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Abstract: In this study, various machine learning algorithms, including the minimax probability
machine regression (MPMR), functional network (FN), convolutional neural network (CNN), recur-
rent neural network (RNN), and group method of data handling (GMDH) models, are proposed for
the estimation of the seismic bearing capacity factor (Nc) of strip footings on sloping ground under
seismic events. To train and test the proposed machine learning model, a total of 1296 samples were
numerically obtained by performing a lower-bound (LB) and upper-bound (UB) finite element limit
analysis (FELA) to evaluate the seismic bearing capacity factor (Nc) of strip footings. Sensitivity
analysis was performed on all dimensionless input parameters (i.e., slope inclination (β); normalized
depth (D/B); normalized distance (L/B); normalized slope height (H/B); the strength ratio (cu/γB);
and the horizontal seismic acceleration (kh)) to determine the influence on the dimensionless output
parameters (i.e., the seismic bearing capacity factor (Nc)). To assess the performance of the proposed
models, various performance parameters—namely the coefficient of determination (R2), variance
account factor (VAF), performance index (PI), Willmott’s index of agreement (WI), the mean absolute
error (MAE), the weighted mean absolute percentage error (WMAPE), the mean bias error (MBE), and
the root-mean-square error (RMSE)—were calculated. The predictive performance of all proposed
models for a bearing capacity factor (Nc) prediction was compared by using the testing dataset, and
it was found that the MPMR model achieved the highest R2 values of 1.000 and 0.957 and the lowest
RMSE values of 0.000 and 0.038 in both the training and testing phases, respectively. The parametric
analyses, rank analyses, REC curves, and the AIC showed that the proposed models were quite
effective and reliable for the estimation of the bearing capacity factor (Nc).

Keywords: bearing capacity; slopes; strip footing; soft computing; MPMR; GMDH

1. Introduction

One of the most common geotechnical issues with strip footings on slopes is their
stability. Many scholars have investigated the stability of this problem using a variety of
techniques, such as semi-empirical methods (e.g., Hansen [1]; Satvati et al. [2]; Khalvati
et al. [3]; finite element methods (e.g., Georgiadis [4,5]); limit equilibrium techniques (e.g.,
Meyerhof [6]); and limit analysis (e.g., Davis and Booker [7]; Kusakabe et al. [8]; Shiau
et al. [9]; Georgiadis [10]). However, these works did not consider the seismic body force
on the overall stability of footings on slopes. Indeed, the seismic bearing capacity problem
is essential for understanding the nature of earthquake zones. To capture this seismic effect,
the pseudo-static technique is a convenient technique. The horizontal and vertical seismic
coefficients (kh and kv) are defined as a function of gravity acceleration. These coefficients
have been considered a common and extensively applied method for assessing the stability
of footings in earthquake zones.
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Previous studies have determined the seismic bearing capacity of footings on slopes
regarding pseudo-static seismic forces. Many methods have been used to compute seismic
bearing capacity solutions, such as the limit equilibrium method (e.g., Budhu and Al-
Karni [11]; Kumar and Mohan [12]) and the limit analysis method (e.g., Farzaneh et al. [13];
Kumar and Ghosh [14]; Yamamoto [15]; Georgiadis and Chrysouli [16]). One of the
numerical techniques that can provide rigorous plastic solutions to stability problems
is the finite element limit analysis (FELA) method, which was successfully employed
by Kumar and Chakraborty [17] to provide the seismic bearing capacity factor for strip
footings on cohesionless slopes. In addition, Chakraborty and Kumar [18] and Chakraborty
and Mahesh [19] also used the FELA technique to determine the strip footings’ seismic
bearing capacities on sloping ground under seismic events. Recently, Luo et al. [20] and Lai
et al. [21] also carried out the FELA method to investigate the seismic bearing capacity of
strip footings on cohesive soils.

Nevertheless, the MPMR, FN, CNN, RNN, and GMDH models have not yet been applied,
based on the findings of the authors’ literature review, to estimate the bearing capacity factor
(Nc) of strip footings on sloping ground under seismic events; meanwhile, these methods have
been widely used to predict the nonlinear behavior of engineering problems. For instance, the
MPMR model was used to estimate the rock strain, the axial capacity of bored piles, the uplift
capacity of a suction caisson, etc., and the results showed that the predictive performance of
the MPMR model was high [22–24]. The FN and GMDH methods were applied to estimate
the axial capacity of bored piles and the settlement of pile groups in clay [23,25]. Many of the
applications of the CNN and RNN methods, which were applied to predict the accurate and
desired target values, have been identified in the literature [26–29].

Taking these considerations into account, this study implements five advanced ma-
chine learning models to evaluate the seismic bearing capacity of strip footings on sloping
ground under seismic events. The strip footings in clay with inclination (β) and height (H)
are taken as a problem statement, as shown in Figure 1. Machine learning models—namely
the minimax probability machine regression (MPMR), functional network (FN), convolu-
tional neural network (CNN), recurrent neural network (RNN), and the group method of
data handling (GMDH) model—were constructed, analyzed, and discussed when using
artificial datasets that were generated from the FELA method. The prediction performance
of the proposed models, i.e., MPMR, FN, CNN, RNN, and GMDH, were thoroughly ex-
amined in terms of eight statistical parameters, score analyses, sensitivity analyses, and
regression error characteristic (REC) curves to identify the best-performing models. In this
study, the authors propose the geotechnical practitioners’ models that are the quickest and
easiest to use. These models are based on software, and require only a basic understanding
of computer programming to determine the strip footings’ seismic bearing capacity on
sloping ground under seismic events. Addressing the geotechnical engineers’ challenges
for finding the seismic bearing capacity of strip footings on sloping ground under seismic
events is a challenging task. The proposed advanced ML models have many practical
implications in the seismic design of soil structures in geotechnical engineering.
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2. Data Collection

