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Abstract 

Given n relatively prime integers pl < < 
p ,  and an integer k < n, the Chinese Remainder 
Code, CRT,, ,..., Pn;k, has as its message space M = 
(0 ,  . . . , nt=l pi - l}, and encodes a message m E M as 
the vector (ml,  . . . ,m,,), where mi = m(mod pi). The 
soft-decision decoding problem for the Chinese remainder 
code is given as input a vector of residues ? = ( T I ,  . . . , rn), 
a vector of weights (w1, . . . , w,,), and an agreementparam- 
eter t. The goal is tofind all messages m E M such that the 
weighted agreement between the encoding of m and ?(i.e., xi wi summed over all i such that ri = m(mod pi)) is at 
least t. Here we give a new algorithm for solving the sof- 
decision problem for the CRT code that works provided the 
agreement parameter t is suficiently large. We derive our 
algorithm by digging deeper into the algebra underlying 
the error-correcting algorithms and unveiling an “ideal”- 
theoretic view of decoding. 

When all weights are equal to 1, we obtain the more 
commonly studied “list decoding” problem. List decod- 
ing algorithms for the Chinese Remainder Code were 
given recently by Goldreich, Ron, and Sudan 151, and im- 
proved by Bonkh [I].  Their algorithms work for t 2 
J2knlogpn/logp1 and t 2 Jknlogp,/logpl, respec- 
tively. We improve upon the algorithms above by using our 
sof-decision decoding algorithm with a non-trivial choice 
of weights, and solve the list decoding problem provided 
t 2 ,/-,for arbitrarily small E > 0. 

1 Introduction 
Given n relatively prime integers pl < 0 . -  < 

p,, and an integer k < n, the Chinese Remainder 
Code, CRT,, ,..., pn;k, has as its message space M = 
(0, . . . , n t ,  pi - l}, and encodes a message m E M as 
the vector (ml , .  . . , m,), where mi = m(modpi). The 
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Chinese Remainder Code (henceforth, CRT code), also re- 
ferred to as the Redundant Residue Number System code, 
seems to have been studied for several years now in the liter- 
ature in coding theory (see [15, 91, and the references there 
in), and its redundancy property has been exploited often in 
theoretical computer science as well. Mandelbaum gave a 
decoding algorithm for this code, correcting 9 errors.’ 

Recently, Goldreich, Ron, and Sudan [5] gave a “list de- 
coding” algorithm for this code. Formally, the list decoding 
problem has as its inputs a vector (PI,. . . ,p,), an integer 
k (specifying the CRT code), a vector (TI, . . . , r,) and an 
agreement parameter t. The goal is to find a list of all mes- 
sages m E M such that ri = m(modpi) for at least t 
choices of i E { 1, . . . , n}. The notion of list decoding was 
proposed independently by Elias [3] and Wozencraft [17] 
as a relaxation to the usual notion of recovery from errors 
(which requires the output to be a single message). Infor- 
mally, a list decoding algorithm offers a method of recov- 
ery from n - t errors. For the case of the CRT code, the 
algorithm of [5] solved the list decoding problem in poly- 
nomial time provided t > JT 2 k n b .  If p, = O(pl), 
and k = o(n), then t can be growing as o(n) and this is far 
better than the results achievable via standard (not list) de- 
coding. More recently, Boneh [ l] reduced the requirement 
on t by a factor of 4 to be able to correct from J* 
agreements. Numerous applications are also now known 
for the CRT list decoding problem. Goldreich et al. [5] de- 
scribe an application to computation of the permanent on 
random instances, Hhtad and Naslund [8] use it in con- 
structing hardcore predicates from some (specific) one-way 
functions, and Boneh [ 11 shows consequences to the task of 
finding smooth numbers in short intervals. While for all the 
applications, the original result of [5] would have sufficed 
(at least to derive qualitatively interesting results), they nev- 
ertheless motivate a closer look at the decoding algorithms 
(and if this yields an improvement in performance, so much 
the better). 

‘Mandelbaum [l 11 does not give a precise bound on the running time of 
the algorithm. It is pointed out in [SI that the algodthm can have exponen- 
tial running time for certain values of the pi ’s. It seems easier to modify 
the algorithm so as to correctly only ~ P f ~ ~ ~ p b ,  errors in polynomial 
(in n, logp,) time (cf. [SI). 
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One weakness common to all the known algorithmic re- 
sults on CRT decoding is their poor(er) performance if the 
primes are varying significantly in size. This can cause the 
algorithm of Mandelbaum [ 1 11 to take exponential time, 
while it degrades the number of errors that the algorithms 
of Goldreich et al. [5] ,  or Boneh [ 11 can correct. This weak- 
ness, in tum, highlights an eccentricity of the CRT code: 
Its alphabet size is not uniform, and so the “contribution” 
of an error is not independent of its location. Viewed dif- 
ferently, if the residue of a message m is known correctly 
modulo a small prime, then this provides less information 
than if the residue of m is known correctly modulo a large 
prime. The first coordinate of the code provides only l ogp l  
bits of information about the message, while the last coordi- 
nate provides l o g p ,  bits of information. However when we 
treat the code as a combinatorial object, all coordinates are 
declared to be equally important. The distortion in translat- 
ing between the two measures of “importance” of the co- 
ordinates leads to a degradation in performance of the code 
and this explains the common occurrence of the quantity 

