning (CMLHL) [24] model. CMLHL is based on MLHL [21, 22] adding lateral connections 

which have been derived from the Rectified Gaussian Distribution [22]. The resultant net can find 

the independent factors of a data set but does so in a way that captures some type of global 

ordering in the data set. 

Consider an N-dimensional input vector (x), an M-dimensional output vector (y) and a weight 

matrix W, where the element Wij represents the relationship between input xj and output yi,  then as 

is shown in [22, 25], the CMLHL can be carried out as a four-step procedure: 

Feed-forward step, outputs are calculated “Eq. (21)”: 
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Lateral activation passing step, “Eq. (22)”: 
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Feedback step, “Eq. (23)”: 
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Weights update step, learn the neural network, “Eq. (24)”: 
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Where t is the temperature, [  ]+ is necessary to ensure that the y-values remain in the positive 

quadrant,  is the learning rate,  is the "strength" of the lateral connections, b the bias parameter, 

p a parameter related to the energy function, [22, 24, 25] and A is a symmetric matrix used to 

modify the response to the data [16]. The effect of this matrix is based on the relation between the 

distances separating the output neurons. 

ISOMAP 

Methods for nonlinear dimensionality reduction have proven successful in many applications, 

although the weakness of a method such as Multidimensional Scaling (MDS) [26] is that they are 

based on Euclidean distances and do not take the distribution of the neighboring datapoints into 

account. ISOMAP nonlinear dimensionality reduction [27] resolves this problem by attempting to 

preserve pairwise geodesic (or curvilinear) distance between datapoints. Geodesic distance is the 

distance between two points measured over the manifold. ISOMAP defines the geodesic distance 

as the sum of edge weights along the shortest path between two nodes (computed using Dijkstra's 

algorithm [26], for example). The doubly-centered geodesic distance matrix K in ISOMAP is of the 

form, “Eq. (25)”: 

HHDK 2

2
1

 (25) 

Where D2=D2
ij means the element wise square of the geodesic distance matrix D=[Dij], and H is 

the centring matrix, given by “Eq. (26)”: 
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The top N eigenvectors of the geodesic distance matrix represent the coordinates in the new n-

dimensional Euclidean space. 

The complete isometric feature mapping, or ISOMAP, algorithm has three steps: 

1. Construct neighborhood graph. Define the graph G over all data points by connecting 

points i and j if [as measured by dX(i, j)] they are closer than e (e-Isomap), or if i is one of the K 

nearest neighbors of j (K-Isomap). Set edge lengths equal to dX(i, j). 

2. Compute shortest paths. Initialize dG(i, j) = dX(i, j) if i, j are linked by an edge; dG(i, j) = 

∞ otherwise. Then for each value of k=5 1, 2, . . ., N in turn, replace all entries dG(i, j) by min{ 

dG(i, j), dG(i,k)+ dG(k, j)}. The matrix of final values DG = { dG(i, j))} will contain the shortest path 

distances between all pairs of points in G. 

3. Construct d-dimensional embedding. Let λp be the p-th eigenvalue (in decreasing order) 

of the matrix λ (DG), and vp
i be the i-th component of the p-th eigenvector. 

ISOMAP complements, and may be combined with linear extensions of PCA based on higher 

order statistics, such as independent component analysis (ICA) [10]. It may also lead to a better 

understanding of how the brain comes to represent the dynamic appearance of objects, where 

psychophysical studies of apparent motion point to the central role of geodesic transformations on 

nonlinear manifolds. 



Curvilinear Component Analysis (CCA) 

Curvilinear [28] is a non-linear projection method that preserves distance relationships in both 

input and output spaces. CCA is a useful method for redundant and non-linear data structure 

representation and can be used in dimensionality reduction. CCA is useful with highly non-linear 

data, where PCA or any other linear method fails to give suitable information [28].  

CCA brings some improvements to other methods like Sammon's Mapping [29], although when 

unfolding a nonlinear structure, Sammon's Mapping cannot reproduce all distances. One way to 

get round this problem consists in favoring local topology: CCA tries to reproduce short distances 

firstly, long distances being secondary. Formally, this reasoning led to the following error function 

(without normalization), “Eq. (29)”:  

ECCA =    
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By comparison with ESammon, ECCA has an additional weighting function F depending on p

jid ,
 and 

on parameter  . The F factor is a decreasing function of its argument, so it is used to favor local 

topology preservation. For example, F could be a step function of (  -d). 

Another improvement brought by CCA to Sammon's mapping is the use of Vector Quantization 

(VQ). VQ decreases the computational load of the distance calculation (there 0.5*N*(N-1) 

distance to compute). Unfortunately, the use of VQ implies the use of an interpolation in order to 

project vectors that are not prototypes of the codebook. 

3. Case Study. Analysis of Atmospheric Pollution throughout the week 
using Soft Computing Models 

This study presents interesting results related to the evolution of different pollution parameters 

using the records of an air quality control station (made available by the Department of the 

Environment-Directorate of Environmental Quality of the Government of the Spanish 

Autonomous Region of Castile-Leon) [30, 31]. The aforementioned station is situated in the urban 

area of the city of Burgos. The study was conducted over approximately half a year in 2007. After 

analyzing all the weeks in the period, a week with a national bank holiday weekend in December 

was selected because many people in Spain travel over this period, greatly decreasing traffic in 

large cities and almost completely curtails industrial activity. 

In this study, the following variables were analyzed: SO2, NO, NO2, PM10. These are standard 

variables used to monitor urban air quality. The variables express the concentration of the 

pollutant in µg/m^3. Regulations have been established for the admitted margins of tolerance, 

values limit and periods of time established. In the case of NO and NO2, the values limit come 

fixed on the Spanish Royal decree (R.D.) 1073/2003, transposed of the board 1999/30/CE. The 

limits of PM10 and SO2 are the demanded for the R.D. 1073/2002, transposed of the board 

1999/30/CE. 