Figure 1 depicts the problem definition for a strip footing on a slope, where β denotes
the slope inclination; H denotes the slope height; B denotes the width of the footing; D
denotes the depth of the footing; and L denotes the distance from the top of the slope to the
edge of the footing. The soil is cohesive with a unit weight (γ) and undrained shear strength
(cu). This study employs the pseudo-static approach, which is a simplified method used in
earthquake engineering to estimate the seismic forces acting on structures or underground
works. In this approach, the earthquake-induced ground motion is simplified to a static
force that acts on the structure. The static force is calculated by multiplying the seismic
coefficient (a factor that depends on the seismic hazard and the characteristics of the soil)
by the weight of the structure. The resulting force is then applied to the structure as a
static load. By applying this approach, we assumed that both the footing and slope are
subjected to horizontal seismic acceleration. The horizontal body force is set to khγ, where
kh is the horizontal seismic coefficient. The footing is set to be subjected to qu in the vertical
direction, and khqu in the horizontal direction, where qu is the ultimate bearing capacity.
Note that, in this study, the vertical seismic coefficient (kv) is neglected since it has little
effect on the stability of structures or underground works. In most earthquakes, the vertical
ground motion is usually smaller than the horizontal motion, and its frequency content
is different from that of the horizontal motion. Therefore, it is commonly assumed that
the vertical seismic coefficient can be neglected without a significant loss of accuracy in
estimating the seismic forces acting on the structure or underground work. More details on
this problem can be found in Lai et al. [21].

Based on Lai et al. [21], the seismic bearing capacity (Nc) can be expressed as a function
of six dimensionless parameters as follows:

Nc =
qu

cu
= f

(
β,

H
B

,
L
B

,
D
B

,
cu

γB
, kh

)
(1)

Note that the seismic bearing capacity factor (Nc) in this study is the ultimate vertical
bearing capacity of the footing divided by the undrained shear strength of soil, which is
similar to the classic Terzaghi’s bearing capacity factors. The other dimensionless parame-
ters are D/B, the normalized depth; L/B, the normalized distance; H/B, the normalized
slope height; and cu/γB, the strength ratio. The selected ranges of these six dimensionless
inputs are shown in Table 1 and are according to Lai et al. [21].

Table 1. List of parametric values used in this study.

Input Parameters Selected Values

β 15◦, 30◦, 45◦, 60◦

H/B 1, 2, 4
L/B 0, 1, 2, 4
D/B 0, 1, 2

cu/γB 1.5, 2.5, 5
kh 0.1, 0.2, 0.3

According to Lai et al. [21], FELA techniques were employed to determine the lower
bound (LB) and upper bound (UB) solutions of Nc, where OptumG2 [30]—which is a type of
FELA software—was carried out to obtain all numerical results. Note that an automatically
adaptable mesh refinement technique [31], which was used to enhance the precision of the
upper and lower solutions, was also utilized in the study by Lai et al. [21]. The setting
of the mesh refinement was set to automatically develop from 5000 to 10,000 elements
throughout the 5 adaptive meshing iterations by following certain previous studies (e.g.,
Keawsawasvong and Ukritchon [32,33]; Shiau et al. [34]; Keawsawasvong et al. [35]). Note
that the difference between the UB and LB solutions was within 3% for all numerical results.
An example of the OptumG2 model of the footing on a slope is shown in Figure 2, where
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the potential slip surface can be clearly determined by using the FELA method with the
automatically adaptable mesh refinement technique.
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2.1. Statistical Analysis of the Dataset

Based on the above dataset, various statistical descriptions, such as the range mean
standard deviation (STDEV), skewness, and kurtosis value of the input and output pa-
rameters are presented in Table 2. As per the statistical description presented in Table 2,
the slope inclination (β) varies from 15◦ to 60◦; the normalized slope height (H/B) ranges
from 1 to 4; the normalized depth (D/B) ranges from 0 to 2; the horizontal seismic ac-
celeration (kh) ranges from 0.1 to 0.3; the strength ratio (cu/γB) ranges from 1.5 to 5; the
normalized distance (L/B) ranges from 0 to 4; and the seismic bearing capacity (Nc) ranges
from 0 to 8.48. The value of skewness for the normalized slope height (H/B), the strength
ratio (cu/γB), and the normalized distance (L/B) variables obtained a higher value, so
these variables deviate more from their mean value than the other variables. The kurtosis
value for all variables was negative, meaning that the taken dataset had a lower peak in a
symmetric distribution.

Table 2. Statistical description of the input and output data.

Statistics b H/B D/B kh cu/gB L/B Nc

Max. 60 4 2 0.3 5 4 8.48
Min. 15 1 0 0.1 1.5 0 0

St. dev. 16.78 1.25 0.82 0.08 1.47 1.48 1.58
Mean 37.5 2.3 1 0.2 3 1.75 5.2

Skewness 0.000 0.382 0.000 0.000 0.471 0.435 −0.256
Kurtosis −1.361 −1.501 −1.501 −1.501 −1.501 −1.154 −0.769

Notably, certain seismic bearing capacity factors can depend on each other. Hence, the
correlation heatmap is derived for each input and output variable and is shown in Figure 3.
When the input variables’ correlation coefficient has a high positive or negative value, it can
be difficult to ascertain the impact of these factors on the output. It can be concluded that
the normalized depth (D/B), normalized distance (L/B), and strength ratio (cu/γB) have
a positive correlation coefficient with the seismic bearing capacity (Nc); furthermore, the
normalized slope height (H/B), slope inclination (β), and horizontal seismic acceleration
(kh) have a significant negative correlation with the seismic bearing capacity (Nc), which
means that each input variable has quantified association strength with the output variable.
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In this study, five advanced computational models were used to evaluate the seismic
bearing capacity (Nc) based on influential variables, such as slope inclination (β); normal-
ized depth (D/B); normalized distance (L/B); normalized slope height (H/B); strength ratio
(cu/γB); and the horizontal seismic acceleration (kh). To reduce the dimensional effect and
to improve the accuracy of the proposed models, we first normalized the variables between
0 and 1 using the min-max approach (with Equation (2)) because the scales of the variables
utilized in the model’s construction are not the same [36,37].