At first glance, this loss in performance seems inevitable. 
After all we are distorting the natural weighting of the code 
and so the algorithmic results should suffer. However, a 
closer look reveals that this distortion has already been ac- 
counted for when estimating the distance of the code. It then 
follows that the code does have distance greater than n - k 
in the uniform weighting; and thus it should be possible to 
correct (n - k)/2 errors unambiguously. Similarly, some 
standard results on the combinatorics of list decoding imply 
that the output size of the list decoding problem is bounded 
by a polynomial in n if t > a. However, the algebra of 
known decoding algorithms defer to the natural weighting 
of the alphabets of the CRT code. To overcome this limi- 
tation, one needs algorithms to decode the CRT code under 
the uniform weighting, or more generally, some arbitrary 
“user-specified” weighting, of the coordinates of the code. 
Our Results. We first consider the combinatorial impli- 
cations of the question of “reweighting” the coordinates of 
a code in a general setting (and not just the CRT code). Say 
we have a code C of n-letter strings, with its natural weight 
vector i? = ( ~ 1 ,  . . . , an), where ai is a non-negative real 
representing the “natwal importance” of the i-th coordinate 
of the code. (For the CRT code ai = logpi . )  Say the code 
C has distance D,- under this weighting (i.e. for any two 
codewords z,y E C, ai 3 Dz). Now suppose 
we wish to impose our own weighting 6 = ( P I , .  . . , Pn) 
on the alphabets (typically, our weighting would be the uni- 
form one), and wish to study the code C under this weight- 
ing. We first prove some combinatorial results giving some 
lower bo_und on t, such that if the weight of agreement un- 
der the &weighting is at least t, then the size of the output 
of the list decoder is bounded by a polynomial in n. (See 

logpnl logp1. 

Theorem 1 and its Corollaries.) 
Next we consider the task of recovering the list of all 

such codewords in polynomial time, for the CRT code. In 
general, there are few algorithms in the literature on coding 
theory where the natural weighting of the code (usually the 
uniform one) can be overcome by a “user-imposed” weight- 
ing; and this is exactly what we wish to do in this case. ’ b o  
known exceptions to this are the Generalized Minimum Dis- 
tance (GMD) decoding algorithm of Fomey [4], and the 
weighted version of the Reed-Solomon decoding, algorithm 
of Guruswami and Sudan [6].  These two algorithms form 
the starting points for our algorithmic results. 

Our first algorithmic result (Theorem 2) applies the 
GMD algorithm of Fomey [4] to the task of decoding the 
CRT code under the uniform weighting. We show how to 
combine this result with the results of Mandelbaum [ 11, 121 
and Goldreich et al. [SI to obtain the first polynomial time 
algorithm which decodes the CRT code up to half the min- 
imum distance of the code (i.e., recovering from up to 
(n - k ) / 2  errors). We stress that no polynomial time algo- 
rithm was known for this task prior to our result, since the 
run time of Mandelbaum’s algorithm [ 1 1, 121 to correct up 
to (n - k)/2 errors, was not always polynomial in n, l o g p ,  
(see [SI for a discussion). Our algorithm can actually re- 
cover from a number of errors which is less than halfthe 
weighted minimum distance for any set of positive weights 
imposed on the codeword positions. Technically, this part 
of the paper is simple - the main contribution of this part 
may be viewed as highlighting the role of GMD decoding 
in the task of decoding the CRT code. 

Our second algorithmic result extends the weighted list 
decoding algorithm of Guruswami and Sudan [6] to the 
case of the CRT code. As a consequence we show how 
to solve the weight5d list decoding proble? for an arbi- 
trary choice of the p vector, as long as the &weighted er- 
ror matches the combinatorial bound of Theorem 1. This 
result is shown in Corollary 4 to Th5orem 4. We then 
show how to choose the weight vector p (and this part turns 
out to be a non-trivial guess) so that we get a solution to 
the uniform list decoding problem for the CRT code, for 
t 2 &GGj, for a tolerance parameter e > o as small as 
we seek. In fact, we can efficiently list decode as long as t 2 

min { d m ,  
Theorem 3 is the technical centerpoint of this paper. It 

is proven by creating an “ideal”-lic view of error-correcting 
codes and the decoding problem. This view captures all 
known algebraic codes, including Reed-Solomon codes and 
the more general algebraic-geometric codes, as well as 
number-theoretic codes such as the CRT code. Further, we 
present a decoding algorithm in the same framework that 
unifies the algebra of most of the known list decoding al- 
gorithms including those in [16, 14, 6, 5, l], and most im- 

i=l l o g p i )  ( C L &  + E ) } .  
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portant for us, the weighted list decoding algorithm of [6].  
The resulting abstraction reduces the decoding problem to 
a number of “elementary” algorithmic problems on the un- 
derlying ideals. In the case of the CRT code, these prob- 
lems turn out to be well-solved problems on integer lattices, 
such as the problems of computing the sum and the inter- 
section of given lattices, or finding short vectors in them, 
and thereby solves the weighted list decoding problem for 
the CRT code. The unified algebraic framework emerging 
from this study may be of independent interest. 

Organization. We begin by describing combinatorial 
bounds on the “radius” up to which we are guaranteed to 
have a small number of codewords for a general code which 
has varying weights (and varying alphabet sizes) on its var- 
ious coordinates. In Section 3 we describe and analyze a 
“soft-decision” algorithm for decoding CRT codes, and also 
prove our main algorithmic result (Theorem 3). Our algo- 
rithm is motivated and founded upon an ideal-theoretic view 
of existing decoding algorithms [6, 5 ,  13 for “redundant- 
residue codes” like the Reed-Solomon and Chinese Re- 
mainder codes, which we ferret out and describe as an Ap- 
pendix (Appendix A). We then get specific results for inter- 
esting weightings of the coordinates by non-trivial choice 
of weights in the main algorithm. 

2 Combinatorial Bounds 

Theorem 1 Let C be a code of length n with the ith symbol 
coming from an alphabet of size qi. Let the distance D ,  of 
the code be measured according to a weighting vector d i.e., 
for any two distinct codewords c1, c2, xi:cliZcai ai 2 D, 
(assume each ai 2 1 without loss of generality). For a 
weighting vector /3 and a received word y, define the ball 
l?~(y, W )  to consist of all strings z (in the space [ql]  x 
[qz ]  x . . x [q,]) such that &iZri pi 5 W.  Then, for all 
y, the ball Bp-(y, Ep) has at most L* ( xi  z)C1 
codewords from C provided: 

(All sums are for 1 5 i 5 n.) 0 

We prove this bound by generalizing the method of [7], 
which was used to establish a similar tound in the special 
case where d is the all 1’ vector, and /3 E (0, l}n, and all 
qi’s are equal. The details of the proof are quite technical, 
and may bz found in the full version of the paper. 