The general characteristics of the site where the measurement station used in the study was 

situated are as follows: Burgos, a city in the north-centre of Spain with a population of around 

170,000 inhabitants and a total municipal area of approximately 107 km2. The city of Burgos is 

854 masl (meters above sea level) at latitude (N) 42º20' and longitude (W) 3º42'. The 

measurement station is located within the city and may be classified as an urban station. 

This study examines the performance of several statistical and soft computing methods when 

analyzing the above-mentioned pollution variables, in order to track the evolution of air pollution 

over a significant time period. Thus, the main aim is to identify the extent to which air quality is 

affected on days with low industrial activity and reduced traffic. 



Experiments and Results 

As already mentioned, the aim of this study is to analyse the difference between working days and 

non-working days using four variables with information on pollution. The analysis was undertaken 

over six months.  

The study, which forms part of a more ambitious project [32, 33], is based on a file containing 

meteorological and pollution data sets recorded at fifteen-minute intervals: a daily total of 96 

records for all data in 2007, referring only to four variables. On this occasion, for presentation 

purpose, hourly averages are taken. Then, there is one sample per hour; 24 samples per day and 

168 samples per week.  

The information represented at each point is visually labelled from Fig. 1 to Fig. 9, which 

shows the time in 24h format and a weekday initial (e.g., 6M means 6 am - Monday). All data was 

normalized for the study. 

The graphical results obtained in this study are presented and analyzed as follows. 

 

Fig. 1. PCA - Projections of hourly pollution parameters. 

Fig. 1. PCA. This method identifies two main clusters (C1 and C2). Cluster C2 groups most 

weekday samples and it is difficult to analyze its structure. C1 is a group of scattered points that 

correspond in this case to Monday (M), which has the samples with the highest pollution 

throughout the entire week.  

 

 

Fig. 2. MLHL - Projections of hourly pollution parameters. 

Fig. 2. MLHL. This method provides improved results with respect to PCA, Fig. 1. Cluster C1 

represents the samples showing the highest pollution on Monday (M) evening, in the same way as 

was seen with PCA (Fig. 1). Cluster C2 in Fig. 1 corresponds to clusters C2a and C2b in (Fig. 2). 

The samples for cluster C2a have lower pollution levels than the samples for cluster C1, These 

samples belong to Tuesday (T) and Wednesday (W). Cluster C2b is undoubtedly the one with the 

most samples. In this cluster, the points represent lower levels of pollution, corresponding to 

Thursday (Th), Friday (F), Saturday (S) and Sunday (Su). Thursday (Th) and Friday (F) were 

national bank holidays that correspond to Constitution Day and the Day of the Immaculate Virgin, 

respectively. On these days, industrial activity is greatly curtailed and many people traditionally 

travel long distances to visit relatives. 

 

 

Fig. 3. CMLHL - Projections of hourly pollution parameters. 

Fig. 3. CMLHL. The difference with MLHL, (Fig 2), is that CMLH is able to identify a new 

sub-cluster of samples. Cluster C2a in (Fig. 2) corresponds to clusters C2a1 and C2a2 in (Fig. 3). 

Samples in C2a1 have higher levels of pollution than samples in C2a2. Finally, Cluster C2b contains 

the same samples as cluster C2b in (Fig 2), but this time with sparser results. Applying CMLHL has 

made it possible to identify in a clearer and sparser way the internal structure based on pollution 

levels. C2b contains the records with the lowest pollution levels recorded over the national bank 

holiday, Thursday (T), Friday (F), Saturday (S) and Sunday (Su). 

 

 



Fig. 4. ISOMAP - Projections of hourly pollution parameters. 

Fig. 4. ISOMAP. This time the results are very similar to those obtained by applying MLHL, 

(Fig. 2). Again, cluster C1 and Cluster C2 with the sub-clusters C2a and C2b are presented. The 

clusters in Fig. 4 contain the same records as in Fig. 2. 

 

 

Fig. 5. CCA - Projections of hourly pollution parameters. 

Fig. 5. CCA. Once again, similar graphical results are obtained. CCA provides the same sample 

clusters as those that are obtained by applying MLHL and ISOMAP (Fig. 2, and Fig. 4). 

4. Conclusions and future works 

The aim of this study is to demonstrate the validity of different statistical and neural models for 

the analysis of air pollution variables over the week in a typical European city such as Burgos, 

using the information available on pollution. After applying nine different statistical and soft 

computing models to the data sets (only five results are shown here), it has been shown that a 

degree of internal structure can be identified. PCA provides an initial approximation to the internal 

structure of the data, but it does not offer interesting information on hourly pollution readings. 

Other soft computing methods applied are able to provide an improved response. MLHL, 

ISOMAP, and CCA provide a good response and very similar results among them. This good 

response is due to the fact that these methods offer a higher subdivision of the clusters; they group 

pollution values and classify them depending on the days of the week. CMLHL offers the best 

visual results, providing a very fine response. This is due to the fact that it is capable of 

differentiating new sub-clusters of data. Clearly, it was possible to fit each of the clusters to 

average hourly values of pollution. It is possible to affirm that the cluster with the lowest levels of 

pollution corresponds to the national bank holiday: Thursday (T), Friday (F), Saturday (S) and 

Sunday (Su).  

In this study only pollutant variables are considered, but further clarification would be desirable 

on the important influence of atmospheric conditions on the evolution of atmospheric pollution. 

Future work will be based on the analysis of more complex data sets that combine pollution and 

meteorological data in the city of Burgos, using soft computing methods, in order to identify the 

relationship between pollution and meteorological conditions throughout the week and over 

different time periods. 
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