DN =
Dact − Dmin
Dmax − Dmin

(2)

where DN and Dact denote the normalized and actual value variables, respectively, and
Dmin and Dmax denote the minimum and maximum values of the variables, respectively.
In the study, a total of 1296 samples were randomly divided into two parts: the training
datasets and the testing datasets. The training phase, which includes 70% of the whole
dataset (i.e., 907 datasets) was utilized for training the model. The testing dataset, which
contains 30% of the whole dataset (i.e., 389 dataset), was used to test the model. The training
data can overfit the model, which may lead to ‘memorization’ instead of ‘generalization’.
Among the various methods available, the dropout method was used to solve this problem
and to avoid overfitting.

2.2. Performance Evaluation Indicators

For evaluation of the model’s performance, the following evaluation indicators are
widely used: (1) the coefficient of determination (R2); (2) the variance account factor (VAF);
(3) the performance index (PI); (4) Willmott‘s index of agreement (WI); (5) the mean absolute
error (MAE); (6) the weighted mean absolute percentage error (WMAPE); (7) the mean bias
error (MBE); and (8) the root-mean-square error (RMSE). The following Equations (3) to
(10) indicate the definition of the abovementioned indices [38–40].

R2 =
∑n

i=1
(
di − davg

)2 −∑n
i=1(di − yi)

2

∑n
i=1
(
di − davg

)2 (3)

VAF =

(
1− var(di − yi)

var(di)

)
× 100 (4)
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PI = adj.R2 + (0.01×VAF)− RMSE (5)

WI = 1−
[

∑n
i=1(di − yi)

2

∑n
i=1
{∣∣yi − davg

∣∣+ ∣∣di − davg
∣∣}2

]
(6)

MAE =
1
n

n

∑
i=1
|(yi − di)| (7)

WMAPE =
∑n

i=1

∣∣∣ di−yi
di

∣∣∣× di

∑n
i=1 di

(8)

MBE =
1
n

n

∑
i=1

(yi − di) (9)

RMSE =

√
1
n

n

∑
i=1

(di − yi)
2 (10)

where di and yi denote the actual and predicted ith values of the seismic bearing capacity,
respectively; “n” denotes the total number of datasets used in the training and testing
phases; and davg denotes the average value of the actual seismic bearing capacity. Some
of these statistical indices, including R2, VAF, PI, and WI, were recognized as accuracy
parameters, whereas others, such RMSE, WMAPE, MAE, and MBE, were classified as error
parameters. A perfect model would have a predicted a value that was identical to or very
close to the ideal value (see Table 3).

Table 3. Ideal values of the statistical parameters.

Statistical Parameters R2 WMAPE RMSE VAF PI WI MAE MBE

Ideal Values 1 0 0 100 2 1 0 0

3. Methodology of Soft-Computing Techniques
3.1. Minimax Probability Machine Regression (MPMR)

The minimax probability machine regression (MPMR) technique was suggested by
Lanckreit et al. [41] as a powerful probabilistic machine learning approach. For the linear
classification problem, the MPMC algorithm was first used in which the minimum proba-
bility of the correctly classified future data was maximized and furthered by the help of
the Mercer kernels function nonlinear version of this theorem. The MPMR algorithm’s
goal, which is based on a nonlinear regression framework, is to maximize the minimal
probability for the correct regression of the actual data with minimum probability, which
falls between the upper and lower bounds of the actual regression. Following the minmax
probability machine classification (MPMC) technique, the following expression is used
for regression:

SupE[z] = ∑
x∼(µ,∑z)

Pr
{

aTx ≥ b
}

(11)

where x ∈ (µ, ∑z) is a random vector representing the class of statistical information,
SupE[z] represents the supremum over the distribution having the mean µ ∈ Rn and
covariance matrix ∑z ∈ Rn×n , and a and b represent the constant value.

MPMC is a classification method created by Strohmann and Grudic [42]. It is used
as a binary classifier for separating data into two sets of points to implement the MPMR
algorithm, in which one set of classes is produced by shifting all the regression data along
the +ε side of the output variable axis, and the other is obtained by shifting all the regression
data along the−ε side of the output variable axis. The MPMR model is based on a regression
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surface, and the classification boundary between these two separating surfaces is ±ε. This
paper uses the MPMR algorithm to estimate the undrained seismic bearing capacity factor.
Assume a set of training data was generated using an unknown regression function f (x),
where f : Rd → R with the following structure. Now, the minimum probability may be
estimated directly with the help of the following regression equation, which is based on
kernel formulation.

y = ∑n
i−1 αiK(xi, x) + b (12)

where K(xi, x) represents the kernel function, y represents the output of the MPMR algo-
rithm, and n represents the total number of datasets of independent variables. αi and b
represent the output of the MPMR model. As a kernel function, the radial basis function
(RBF) is employed, i.e., K(xi, x) = exp

[
−(xi, x)(xi, x)T/

(
2σ2) ], in which σ is defined as

the width of the RBF. In this study, the slope inclination (β), normalized depth (D/B),
normalized distance (L/B), normalized slope height (H/B), the strength ratio (cu/γB), and
the horizontal seismic acceleration (kh) are used as inputs of the MPMR model, and the
seismic bearing capacity (Nc) is used as the output of the MPMR model. Thus, y = Nc and
K(xi, x) = f

(
β, H

B , L
B , D

B , cu
γB , kh

)
. However, the kernel function can be investigated for its

potential in developing a regression model. (Please refer to Strohmann and Grudic’s [42]
work for comprehensive methodology details.) The MPMR model was constructed using
MATLAB software.