When f l  equals d or is the all 1s vector, we can get the 
following Corollaries: 
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Corollary1 When B = d in the above Theorem, then 
there are at most a polynomial (in n,  xi  many 
codewords in any ball B p ( y ,  E,) provided E,- 5 atot - 

Corollary2 If pi = 1 for all i, i.e., the distance of the 
received word from codewords is measured using the Ham- 
ming distance, then there are at most apolynomial in n,  1 / ~  
many codewords in a Hamming ball of radius E provided 

E I n - J(fftot - DLI) (cy=’=, & + E ) .  

We will see that for the case of CRT codes, we can essen- 
tially match the bounds of Theorem (1) (in the limit of large 
alphabet sizes) and Corollaries 1 and 2 algorithmically. 

3 Algorithms for decoding CRT codes 
In this section, we discuss efficient decoding algorithms 

for the CRT code. As stated above, we consider a sequence 
pl  < pz < . . . < p ,  of relatively prime integers and an 
integer k < n. Let K = n;=,p i ;  N = ny=lpi.  We 
associate to each integer m E {0,1,. . . , K - 1) the se- 
quence (ml ,  m2,.  . . , mn),  where mi = m mod p i .  We 
will abuse notation and refer to both this sequence and 
m as a codeword. We consider a received word to be a 
sequence (TI, rz, . . . ,r,) of integers with 0 5 ri < pi 
for each i from 1 to n. By the Chinese Remainder The- 
orem, each such sequence corresponds to a unique non- 
negative integer T < N .  For a given sequence of weights 
5 = ( 2 0 1 , .  . . , w,), we say the 5-weighted agreement (or 
simple weighted agreement when the weighting we are re- 
ferring to is clear) between a codeword m < K and a re- 
ceived word T < N is xi  aiwi, where ai = 1 if mi = ri, 
and ai = 0 otherwise. 

In this section, we present two efficient decodin$ al- 
gorithms. For any sequence of positive weights p, the 
first one efficiently (in near-quadratic t@e) recovers the 
unique codeword m < K with highest P-weighted Ham- 
ming agreement with J received word T ,  as long as there 
is a codeword whose e-weighted Hamming distance from 
T is less than half the /.?-weighted minimum distance of the 
code. codeword modulo at least (n + k)/2 positions. This is 
accomplished by adapting the method of Forney, introduced 
for Reed-Solomon codes in [4], to CRT codes. Note that in 
particular this gives the first efficient algorithm to correct 
from (n - k)/2 errors (i.e., decode up to half the minimum 
distance) for the CRT code. 

In the second (which is our main) decoding algorithm, 
the goal is to efficiently find a list of all codewords m < 
K such that m and the received word r have sufficient 
weighted agreement. In particular, we are able to give an ef- 
ficient list decoding algorithm which outputs all codewords 
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m < K which agree with T modulo at least d m  
positions (for any E ,  with the running time of the algorithm 
depending polynomially in 11~). 

3.1 GMD decoding for CRT codes 
For integers k ,  n and relatively prime integers p l  < p2 < 
. -.  < pn9 and any integer j, 1 5 j 5 n, Goldreich, Ron, 
and Sudan [ 5 ]  gave a near-linear time algorithm to compute 
the unique integer m, if any, that satisfies 

where ai is defined in the usual way: ai = 1 if m = 
~i (mod p i )  and ai = 0 otherwise. Note that the above algo- 
rithm decodes up to half the minimum &weighted distance 
( log(N/K))  for the "natural" weighting wi = logpi of the 
CRT code. Using this algorithm as the "basic algorithm" 
and running a GMD style algorithm similar to Fomey [4], 
we are akle to perform such a decoding for any choice of 

To prove this we show a more general result. Suppose we 
have an arbitrary code C of blocklength n. We show how to 
use a decoding algorithm designed for any weighGng 6 to 
produce one that works for the desired weighting p. Define 
A,  = C L  ai - D, where D, is &weighted distance 
of the code, so that A, is the maximum &weighted agree- 
ment between two distinct codewords of C; Ap is defined 
similarly. We are now ready to state and prove the main 
result of this section: 

Theorem 2 Let &, /? E RT be positive real vectors such 
that 3 2 e 2 .. 2 e. Suppose we have a poly- 
nomial time algorithm Alg, that given a received word 
r' = ( T I , .  . . , T n )  and an index j (1 5 j 5 n), can find 
the unique codeword C, if any, whose &weighted agree- 
ment with ?' in the first j codeword positions is more than 
5 ( & ai + A,). Then, for any vector of positive re- 
als p = ( P I ,  . . . , ,&), there is a polynomial time algorithm 
Algp that given a received word ( T I , .  . . , T,,), outputs the 
unique codeword, if any, whose @weighted agreement with 

weights P = (A  7 P27 - 9 A). 

1 

-# 

r'is at least f ( cy=, pi + Ap + Dmax), and moreover the 
run-time of Algg is at most O(n) times'that of Alg,. 

Corollary3 For the CRT code with parame- 
ters ( n , k ; p l , p 2 , .  . . ,p,,), for any received word 
F =  ( T I , T ~ , . .  . ,T,), there is a polynomial time (in 
fact near-quadratic time) algorithm to find the unique 
codeword m = (ml ,  m2, . . . , mn), ifany, that agrees with 
Fin at least positions. 