3.2. Functional Network (FN)

Castillo et al. [43] introduced a new technique: the updated neural network. To
estimate the unknown neuron functions, an FN algorithm was used on both data and
domain knowledge. This is considered to be the advantage of FN over the ANN algorithm.
Initially, the FN method had a complex topology, but it can now be reduced to simple
terminology. Thus, FNs solve the “black box” issue with neural networks by combining
domain knowledge with data knowledge to infer the problem’s topology. FNs utilize data to
estimate the unknown neuron functions and domain knowledge to ascertain the network’s
topology. In an FN, it is expected that the neural functions have several arguments and
are vector-valued functions, whereas the ANN algorithm uses the sigmoidal function.
Parametric and structural learning are used to learn and estimate the functions. In contrast,
artificial neural networks have predefined neural functions. Compared to ANNs, the FN’s
intermediary layers allow many neuron outputs to be coupled to the same unit. Functional
networks can be classified as either structural learning or parametric learning, depending
on the approach taken to train them. The network’s initial topology is constructed using
the designer’s actual resources in structural learning. Using functional equations, we can
further reduce the complexity of the problem. On the other hand, parametric learning relies
on a combination of functional families to estimate neuron function. The parameters in
question are calculated using the data at hand. Three distinct kinds of components make
up a functional network. They include data stores (input, output, and processing layers),
processors, and directed link sets. The following mathematical Equation (13) is proposed to
approximate the neural function.

fi(x) = ∑n
j=1 aijφij(X) (13)

where (X) represents the input vector and φij represents the shape function; these can
be polynomial functions, such as (1, x, x2, x3, . . . . . . xn); a trigonometric function, such
as (sin(x), cos(x), tan(x) . . . . . . sin(2x)); exponential functions, such as

(
ex, e2x, . . . . . . enx);

or any other acceptable function. Associative optimization functions are used to obtain
a system of linear or nonlinear algebraic equations. Working with a functional network
necessitates prior knowledge of the functional equation. Cauchy’s functional equation
appears more frequently than any other type in the class of functional equations. The
degree/order of the function and the type of basic function (exponential, polynomial, sine,
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cosine, or tangent) are utilized to determine the FN’s effectiveness. To construct the FN
model, the tan basic function (BF) was adopted. The basic architecture of the FN, which is
presented in Figure 4, was used to predict the bearing capacity (Nc) of the strip footing.
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3.3. Convolutional Neural Network (CNN)

A convolutional neural network (CNN) is a deep, feed-forward NN with global
sliding, local connections, and weight sharing; as such, it can solve the problem of excessive
parameters and prolonged training time as the hidden layer increases, thus making the
network extraordinarily applicable and generalizable [44]. It consists primarily of a one-
dimensional CNN (1D-CNN) and a high-dimensional CNN. Furthermore, the 1D-CNN
is frequently employed for time series and natural language processing; meanwhile, for
image processing and video processing, 2D-CNN and 3D-CNN have been used (as in
Wang et al. [45]). For this prediction problem, it should be noted that a 2D-CNN has been
employed. It comprises one input, two convolutional layers, two pooling layers, one fully
connected layer, and an output layer.

Convolutional layers are typically the product of the input matrix multiplied by the
filters. Filters, sometimes known as kernels, are used to identify and categorize features
within the incoming data. Using pooling layers can reduce the spatial dimensions of the
incoming data. In contrast, a fully connected layer adheres to the structure of a CNN and
is made up of a number of hidden layers, which further combine the features that are
extracted. The whole model structure was built, and the main work focuses on the training
of the model. The objective of the training was to determine the optimal values for all
parameters, including the weights and biases, to minimize the loss function. This function
is used to quantify the degree to which the measured value deviates from the anticipated
value. The basic structure of the CNN model is presented in Figure 5.
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3.4. Recurrent Neural Networks (RNN)

Recurrent neural networks (RNNs) are dynamic neural networks that are used to
solve time series problems [46]. RNNs are supervised machine learning models that take
sequence data as their input. They are distinguished from other machine-learning (ML)
model architectures by their use of recurrent connections, which means that the output
of one cell is related to the output of the previous cell. More specifically, the network
memorizes the information from the cell’s output that came from the previous output. In
contrast to a standard neural network, it possesses a recursive loop, as is demonstrated in
Figure 6.
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The parameters of RNNs are trained by employing backpropagation through time
(BPTT) values. The BPTT values propagate the difference between the ground truth and the
output at time t, and backward to time t − 1. Likewise, an error at time t − 1 is propagated
at time t − 2, and the training is then conducted retroactively. Here, the fundamental
equations of a simple RRN are depicted in Equations (14) and (15).

St = f (Uxt + WSt−1 + bh) (14)

yt = f (VSt + bo) (15)

where the variables xt, St, yt represent the input, the hidden, and the output layers at time
t, respectively. Additionally, W, U, and V are the shared parameters with W, indicating the
weight of the input layers. U stands for the weight of the current state and V denotes the
weight of outputs. Here, f (.) is an activation function, and bh and bo are the biases of the
hidden and output layers, respectively.

The RNN that is typically used is both straightforward and effective. In actuality,
however, it can be challenging to train a model for problems that involve a significant
amount of time between the target and the antecedent-related events [47]. In context, the
RNN cannot keep good memory if the time interval is large and suffers from a vanishing
gradient problem (BPTT).

3.5. Group Method of Data Handling (GMDH)

Ivakhnenko developed GMDH in 1971 [48] as an inductive learning algorithm, and
it has been extensively applied to the field of civil engineering to analyze complex and
nonlinear problems. The GMDH network is often referred to as a polynomial neural
network due to the feed-forward of the neural network’s structure [49]. The GMDH
network, unlike other networks, continuously changes throughout the training process.
The identification problem is essentially defined as finding a function f̂ that may be
approximately used in place of the actual one f to predict output ŷ for a given input vector
X = (x1, x2, x3, . . . , xn), which is as close as feasible to its actual output y. Consequently,
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when considering m observations of a multiple input, the single-output data pairs yi can
be written as

yi = f (xi1, xi2, xi3, . . . , xin)(i = 1, 2, . . . , m) (16)

GMDH-type neural networks can now be trained to predict output values ŷi for every
given input vector X = (xi1, xi2, xi3, . . . , xin), i.e.,

ŷi = f̂ (xi1, xi2, xi3, . . . , xin)(i = 1, 2, . . . , m) (17)

To minimize the square of the difference between the actual and predicted output, that
is, to find a GMDH-type neural network, we used

∑m
i=1

[
f̂ (xi1, xi2, xi3, . . . , xin)− yi

]2
→ min (18)

A complex discrete form of the Volterra functional series was used in the form of

y = a0 + ∑n
1 aixi + ∑n

1 ∑n
1 aijxixj + ∑n

1 ∑n
1 ∑n

1 aijkxixjxk + · · · (19)

which are known as the Kolmogorov–Gabor polynomial [50] and can be used to express
general relationships between input and output variables.

This comprehensive mathematical description can be expressed as a system of partial
quadratic polynomials with just two variables (neurons), taking the form of

ŷ = G
(
xi, xj

)
= a0 + a1xi + a2xj + a3xixj + a4x2

i + a5x2
j (20)

Regression techniques were used to determine the coefficients ai in Equation (20) to
minimize the difference between the calculated output ŷ and the actual output y for each
pair of input variables xi, xj. This was conducted to determine the coefficients of each
quadratic function Gi and to ensure that the output in the entire set of input–output data
pairs fit as closely as possible.

E =
∑m

i=1(yi − Gi)
2

m
→ min (21)

The GMDH algorithm’s basic form involves selecting all possible combinations of two
independent variables from a total of n input variables to build the regression polynomial
in the form of Equation (20), whereby, in the sense of the least-squares method, it can best

fit the dependent data (yi,i = 1, 2, . . . , m). As a result,
(

n
2

)
= n(n−1)

2 neurons will be devel-

oped from the observations
{(

yi, xip, xiq
)
(i = 1, 2, . . . , m)

}
for various p, q ∈ {1, 2, . . . , n}

in the feed-forward network’s first hidden layer. Therefore, it is now possible to create
m data triples

{(
yi, xip, xiq

)
(i = 1, 2 , . . . , m)

}
from random selection by utilizing such

p, q ∈ {1, 2, . . . , n} in matrix form.
x1p x1q

... y1

x2p x2q
... y2

· · · · · · · · · · · ·

xMp xMq
... yM


For each row of m data triples, the quadratic subexpression in the form of Equation (20)

can be used to easily generate the following matrix equation:

Aa = Y (22)



Buildings 2023, 13, 1371 11 of 21

where a represents the quadratic polynomial’s unknown coefficient vector in Equation (20),

a = {a0, a1, a2, a3, a4, a5} and Y = {y1, y2, y3, . . . , ym}T (23)

and Y represents the vector of the observation’s output value. It is clear that matrix A is
as follows:

A =


1 x1p x1q x1px1q
1 x2p x2q x2px2q
· · · · · · · · · · · ·
1 xMp xMq xMpxMq

x2
1p

x2
2p

x2
Mp

x2
1q

x2
2q

x2
Mq


Using the least-squares method with multiple regression analysis, the normal equa-

tions are solved as follows:
a =

(
AT A

)−1
ATY (24)

which, for the entire set of m data triples, determines the vector containing the optimal
coefficients of the quadratic Equation (20). Depending on the network’s connectivity
structure, this process is repeated for each neuron in the subsequent hidden layer. Such a
solution, however, is rather prone to round-off errors and, more critically, to the singularity
of these equations when it is obtained directly from solving normal equations.

4. Results and Discussion
4.1. Tuning Hyperparameters of the Proposed Models

For the MPMR technique, the design values of the error insensitive zone (e) and the
width (s) of the radial basis function are 0.005 and 0.3, respectively. For the FNN, the cos
function was used with a four-degree polynomial. The GMDH model was developed
based on eight layers with three neurons and a = 0.6. In constructing the CNN model, the
following hypermeters were used to obtain the best result. Table 4 displays the optimal
values for the deterministic parameters of the CNN and RNN models. The method of
predicting the seismic bearing capacity factor (Nc) of the strip footing is presented by using
a flow chart, as shown in Figure 7.

Table 4. Details of the hyperparametric configurations for the CNN and RNN models.

Hyperparameters CNN RNN

Number of hidden layers 3 3
Batch size 150 150

Activation function ReLU ReLU
Dense layer 64 64

Number of epochs 500 500
Loss function mean_squared_error mean_squared_error

Optimizer adam adam

4.2. Performance Evaluations of the Proposed Models

Figures 8–12 show the scatter plots of the actual seismic bearing capacity (Nc) that
was obtained through the FELA solution as well as the model-predicted seismic bearing
capacity (Nc) for both the training and testing phases for the MPMR, FN, CNN, RNN, and
GMDH models, respectively; these were constructed to provide a more in-depth look at
the performance. The line y = x shows the ideal model with the actual output value = the
model-predicted output value. Figure 2 demonstrates this clearly; all of the data points
cluster closely around line y = x, suggesting that the MPMR model is the best fit. Most
data points lie between the dotted line, which indicates a ±20% deviation of the predicted
output from the actual regression line y = x. Both the training and testing phases were
observed to have significantly less variation in the MPMR model, followed by the CNN,
RNN, FN, and GMDH models.



Buildings 2023, 13, 1371 12 of 21

Buildings 2023, 13, x FOR PEER REVIEW 12 of 22 
 

function was used with a four-degree polynomial. The GMDH model was developed 
based on eight layers with three neurons and a = 0.6. In constructing the CNN model, the 
following hypermeters were used to obtain the best result. Table 4 displays the optimal 
values for the deterministic parameters of the CNN and RNN models. The method of 
predicting the seismic bearing capacity factor (Nc) of the strip footing is presented by using 
a flow chart, as shown in Figure 7. 

Table 4. Details of the hyperparametric configurations for the CNN and RNN models. 

Hyperparameters CNN RNN 
Number of hidden layers 3 3 

Batch size 150 150 
Activation function ReLU ReLU 

Dense layer 64 64 
Number of epochs 500 500 

Loss function mean_squared_error mean_squared_error 
Optimizer adam adam 

 
Figure 7. The flowchart of the methodology in predicting the seismic bearing capacity factor (Nc) of 
the strip footings. 

  

Figure 7. The flowchart of the methodology in predicting the seismic bearing capacity factor (Nc) of
the strip footings.