Proof: By Equation (1) we have a near-linear time decoding 
algorithm for the weighting ai = logpi and A, = log K 

(where K = p1p2 . . ' pk) .  By Theorem 2 applied to pbeing 
the all-ones vector, we have Ap = k and thus we can find 
the unique codeword m that agrees with r' in at least (n + 
k + 1)/2 places. For any constant c, we can also correct 
c additional errors by simply erasing c symbols for all (1) 
possible choices of c positions and then running the above 
decoding algorithm. In particular, this implies that we can 
find the unique codeword with agreement at least (n  + k ) / 2  
with ?'in polynomial time. cl 

Proof of Theorem 2: Recall that the codeword Dositions i 
are ordered so that 3 2 e 2 - . 2 &. Defind 

Note that under the condition x E (0, 1}", the above would 
just define Ap; we relax the condition to x E [0, lIn in the 
above to define Ap.  Clearly Ap 5 & < Ap + Bmax. We 
will present an algorithm to find the unique codeword C ,  if 
any, that satisfies 

(where ai = 1 if Ci = ri and! otherwise), and this will 
imply the claimed result (since Ap < Ap + Pmax). We now 
assume such a C exists, for, otherwise, there is nothing to 
prove. 

The algorithm Algp will simply run Alga for all values 
of j ,  1 5 j 5 n, and pick the closest codeword among 
the (at most n)  codewords which the runs of Alga returns. 
If this algorithm fails to find the codeword C that satisfies 
Condition (3), then we must have, by the hypothesis of the 
Theorem, for every j, 1 5 j 5 n, 

i i 

i= 1 i=l 

Let ji: = (1 1 1 E 0 ... 0) be a vector such that 
Cy='=, a i Z i  = A,  (here 0 5 E < 1). Denote by C the 
last position where Z i  = 1 (i.e., Zt = 1 and Zt+1 = E) .  By 
our definition (2) A p  5 pi& (in fact by the ordering of 
the codeword positions it is easy to see that = p i Z i  
though we will not need this). Now for j _> C + 1, A, = 
Cy=, ai& = E:=, a&. Also, for 1 5 j 5 C, we have the 
obvious inequality aiai 5 ai = ai2.i. 
Combining these with Equation (4) we obtain the following 
uniform condition that holds for all j, 1 5 j 5 n: 

i= 1 i=l i=l 
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Multiplying the jth inequality above by the non-negative 
quantity (5 - e) for 1 5 j 5 n (define &+I = 0 and 
an+l = l),  and adding the resulting inequalities, we get 

n n n n 

which contradicts Condition (3). Thus the codeword C that 
satisfies (3), if any, will indeed be output by the algorithm 
Alga. 0 

3.2 The Weighted List Decoding Algorithm 
Our goal in this section is to efficiently find a list of all 

codewords m < K such that m and the received word T 

have sufficient weighted agreement. We note that a simple 
transformation makes it equivalent for us to find integers 
m where Iml 5 K / 2 ,  with sufficient agreement with a re- 
ceived word ( T I ,  . . . , rn). 

Our algorithm follows the ideal-based framework pre- 
sented in Appendix A. Following [5 ] ,  the basic idea will be 
to find an integer polynomial c ( z )  (based on the received 
word T )  with the property that all codewords that have suffi- 
cient weighted agreement with the received word are roots 
of the polynomial c(z )  over the integers. Then, by factor- 
ing c ( z )  and extracting all factors of the form (x - m) for 
Iml 5 K / 2  where m has sufficient weighted agreement, 
we could recover all sufficiently similar codewords. We are 
able to construct such a polynomial by pursuing two objec- 
tives, which are in turn adaptations of the objectives of [ 161 
in the context of Reed-Solomon codes: 

To ensure that the polynomial c(z) has the property 
that for any integer m such that Iml 5 K / 2 ,  if 
m = Ti  mod pi, then c(m) E 0 mod Mi, for some 
sequence of moduli Mi. By the Chinese Remain- 
der Theorem, this in turn implies that for any m with 
Iml 5 K / 2 ,  we have that c(m) 0 mod (ni M,Oi), 
where ai = 1 if mi = ~ i ,  and ai = 0 otherwise. 

To ensure that the coefficients of ~ ( x )  = cjzj are 

sufficiently small. In particular, for some integer G,  
ensure that Icjl 5 G / ( K / 2 ) j  for all j .  This in turn 
implies that if 1 is the degree of c ( z ) ,  for any m with 

m 5 K / 2 ,  we have that Ic(m)I < Icjl(K/2)j 5 
(1 + 1) * G .  

e 

j=O 

t 

j=O 

By combining Objectives 1 and 2, we see that for any 
integer m such that Iml 5 K / 2  with sufficient agreement so 
that ni M,O' > (1 + 1) . G, we have that m is a root of c ( z ) ,  
not only modulo some number, but over the integers too, as 
we desired. Note that the decoding condition is equivalent 

We show how to achieve these objectives for Mi = p? , 
for arbitrary non-negative integer sequences zi. yielding a 
weighted decoding condition similar to the one in [6] for 
Reed-Solomon codes. 

3.3 The Main Theorem 
We now state and prove our main algorithmic result. 

Theorem 3 For a CRT code with the above parameters, 
given a received word T = ( T I ,  ~ 2 ,  . . . , Tn) with 0 5 T i  < 
pi, and any non-negative integers 1 and zi for 1 5 i 5 n, 
we can$nd in time polynomial in n, log N ,  1 and X i  zi, a 
list of all codewords m that satisfr 

n 

where ai = 1 ifmi = ri and ai = 0 otherwise. 

Proof: In light of the preceding discussion, our basic ob- 
jective will be, given some sequence of integers zi, to find a 
polynomial c(x)  such that for all i, 1 5 i 5 n, the following 
Condition holds: 

(*) For all integers m such that Iml 5 K / 2 ,  we have that 
ri mod pi implies c(m) E 0 mod p i i .  

For a fixed i, consider the (zi + 1) polynomials 

tion (*). Let I f i  be the ideal in the polynomial ring 2[5] 
generated by these (zi + 1) polynomials.2 In other words, 
If i  is the closure of this set of polynomials under addition, 
and multiplication by any polynomial. It is immediate that 
all polynomials in I f i  satisfy Condition (*). We now estab- 
lish that there must be polynomials with small coefficients 
that lie in the intersection3 ideal I = n:=, I?, and thus 
satisfy Condition (*) for all i: 

Lemma 1 For any positive integers 1 and F, i f  

m 

{ p ? ( z  - T i ) ( z i - a )  }a=O. zi These certainly satisfy Condi- 

then there exists some degree 5 1 integer non-zero polyno- 

mial c ( z )  = cjzj such that lcjl < F / ( K / 2 ) j  for all j 

from 0 to 1, and c E I .  
*We note that the exponentiation notation actually makes sense here, 

see Appendix A. 
3Note that this is also the product ideal, but we will refer to it as the 

intersection ideal in this text to retain intuition. See Appendix A for dis- 
cussion. 

e 

j=O 

163 

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on July 27, 2009 at 22:00 from IEEE Xplore.  Restrictions apply. 



Proof: For any fixed i, we will count how many possible 
residues any integer polynomial ~ ( z )  can have modulo I:i. 
Consider the following sequence of polynomials: Let CO(.) 
be the remainder when ~ ( z )  is divided by (z - Ti)" (us- 
ing the standard polynomial division algorithm). Because 
(z - ~ i ) l i  is monic, CO(.) has degree at most zi - 1. Now 
add or subtract p i ( z  - ~ i ) ~ ' - l  as many times as necessary 
from CO(.) in order to force the coefficient of zZi-' to be 
non-negative and less than p i ;  let the result be c'(z). Con- 
tinue this process, obtaining cn(z) by adding or subtracting 
p q ( z  - ~ i ) " - ~  as many times as necessary from c"-l(z) 
in order to force the coefficient of xzi-" to be non-negative 
and less than pq. We stop at Pi(.), which we will call 
the canonical residue of ~ ( z )  modulo I?. The canonical 
residue is a degree (zi - 1) integer polynomial such that 
for all a from 0 to zi, the coefficient of 2" is non-negative 

and less than 
such polynomials. We associate a canonical residue to ~ ( z )  

for each ideal I;, yielding n:='=, p,! " possible sets of 
canonical residues. 

Now we consider the space of degree 5 L integer poly- 
e 

nomials ~ ( z )  = c j z j  such that 0 5 cj < F/(K/2) j  for 

all j from 0 to L. There are Fe+1 . (K/2)(t:1) such poly- 

nomials. If Fe+1 . (K/2)Vi1) > n:='=, p,! '' I, then there 
must either be a non-zero such polynomial c(z) such that 
all the canonical residues vanish, in which case c(z) E I; 
or there must be two distinct such polynomials c(z) and 
c'(z) such that the canonical residues are identical modulo 
every I t i .  In this case, the polynomial c(z) - c'(z) is in 
the intersection I and satisfies the condition of the Lemma. 
U(Lemma I) 

( z i Z 1 )  

There are thus n?=,pq = pi  

Z . + 1  

j=O 

Z . + l  

To establish our algorithmic result, we need only show 
how to find such a polynomial c(z) efficiently. Note that if 
we consider the intersection ideal I restricted to polynomi- 
als of degree at most L, this can be seen as an integer lattice 
L of dimension (a  + 1). Finding a suitable polynomial with 
small coefficients can therefore be seen exactly as finding 
a short vector in this lattice. This can be accomplished us- 
ing lattice basis reduction algorithms such as LLL, provided 
we can construct a basis for this lattice. We stress that it is 
not necessary to explicitly write down the basis; all that we 
need is to be able to efficiently compute a basis. We now 
demonstrate how to do this. 

Explicit bases for the individual lattices Li correspond- 
ing to the polynomials of degree at most L in each I:' are 
easily obtained by considering the generating polynomi- 
als for I f i  restricted to polynomials of degree at most L: 
Let fi = min{z,,t}. The first f i  + 1 vectors in our ba- 
sis correspond to the generating polynomials {p lZi -") (z  - 
~i)" : 0 5 a 5 zi}  from the ideal It'. , For exam- 

ple, corresponding to - ~ i ) ~ ,  we add the vector 

If L > zi, then we also add vectors corresponding to the 
polynomials {z" - (z - T ~ ) ' ~ } : Z ? .  Let M(i)  be the (e + 1) 
by ( L  + 1) matrix whose rows are the vectors from this ba- 
sis. We observe that the integer linear combinations of these 
vectors correspond exactly to the set of polynomials in the 
ideal I:' of degree at most e: 
Lemma 2 The space of polynomials corresponding to vec- 
tors in the lattice Li is exactly the ideal I? restricted to 
polynomials of degree at most e. 
Proof: By construction, the polynomials corresponding to 
integer linear combinations of the rows of M(') are a subset 
of If i  restricted to polynomials of degree at most e. Let 
c(z) = X'(z) . pfi  + . p y ( z  - T i )  + . . . + AZ' . 
(z - ri)li be an arbitrary polynomial of degree at most e 
in I:'. Since pi d (z - ril(2i-j) = (z - ~ i )  d+'(z - 
T i ) ( z i - j - l )  , w e may assume without loss of generality that 
the degree of X j  (z) is at most 0 for each j < zi (if this fails 
for a particular j < zi, subtract the appropriate multiple of 
(z - ~ i )  from Xj(z) and add the appropriate multiple of pi 
to X j + l  (z)). Thus, c(z) is an integer linear combination of 
{ p ~ z i - a ) ( z  - ~ i ) "  : 0 5 a 5 zi} and (2" . (z - ~ i ) ~ ~ } : z ? ,  

as claimed. O(Lemma 2) 

We remark that using standard techniques (see Ap- 
pendix B), given bases for the (full-dimensional) lattices 
Li, a basis B for the intersection lattice L = fly.'=, Li can 
be computed. By Lemma 2, L corresponds exactly to the 
space of polynomials in the intersection ideal I of degree at 

Let L' be a re-scaling of the lattice L where 
(vo, VI,. . . ,vi) E L iff (vo, vi (K/2), . . . ,ut (K/2)') E 
L'. We now show that applying the LLL algorithm to the 
lattice L' gives us the polynomial we are looking for: 

Lemma 3 Let v' be the lattice vector retumed by the LdL 
lattice basis reduction algorithm when applied to the lattice 
L', and let C ( X )  be the correspondingpolynomial. Then for 
any m with Iml 5 K/2 such that: 

@ f .  $ - 2 ,  - 2 r . .  2 2  pf'-2 , pfi-2,  0, ... 7 0). 

most e. 

we have that m will be an integer root of the polynomial 
4.). 