Buildings 2023, 13, x FOR PEER REVIEW 13 of 22 
 

4.2. Performance Evaluations of the Proposed Models 
Figures 8–12 show the scatter plots of the actual seismic bearing capacity (Nc) that 

was obtained through the FELA solution as well as the model-predicted seismic bearing 
capacity (Nc) for both the training and testing phases for the MPMR, FN, CNN, RNN, and 
GMDH models, respectively; these were constructed to provide a more in-depth look at 
the performance. The line 𝑦 = 𝑥 shows the ideal model with the actual output value = the 
model-predicted output value. Figure 2 demonstrates this clearly; all of the data points 
cluster closely around line 𝑦 = 𝑥, suggesting that the MPMR model is the best fit. Most 
data points lie between the dotted line, which indicates a ±20%  deviation of the 
predicted output from the actual regression line 𝑦 = 𝑥 . Both the training and testing 
phases were observed to have significantly less variation in the MPMR model, followed 
by the CNN, RNN, FN, and GMDH models. 

 
Figure 8. Scatter plot of the actual and predicted seismic bearing capacities (Nc) for the MPMR 
model. 

 
Figure 9. Scatter plot of the actual and predicted seismic bearing capacities (Nc) for the FN model. 

Figure 8. Scatter plot of the actual and predicted seismic bearing capacities (Nc) for the MPMR model.



Buildings 2023, 13, 1371 13 of 21

Buildings 2023, 13, x FOR PEER REVIEW 13 of 22 
 

4.2. Performance Evaluations of the Proposed Models 
Figures 8–12 show the scatter plots of the actual seismic bearing capacity (Nc) that 

was obtained through the FELA solution as well as the model-predicted seismic bearing 
capacity (Nc) for both the training and testing phases for the MPMR, FN, CNN, RNN, and 
GMDH models, respectively; these were constructed to provide a more in-depth look at 
the performance. The line 𝑦 = 𝑥 shows the ideal model with the actual output value = the 
model-predicted output value. Figure 2 demonstrates this clearly; all of the data points 
cluster closely around line 𝑦 = 𝑥, suggesting that the MPMR model is the best fit. Most 
data points lie between the dotted line, which indicates a ±20%  deviation of the 
predicted output from the actual regression line 𝑦 = 𝑥 . Both the training and testing 
phases were observed to have significantly less variation in the MPMR model, followed 
by the CNN, RNN, FN, and GMDH models. 

 
Figure 8. Scatter plot of the actual and predicted seismic bearing capacities (Nc) for the MPMR 
model. 

 
Figure 9. Scatter plot of the actual and predicted seismic bearing capacities (Nc) for the FN model. Figure 9. Scatter plot of the actual and predicted seismic bearing capacities (Nc) for the FN model.

Buildings 2023, 13, x FOR PEER REVIEW 14 of 22 
 

 
Figure 10. Scatter plot of the actual and predicted seismic bearing capacities (Nc) for the CNN 
model. 

 
Figure 11. Scatter plot of the actual and predicted seismic bearing capacities (Nc) for the RNN 
model. 

Figure 10. Scatter plot of the actual and predicted seismic bearing capacities (Nc) for the CNN model.

Buildings 2023, 13, x FOR PEER REVIEW 14 of 22 
 

 
Figure 10. Scatter plot of the actual and predicted seismic bearing capacities (Nc) for the CNN 
model. 

 
Figure 11. Scatter plot of the actual and predicted seismic bearing capacities (Nc) for the RNN 
model. 
Figure 11. Scatter plot of the actual and predicted seismic bearing capacities (Nc) for the RNN model.



Buildings 2023, 13, 1371 14 of 21Buildings 2023, 13, x FOR PEER REVIEW 15 of 22 
 

 
Figure 12. Scatter plot of the actual and predicted seismic bearing capacities (Nc) for the GMDH 
model. 

4.3. Performance Parameters 
To assess the performance of the proposed models, certain statistical parameters, 

such as 𝑅 , VAF, PI, WI, MAE, WMAPE, MBE, and RMSE, were evaluated, the results of 
which are presented in Table 5. The results in Table 5 give some quantitative information 
on the performance of each algorithm for both the training and testing phases. It also 
shows the ranks for the models with better performance. The models that achieve 
statistical parameter values close to their respective ideal values (which are presented in 
Table 3) are considered the most efficient. Generally, the models that attained the higher 
values for the accuracy parameter and the lower values for the error parameter are 
considered the best. The proposed MPMR models attained the maximum accuracy (𝑅 =1) and least degree of error (RMSE = 0.00), followed by the CNN (𝑅 = 0.9945, 𝑅𝑀𝑆𝐸 =0.0140) , RNN (𝑅 = 0.8791, 𝑅𝑀𝑆𝐸 = 0.0655) , FN (𝑅 = 0.8231, 𝑅𝑀𝑆𝐸 = 0.0785) , and 
GMDH (𝑅 = 0.722, 𝑅𝑀𝑆𝐸 = 0.0985) models during the training phase. Furthermore, 
the CNN model attained the maximum accuracy (𝑅 = 0.9754) and least degree of error 
(𝑅𝑀𝑆𝐸 = 0.0297), followed by the MPMR, RNN, FN, and GMDH models during the 
testing phase. Overall, the MPMR model outperformed the CNN, RNN, FN, and GMDH 
models based on the other index results (which are presented in Table 5). 

Table 5. The statistical parameter values. 

Model Phase R2 VAF PI WI MAE WMAPE MBE RMSE 

MPMR 
Train 1 100 2 1 0 0 0 0 
Test 0.9577 95.6775 1.8751 0.9884 0.0214 0.0347 0.0036 0.0387 

FN 
Train 0.8231 82.3142 1.5666 0.9496 0.0508 0.0841 0.0000 0.0785 
Test 0.8605 86.0316 1.6493 0.9606 0.0480 0.0776 0.0044 0.0694 

CNN 
Train 0.9945 99.4461 1.9749 0.9986 0.0085 0.0141 0.0018 0.0140 
Test 0.9754 97.4407 1.9197 0.9937 0.0167 0.0270 0.0022 0.0297 

RNN 
Train 0.8791 87.8739 1.6916 0.9658 0.0385 0.0638 0.0076 0.0655 
Test 0.9143 91.3719 1.7705 0.9749 0.0371 0.0600 0.0142 0.0562 

GMDH 
Train 0.7220 72.1942 1.3436 0.9153 0.0663 0.1098 0.0009 0.0985 
Test 0.7444 74.4356 1.3909 0.9228 0.0654 0.1057 0.0054 0.0938 

4.4. Rank Analysis 

Figure 12. Scatter plot of the actual and predicted seismic bearing capacities (Nc) for the GMDH model.

4.3. Performance Parameters

To assess the performance of the proposed models, certain statistical parameters, such
as R2, VAF, PI, WI, MAE, WMAPE, MBE, and RMSE, were evaluated, the results of which
are presented in Table 5. The results in Table 5 give some quantitative information on
the performance of each algorithm for both the training and testing phases. It also shows
the ranks for the models with better performance. The models that achieve statistical
parameter values close to their respective ideal values (which are presented in Table 3)
are considered the most efficient. Generally, the models that attained the higher values
for the accuracy parameter and the lower values for the error parameter are considered
the best. The proposed MPMR models attained the maximum accuracy (R2 = 1) and
least degree of error (RMSE = 0.00), followed by the CNN (R2 = 0.9945, RMSE = 0.0140),
RNN (R2 = 0.8791, RMSE = 0.0655), FN (R2 = 0.8231, RMSE = 0.0785), and GMDH(

R2 = 0.722, RMSE = 0.0985
)

models during the training phase. Furthermore, the CNN
model attained the maximum accuracy (R2 = 0.9754) and least degree of error (RMSE = 0.0297),
followed by the MPMR, RNN, FN, and GMDH models during the testing phase. Overall,
the MPMR model outperformed the CNN, RNN, FN, and GMDH models based on the
other index results (which are presented in Table 5).

Table 5. The statistical parameter values.

Model Phase R2 VAF PI WI MAE WMAPE MBE RMSE

MPMR
Train 1 100 2 1 0 0 0 0
Test 0.9577 95.6775 1.8751 0.9884 0.0214 0.0347 0.0036 0.0387

FN
Train 0.8231 82.3142 1.5666 0.9496 0.0508 0.0841 0.0000 0.0785
Test 0.8605 86.0316 1.6493 0.9606 0.0480 0.0776 0.0044 0.0694

CNN
Train 0.9945 99.4461 1.9749 0.9986 0.0085 0.0141 0.0018 0.0140
Test 0.9754 97.4407 1.9197 0.9937 0.0167 0.0270 0.0022 0.0297

RNN
Train 0.8791 87.8739 1.6916 0.9658 0.0385 0.0638 0.0076 0.0655
Test 0.9143 91.3719 1.7705 0.9749 0.0371 0.0600 0.0142 0.0562

GMDH
Train 0.7220 72.1942 1.3436 0.9153 0.0663 0.1098 0.0009 0.0985
Test 0.7444 74.4356 1.3909 0.9228 0.0654 0.1057 0.0054 0.0938

4.4. Rank Analysis

A rank analysis is the most straightforward and extensively used technique for evalu-
ating model performance and comparing robustness. The maximum score depends on the
number of models considered in the analysis (i.e., five). In this analysis, we assigned the
score based on the statistical parameter values for both the training and testing phases sepa-
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rately. Which of the proposed models produces the best outcomes is based on the statistical
parameters that are assigned the highest possible score (i.e., five) and vice versa. If two
models produce the same statistical result, their ranking ratings could be identical. When
scoring a model, the training and test scores are added together by using Equation (25) to
obtain a total score. The model that attained the highest score is ranked as one, and the
model that earned the lowest score is ranked as five. From this analysis, it can be concluded
that the MPMR model attained the highest total score (72), followed by the CNN (70),
RNN (44), FN (35), and GMDH (19) models (as presented in Table 6). Thus, the MPMR
model gives the most accurate result, followed by the CNN, RNN, FN, and GMDH models
when calculating the seismic bearing capacity (NC).

Total score = ∑m
i=1 Si + ∑n

j=1 Sj (25)

where Si and Sj represent the score of the individual statistical parameters for the training
and testing phases, respectively. Additionally, m and n represent the number of statistical
parameters used for the rank analysis.

Table 6. Rank analysis of all proposed models based on statistical parameters.

Parameters
MPMR FN CNN RNN GMDH

TR TS TR TS TR TS TR TS TR TS

R2 Score 5 4 2 2 4 5 3 3 1 1
RMSE Score 5 4 2 2 4 5 3 3 1 1

PI Score 5 4 2 2 4 5 3 3 1 1
WI Score 5 4 2 2 4 5 3 3 1 1

MAE Score 5 4 2 2 4 5 3 3 1 1
WMAPE Score 5 4 2 2 4 5 3 3 1 1

MBE Score 5 4 4 3 2 5 1 1 3 2
VAF Score 5 4 2 2 4 5 3 3 1 1

Sub Total 40 32 18 17 30 40 22 22 10 9
Total Score 72 35 70 44 19

Rank 1 4 2 3 5

4.5. Sensitivity Analysis

Sensitivity analysis aims to ascertain the impact on the model’s target variables (i.e.,
Nc) regarding the changes to the model’s input variables, such as β, D/B, L/B, H/B, cu/γB,
and kh. It is a method that is used for determining the results of a choice when only some
of the possible outcomes are known—in other words, an analyst can learn how a shift in a
single variable affects a result if they construct a model with that collection of variables. In
this analysis, the impact of the input variables on the output variable is determined using
the cosine amplitude technique [51]. The data prepared to perform the study were stored
in a data array form (V) as follows.

V = {v1, v2, v3, . . . . . . . . . vn) (26)

where V represents the input vector of length “n”, and vi represents the length vector of
dimension “m”, which is presented as follows in Equation (27):

vi = {vi1, vi2, vi3, . . . . . . . . . vim) (27)

The correlation between the strength of the relation Cij and the dataset of vi and vj
was calculated by using Equation (28).