( ( z i : l ) )  Fii 
Proof: Let G = n;=, pi ( ~ / 2 ) ' / ~ ,  Lemma 1 

shows that there exists a vectorv in L' such that for all j, 
we have that lvjl 5 G, and so 1 1 ~ 1 1  5 m. G. Thus, 
the LLL lattice reduction algorithm returns a vector U' E 
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L' which is at most a factor of 2'12 times larger: llw'll 5 
(2'//") . m. G .  Hence, llw'lll 5 d m  - Ilv'll~ 5 
(2'12) . (C + 1) . G. This corresponds to a polynomial c(z) 
such that for all integers m with Im( 5 K / 2 ,  we have that 
Ic(m)I 5 (2'i2) . (C + 1) . G; on the other hand, of course, 
c(z) E I, so by construction c(m) s 0 mod 
The Lemma follows. (Lemma 3) 

Thus, we see that under the condition prescribed by the 
Theorem, we can efficiently find a polynomial whose set of 
roots contains all codewords with sufficient weighted agree- 
ment with the received word, and the decoding can then be 
completed by finding all integer roots of this polynomial 
using the polynomial time algorithm for factoring polyno- 
mials in Z[z] from [lo]. 0 (Theorem 3) 

For easy reference, we summarize in Figure 1 the main steps 
of the algorithm from the above proof of Theorem 3. 

We now present an alternative algorithmic proof of The- 
orem 3, in which we translate the ideal-based reasoning 
given above directly into an explicit lattice. 

Alternative Proof (of Theorem 3): As in the original 
proof, we will seek to find a polynomial c(x) ,  with coef- 
ficients that are bounded in size and with degree at most 
C, such that for all i, 1 5 i 5 n, the following Condition 
holds: 

(*) For all integers m such that Iml 5 K / 2 ,  we have that 

Here, we present an alternative method to find such poly- 
nomials. Recall the definitions of the ideals I i i  and the 
intersection ideal I from the original proof, to provide in- 
tuition for our construction. We build an explicit lattice L 
in which all polynomials (of degree at most C) are repre- 
sented, but where we also represent, for each ideal I?, the 
possible translates of these polynomials by elements of the 
ideal (again restricted to degree at most C). Thus, polyno- 
mials that are present in all the ideals I f i  can be translated 
to 0 in each of the ideals. We constrain all non-zero trans- 
lations to contribute a very large factor to the norm of the 
corresponding vector. Thus, we obtain a lattice L in which 
all polynomials are represented (by many vectors), but in 
which polynomials outside the intersection ideal I must be 
represented by very long vectors, whereas polynomials in- 
side the ideal I have one representative vector (where the 
polynomial has been translated to 0 for each ideal) that is 
quite short. Thus, the construction essentially mimics the 
steps of the proof of Lemma 1 to give this implicit repre- 
sentation, allowing us to extract small polynomials in the 
intersection ideal I. 

Let us now describe the lattice L formally, by presenting 
an explicit basis. The lattice L will have (n + 1) (C + 1) 
dimensions, conceptually separated into n+ 1 blocks of C+l 

m E ~i mod pi  implies c(m) G 0 mod pfi . 

components each. We represent the basis vectors by the 
rows of the following matrix, described modularly: 

0 0 ... 
... qM("-') 

(7) 
Above, all componentmatrices are (C+l) by (C+l). Let 

0 

G 2("+')('+'). The matrix simply represents the 
(C+1) by (e+ 1) identity matrix. The matrix A is an identity 
matrix with each diagonal entry scaled as shown: 

1 0 * * a  0 

A = ( ;  K; * ; *  0 ) 
. . . (K/2)'  

Thus, the last L + 1 basis vectors correspond to the polyno- 
mials 1, z, z2, . . . , 2'. These vectors are broken up into 
(n + 1) blocks of (C + 1) dimensions each: the first block 
measures how large the polynomial can be when evaluated 
on an integer of magnitude at most ( K / 2 ) ;  the remaining 
n blocks are each used to measure the residue of the poly- 
nomial modulo the ideals If1, . . . , 12. In order to measure 
this residue, we need to have other vectors in our lattice that 
allow us to "reduce" this residue by the generators of the 
ideals. The matrices Adi), as defined in the original proof, 
serve this purpose. Recall that the rows of the matrix M ( i )  
correspond to the generating polynomials of the ideal I? re- 
stricted to polynomials of degree at most C. Note, however, 
that in our proof, we will only need that the polynomials 
corresponding to integer linear combinations of the rows of 
M(a) satisfy Condition (*) - we do not need to refer to the 
ideals themselves: 

Now, for any polynomial c(z) of degree at most C, we 
can mimic the steps of the proof of Lemma 1 by adding and 
subtracting integer multiples of the polynomials represented 
by the rows of M(') for each i. Thus, for any polynomial 
c(z) of degree at most C, there exists a vector v E L such 
that for all i between 1 and n, in the i'th block of w there 

is one of at most p,! '' vectors. Hence, (again mimicking 
the proof of Lemma l), if we consider all polynomials c(z) 
of degree at most L such that 0 5 cj 5 G / ( K / 2 ) j  for all 
j ,  we must find either a corresponding vector v E L with 
all 0's beyond the first C + 1 coordinates, or two vectors 
v(') and d2) such that all coordinates beyond the first C + 1 
agree. In the second case, w = - U(/") will have the 
property that lvjl 5 G for all j between 1 and L + 1, and 

=.+1 . 
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L i s t  Decode(?',,, z1,z2,. . . ,zn) 
1. Let 17 be the set of polynomials that are integer linear combinations of {pp (z - ~i)('~-~)}:=-,. 

2. Compute a basis for the lattice L of all degree L polynomials belonging to 02, I t i .  
3. Scale this lattice by multiplying the i'th coordinate by (K/2)2-' to produce the lattice L'. 
4. Run LLL to find a short vector U' in L'; let it correspond to a degree L polynomial c(z) E Z[z]. 
5 .  Find all integer roots m of c(z) (for example, by factoring c(z) over Z[z] using [lo]). 
6. For each root m with Iml 5 K / 2 ,  define the vector a' = ( a l ,  a2,.  . . ,an) by ai = 1 if m E ri(modpi), 

and ai = 0 otherwise. Output m if a' satisfies Condition (6). - 

Figure 1. The list decoding algorithm 

v j  = 0 for all j > L + 1. Thus, by construction, v will 
be, for each i, an integer linear combination of the rows of 
M ( i ) ,  and therefore correspond to a polynomial satisfying 
Condition (*) for all i. 

Hence, there exists a lattice vector v E L such that 
11011  5 m. G. We use the LLL lattice basis reduc- 
tion algorithm to find a short vector v' in this lattice L.  The 
standard analysis of LLL would only guarantee that IIv'II is 
within a 2((n+1)'(e+1)-1)/2 factor of the shortest vector, but 
because of the special structure of the lattice L, we show 
that LLL returns a vector that is within a 2'12 factor of the 
shortest vector: 

Lemma 4 When the LLL algorithm is applied to the lattice 
L above, the first basis vector bl retumed by U L  is such 
that llblll 5 2'12 X,(L), where X1(L) is the norm of the 
shortest nonzero vector in L. 

Proof: Let f i  = (n + 1) . (e + 1) be the dimension of the 
lattice L. We will refer to standard facts about LLL-reduced 
bases and shortest vectors in a lattice, which can be found 
for example in Section 2.6 of Cohen [2]. 

We recall two basic facts. Let b;,  . . . , b i  be the orthogo- 
nalization of the LLL-reduced basis bl . . . , b~ returned by 
the algorithm. In other words, bf is defined inductively to 
equal bi - Ci<i(bi, b;) - b;. Then we have: 

1. For any i , j  such that 1 5 j 5 i 5 f i ,  we have that 
llbj'll 5 2 ( i - j ) / 2  * Ilbfll. 

These two facts together imply that llblll < 
2("-1)/2X1(L). We show that in fact: X1(L) 

min llb;ll, which when combined with the first 
jc{i ,... ,e+i 1 
fact, establishes the Lemma. 

Recall that L is constructed so that any non-zero entry 
of a lattice vector beyond the first ( L  + 1) coordinates must 
have magnitude at least q = a. G 2 f i .  We know that 
a vector in L exists that has norm at most m. G. We 
thus know already that llblll 5 2"12 . X1(L) 5 q/(2"j2>. 

Hence, bl can be non-zero only in the first L i- 1 coordi- 
nates. On the other hand, at least one of the basis vectors 
b l ,  . . . be+2 must have a non-zero component beyond the 
first C + 1 coordinates by linear independence. Let b, be the 
first vector to have a non-zero component in some coordi- 
nate t > L + 1 (by the previous statement, a 5 L + 2) .  Then 
llball 2 q, and by construction of orthogonalization, it must 
be that llbzll 2 q as well, since b: must also have a non-zero 
component in coordinate t. 

Now, for all i 2 a, we have that: 

llb;ll 2 2 ( 0 - i ) / 2 .  llb:ll 2 q / ( 2 " / 2 )  2 llblll = llb;ll. 

Thus, min min Ilbj*ll, and the 

0 (Lemma 4 )  

Thus, the polynomial corresponding to the vector bl re- 
turned by the LLL lattice basis reduction algorithm has the 
property we seek: 

Lemma 5 Let U' be the lattice vector retumed by the LLL 
lattice basis reduction algorithm when applied to the lattice 
L, and let c ( x )  be the corresponding polynomial. Then for 
any m with Iml 5 K / 2  such that: 

jc{i ,..., e+i} l l b j * l l  = jc{i ,..., 5) 
Lemma is established. 

we have that m will be an integer root of the polynomial 
C(.>. 

Proof: By the existence of a vector in the lattice with norm 
at most . G and Lemma 4, we have that IIv'II 5 
(2'12) . m G. Hence, I(v'111 5 d m  . 110'112 5 
( 2 e / 2 )  . ( L  + 1) - G. This corresponds to a polynomial 
c(z) such that for all integers m with Iml 5 K / 2 ,  we 
have that Ic(m)I 5 (2e/2) . ( L  + 1) G. On the other 
hand, since v' is 0 in all coordinates beyond the first L + 1, 
the corresponding polynomial c(z) satisfies Condition (*), 
and so c(m) G 0 mod ( n i p : ' " ) .  The Lemma follows. 
0 (Lemma 3) 
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Thus, we see that under the condition prescribed by the 
Theorem, we can efficiently find a polynomial whose set of 
roots contains all codewords with sufficient weighted agree- 
ment with the received word, and the decoding can then be 
completed by finding all integer roots of this polynomial 
using the polynomial time algorithm for factoring polyno- 
mials in Z[z] from [lo]. 0 (Theorem 3) 

3.4 Decoding for Interesting Weightings 
We now get specific results for the CRT code for interest- 

ing choice of weights on the coordinate positions through an 
appropriate choice of parameters (like e, zi) in Theorem 3. 
We begin by stating a version of Theorem 3 with arbitrary 
(not necessarily integer) values of zi. This result is not diffi- 
cult and involves scaling the weights by a large integer and 
then taking ceilings to convert them to integer weights; a 
formal proof can be found in the full version of the paper. 