Cij =
∑m

k=1 vikvjk√
∑m

k=1 v2
ik ∑m

k=1 v2
jk

(28)
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The relative importance between the input parameters and the seismic bearing capacity
(Nc) of the footing are presented with a pie chart in Figure 13.
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From the obtained sensitivity analysis results, it can be concluded that the horizontal
seismic acceleration (kh) has the greatest influence on seismic bearing capacity (Nc) with a
value of 0.89, followed by slope inclination (β) with a value of 0.88 and strength ratio (cu/γB)
with a value of 0.86. The other parameters, normalized slope height (H/B), normalized
depth (D/B), and normalized distance (L/B), have a minimal effect on the seismic bearing
capacity (Nc), with values of 0.85, 0.75, and 0.73, respectively. Finally, it can be concluded
that all five parameters strongly influenced the seismic bearing capacity (Nc). Hence, the
effect of all input parameters was considered when predicting the output. Additionally,
sensitivity analysis can serve as a guide for prioritizing which input parameters to use
when developing a model.

4.6. Regression Error Characteristic (REC) Curve

A receiver operating characteristic (ROC) curve is a graphical representation of a
classifier’s performance in a binary classification problem. Although ROC curves only
apply to classification problems, regression error characteristic (REC) curves can be used
to visualize the performance of regressor models. By plotting the percentage of points
with accurate predictions within the tolerance interval against the absolute error tolerance,
the x-and y-axes of a regression function represent the margin of error and the precision,
respectively. The curve thus obtained is a rough approximation of the error’s cumulative
distribution function. The predicted error is estimated by the area over the REC curve
(AOC). Models perform better when their AOC value is lower. Therefore, ROC curves offer
a visual representation of model performance that is both fast and reliable.

Figures 14 and 15 represent the REC curves of all proposed models for both the training
and testing phases, respectively.
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Table 7 represents the AOC value for all the proposed models for both the training
and testing phases. From the results presented in Figures 14 and 15, it can be concluded
that MPMR is the most accurate model and GMDH is the least accurate model in terms of
prediction accuracy. The obtained value of AOC is shown in Table 7. MPMR has the most
negligible AOC value (0.000025), followed by the CNN (0.0084), RNN (0.0381), FN (0.0503),
and GMDH (0.0658) models in the training phase, and CNN has the lowest AOC value
(0.0164), followed by the MPMR (0.0211), RNN (0.0362), FN (0.0471), and GMDH (0.0644)
models in the testing phase. Finally, it can be concluded that both the MPMR and CNN
models give the most accurate results in the training and testing phases when compared to
the RNN, FN, and GMDH models.

Table 7. The AOC value for all proposed methods.

Phase MPMR FN CNN RNN GMDH Ideal Value

Training 2.51 × 10−5 0.0503 0.0084 0.0381 0.0658 0
Testing 0.0211 0.0471 0.0164 0.0362 0.0644 0
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4.7. Akaike Information Criterion (AIC)

Akaike [52] established the Akaike information criterion (AIC) to determine whether
trained models are generalizable. The Akaike information criterion (AIC) is used to eval-
uate the relative quality of statistical models for a given dataset. The AIC estimates the
generalization potential of each model concerning other models when given a set of models
for a particular dataset. As a result, the AIC offers a model selection method. The AIC
value for each model is calculated using Equation (29).

AIC = n× ln
(

RMSE2
)
+ 2k (29)

where n represents the number of datasets used to train the model and k represents the
total number of input parameters used to train the model. For the best performing model,
the AIC value should be the lowest [53,54]. In this study, as presented in Table 8, the MPMR
model attained the lowest AIC value (−18,953.65 for training and −2518.42 for testing)
compared to the other models. Thus, it can be concluded that the MPMR model has a
greater generalization potential, followed by the CNN, RNN, FN, and GMDH models. The
comparison of the AIC value for all the models is presented in Figure 16.

Table 8. The AIC value for all models.

Model MPMR FN CNN RNN GMDH Ideal Value

Training −18,953.65 −4603.04 −7728.65 −4933.07 −4192.56 Lowest value
Testing −2518.42 −2063.89 −2723.42 −2227.19 −1829.08 Lowest value
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5. Conclusions

This paper presents five advanced machine learning algorithms, i.e., the MPMR,
FN, CNN, RNN, and GMDH models, for the estimation of the bearing capacity (Nc)
performance of strip footings that are resting on undrained cohesive slopes. The suggested
model was constructed by first training and then testing all models on a set of 1296 FELA
solutions. A dataset of 1296 FELA solutions with six individual dimensionless variables,
i.e.,

(
β, H

B , L
B , D

B , cu
γB , kh

)
, was taken as the input, and the seismic bearing capacity factor (Nc)

was considered as the output during the construction of the model. A sensitivity analysis
was performed to determine the influence of the dimensionless input parameters on the
seismic bearing capacity factor. The proposed model’s efficiency and performance were
then analyzed using statistical indicators such as R2, VAF, PI, WI, MAE, WMAPE, MBE,
and RMSE. Subsequently, rank analyses, REC curves, and the AIC were used to compare
the complete performance of the various proposed models. Based on the obtained results,
it is evident that the proposed MPMR model attained the highest prediction accuracy
in predicting the Nc of strip footings. Through this study, the following conclusions
can be drawn: (1) the proposed advanced machine learning model is a valuable tool for
estimating—with less computational effort and greater precision—the seismic bearing
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capacity factor of strip footings; (2) the MPMR model has a particularly high potential for
predicting the desired Nc value of strip footings, as was evident from the values obtained
from the performance parameters, rank analyses, REC curves, and the AIC; (3) the proposed
models can be easily implemented for practical application, as well as for numerous
applications in seismic research; and (4) the model has a particularly low computational
cost of approximately 30 s. Overall, the MPMR model was found to be the best-performing
model, followed by the CNN, FN, RNN, and GMDH models. The comparative results
indicated that all the proposed models in this study have a better accuracy and ability to
estimate the seismic bearing capacity factor of strip footings. However, they have certain
limitations that need to be explored in the future, which are identified as follows: (i) the
proposed models should be trained for large datasets to predict the desired target value
of the seismic bearing capacity factor (Nc) more accurately; (ii) the models created for
estimating the seismic bearing capacity factor (Nc) of strip footings are valid for the defined
range of dimensionless input parameters; (iii) a comparison should be conducted on the
performance of the proposed models via several standard machine learning models and
with metaheuristic optimization algorithms on the testing dataset; and (iv) the proposed
models do not apply to soils with multiple layers. Layered impacts can be studied in
greater depth with additional research.
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