Theorem 4 For list decoding of CRT codes, for any toler- 
ance parameter E > 0, and non-negative reals zi, given a 
received word T,  we can in time polynomial in n, log N and 
1 / ~ ,  find a list of all codewords such that 

Corollary 4 For list decoding of CRT codes, for any tol- 
erance parameter E > 0, and non-negative real weights 
$i, given a received word r, we can, in time polynomial 
in n,  log N and 1 / ~ ,  find a list of all codewords whose p- 
weighted agreement with r satisfies: 

Note that the above Corollary implies that, in the limit of 
large pi, we can decode up to (essentially) the combina- 
torial bound of Theorem 1 with ai = logpi and D, = 
log( N / K ) .  Let us now collect further results for the “usual” 
uniform weighting of the codeword positions, i.e., pi = 1 
for all i. 

Theorem 5 For list decoding of CRT codes, for any E > 0, 
we can in time polynomial in n,  log N and 1 / ~ ,  find a list of 
all codewords which agree with a received word in t places 
provided t 2 d m .  
Proof: Let us apply Theorem 4 with zi = 1/  logpk+l for 
1 2 i 5 k, zi = ljlogpj for k < i 5 n, and E’ = 
E logpk+l. This gives that we can decode whenever the 
number of agreements t is at least 

def Define A = k - ,b,”;,“,,; clearly A > 0. Since 
logpk+l 5 logpi for i = k + l , - . . , n ,  the above con- 
dition is met whenever t > A + J ( k  - A)(. - A + E ) .  
Now, a simple application of Cauchy-Schwartz shows A + 
J ( k  - A)(n - A + E )  5 Jm, and thus our decod- 

0 

Theorem 6 For list decoding of CRT codes, for any E: > 0, 
we can in time polynomial in n,  log N and l/E,$nd a list of 

ing algorithm works whenever t > Jw. 
all codewords which agree with a received word in t places 

provided t > /log K (Cy=, & + E ) .  

Proof: This follows from Corollary 4 with pi = 1 for 1 5 
i 5 n. 0 

Note that the above matches the combinatorial bound of 
Corollary 2. The bounds in Theorem 5 and Theorem 6 are 
incomparable in general. 
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Ideals and Error-correcting codes 
In this section we describe a framework for studying al- 

gebraic error-correcting codes and the decoding problem in 
the setting of ideals in commutative rings. We give a de- 
coding algorithm in the same framework - this decoding 
algorithm abstracts and unifies known algorithms for this 
task, and specializes to the algorithm given in Section 3.2 
for CRT decoding. Here we focus only on the qualitative 
features of codes and decoding. A more quantitative ver- 
sion of this abstraction can be developed using norms on the 
underlying rings. We assume the reader is familiar with the 
concept of commutative rings, integral domains and ideals. 

Definition 1 (Ideal error-correcting code) An Ideal Code 
C is given by an integral domain R and ideals J1, . . . , Jn C 
R. The message space of C is some subset M g R. The 
alphabets of C are given by Ci = RI Ji. (Note that the def- 
inition is interesting only if RI Ji is$nite.) The code maps 
the element a E M to the sequence (a + 51, . . . , a + Jn).  

While not every linear code is an ideal code, many 
commonly studied ones, including Reed-Solomon codes, 
Algebraic-geometry codes and the CRT codes, are ideal 
codes. Now, consider an instance of the list-decoding prob- 
lem with a received vector ( T I ,  . . . , T n ) .  Informally, the al- 
gorithm of [16, 14,6,5,  l] cast this problem as follows: 

Definition 2 (“Ideal”-lic list-decoding) Let R [ x ]  be the 
ring of polynomials in x with coefficients from R. Let 
Ii = ( x  - ri )  + Ji be the ideal {a(.) . ( x  - q) + b ( z )  - 
pla(z),  b(x )  E R [ x ] , p  E Ji}. Find a list of all elements of 
R[x] of the form x - f ,  with f E R, such that :E - f E Ii  
for “many” values of i E { 1,. . . , n}. 

From this formulation, their algorithms (and the use of 
factoring there) emerge naturally. 

(Weighted) List-decoding algorithm 

1. Pick vector 21, . . . , Z n  appropriately. 

2.  Find a non-zero polynomial C ( X )  (with “small” 
coefficients) such that c E n;=, IF. 

3. Factor c and report the list of linear factors x - f .  

Note that the notion of products of ideals is a well- 
studied one. When the ideals Ji and Jj are relatively prime, 
the product of the ideals I; and I? equals their intersection 
and this fact often leads to some quantitative improvements 
in the bounds; however is not critical to the correctness of 
the approach. 

In specializing the algorithm above to specific cases, the 
following ingredients need to be added: (1) Algorithms for 
finding representations of intersections and products of ide- 
als. (2) Explicit notion of “small” and algorithms for finding 
“small” elements in the ideal. (3) Choice of zi’s and a quan- 
titative analysis of the performance of the algorithm (since 
a list-decoding algorithm to recover from zero errors may 
not be very interesting). The application to CRT decoding 
in Section 3.2 is obtained by finding and adding these in- 
gredients. 

B Lattice Algorithms 
We recall some standard techniques in the algorithmics 

of lattices, in particular computing the intersection of full- 
dimensional lattices. A more formal treatment may be 
foundin [2, 131. 

Let L be any full-dimensional lattice of dimension d, 
with basis given by the rows of the matrix M. We define 
the dual L* of the lattice L to be {U E Rd :. U . w E 
Z for all w E L } .  Note that the rows of (M-’)T give a 
basis for L*. 

Note also that given bases for two lattices L1 and L2, a 
basis for the closure of union of the two lattices (denoted 
L1 U L2) can be found efficiently using algorithms for com- 
puting the Hermite Normal Form of a generating set of vec- 
tors. Now, to compute a basis for the intersection of two 
lattices L1 and La, observe that L1 n L2 = (L; U L;)*. 
Therefore, by combining the facts above, one obtains an 
efficient algorithm for computing the intersection of full- 
dimensional lattices. 
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