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Soft-Decision Decoding of Reed–Muller Codes:
A Simplified Algorithm

Ilya Dumer, Senior Member, IEEE

Abstract—Soft-decision decoding is considered for general
Reed–Muller (RM) codes of length and distance used over a
memoryless channel. A recursive decoding algorithm is designed
and its decoding threshold is derived for long RM codes. The
algorithm has complexity of order ln and corrects most error
patterns of the Euclidean weight of order ln instead of the
decoding threshold 2 of the bounded distance decoding. Also,
for long RM codes of fixed rate , the new algorithm increases
4 times the decoding threshold of its hard-decision counterpart.

Index Terms—Decoding threshold, memoryless channel, Plotkin
construction, recursive decoding, Reed–Muller (RM) codes.

I. INTRODUCTION

B ELOW we consider decoding algorithms for Reed–Muller
(RM) codes and their subcodes. Given two positive inte-

gers , where , RM codes—denoted below as —

have length , dimension , and Hamming distance , where

To describe the decoding performance of these codes in
the Hamming metric, we use the notion of an asymptotic

.

Definition 1: Given a sequence of codes of growing
length in the Hamming spaces, we say that some
decoding algorithm has decoding if for

there exists a sequence such that

• fails on a vanishing fraction of all error patterns
that have (Hamming) weight up to ;

• fails on a nonvanishing fraction of the error pat-
terns that have (Hamming) weight up to .

Similarly, when codes are used in the Euclidean or any
other metric space, the thresholds and residuals are defined
by considering the error weights in the corresponding metric.
Note that in all cases, we estimate the thresholds up to some
marginal error of order .

A number of decoding algorithms have been developed
for RM codes. In the following, we briefly discuss those for
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which both the asymptotic performance and the algorithmic
complexity are already known. decoding considered
in the seminal paper [1] was the first algorithm developed for
RM codes. This decoding has complexity order bounded from
above by . Subsequently, it was proven in [2] that for long
RM codes of fixed rate , majority decoding achieves the
Hamming threshold of

(1)

Another— —technique is based on the

, which decomposes RM codes

into the two codes

and

Various recursive algorithms are introduced in [3]–[6]. For a
general metric space, these algorithms guarantee bounded dis-
tance decoding [5] with a low complexity order

. One particular design [6] addresses bounded distance de-
coding in the Euclidean metric, by correcting all error patterns
of the Euclidean weight up to .

An efficient technique developed in [7] employs the sym-
metry group of RM codes. This algorithm has been analyzed
for RM codes of the second order, where it substantially
outperforms majority decoding. Finally, feasible maximum a
posteriori probability (MAP) algorithms have been derived for
biorthogonal and Hamming codes in [8].

Recently, new recursive algorithms were developed in [13]
and [14] for decoding in the Hamming spaces. The results are
summarized in the following statement, and will later be com-
pared with a more general algorithm proposed in this paper.

Theorem 2: Long RM codes can be decoded with

complexity of order and achieve the following
thresholds in the Hamming metric:

if

if (2)

Note that the first case corresponds to the low-rate codes.
Here the threshold (2) increases the former decoding thresholds
of [3] and [5] from the order of to . For codes of fixed
rate , the threshold (2) increases times the threshold
of the bounded distance decoding and also doubles that of the

0018-9448/$20.00 © 2006 IEEE
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majority decoding. Our goal is to generalize these results for an
arbitrary memoryless channel.

II. SUMMARY OF THE RESULTS

In the sequel, we study soft-decision recursive algorithms. In
doing so, we shall use the following setting. Suppose that the
two equiprobable symbols are transmitted over a symmetric
memoryless channel with an additive noise that has
probability density function (pdf) . For any received symbol

, one can readily calculate the two posterior probabilities

of sending a and a , respectively. Then we find their

(3)

Given that the symbol is being transmitted over the channel
, the first two moments of the random variable (RV)

equal

(4)

We shall see that our decoding thresholds can be defined in terms
of parameter

(5)

which is defined by the pdf . The main result is given in the
following theorem.

Theorem 3: Consider long RM codes of length

and distance that satisfy the restriction

as (6)

Let these codes be used on a memoryless channel such that

(7)

Then these codes can be decoded with complexity of order
and give

• a vanishing block error probability if

(8)

• a nonvanishing block error probability if

(9)

Note that Theorem 3 holds for all long RM codes with the
exception of those whose distance is bounded from above by
for some constant . In Section VI, we shall consider the
applications for the binary-symmetric channels (BSC) and the
additive white Gaussian noise (AWGN) channels, and see that

parameter serves as a measure of channel quality. We shall
also see that for both channels, condition (7) is superseded by
condition (8) and can be removed. As one particular example, let
us replace any symbol received on a general channel by its
sign . The corresponding (hard-decision) BSC has transition
error probability

(10)

In this case, it is readily verified that , and
. Then Theorem 3 reads as follows.

Corollary 4: Consider long RM codes that satisfy re-

striction (6). On a BSC with transition error probability , these
codes can be decoded with complexity of order
and give

• a vanishing block error probability if

(11)

• a nonvanishing block error probability if

(12)

In essence, Corollary 4 shows that if equality holds in (11),
then the decoding corrects most error patterns of the weight ,
but fails to do so on the weight for an arbitrarily small

. It can also be verified that the earlier Theorem 2 can
be obtained by estimating the right-hand side in (11) as a func-
tion of and . Another important corollary is obtained for an
AWGN channel with a noise power and the

(13)

In this case, recursive decoding yields the following threshold
in the Euclidean metric.

Theorem 5: Long RM codes can be decoded with

complexity of order and achieve the Euclidean
threshold , where

if (14)

if (15)

Note that the bounds in (14) and (15) increase about
times the Euclidean threshold of the algo-

rithms [5] and [6] that perform bounded distance decoding.
Finally, we compare two different settings: first, when de-

coding employs the original soft-decision outputs and, second,
when it directly proceeds to the corresponding hard-decision
BSC. For the latter case, the decoding thresholds are already
given in (2). For comparison, we perform a similar calculations
on the AWGN channels, and count the number of symbols
randomly inverted in the transmission process. Namely, we shall
derive the tight upper bound on the number that yields a van-
ishing decoding error probability. Then we have the following
corollary to Theorem 3.
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Corollary 6: For long RM codes of fixed code rate

, the recursive soft-decision decoding of Theorem 3 in-
creases times the corresponding hard-decision threshold

The paper is organized as follows. We briefly summarize re-
cursive properties of RM codes in Section III, where we mostly
follow a more detailed discussion of [13]. Then, in Section IV,
we introduce the new soft-decision algorithm . In Section V,
we shall begin our study of decoding performance. The analysis
will be based on the central moments of the RVs recalculated in
the decoding process. Theorems 3 and 5 conclude this study in
Section VI.

III. RECURSIVE STRUCTURE OF RM CODES

To define RM code , represent all positions as

points in . Let

be any Boolean polynomial of degree or less in variables
. The corresponding codeword is obtained by as-

signing the value to any position . We then de-
compose any polynomial in the two parts

using polynomials and in variables. The cor-
responding codewords and belong

to the codes and , respectively. Also, now is

represented in the form , which is the well-known
[9]. By continuing this process, we obtain

four RM codes of length and proceed further. Finally, we

end this splitting at the biorthogonal codes or full spaces

, where

Remark: Later we will see that ending this process at the

codes increases the decoding threshold when compared

to the full splitting that ends at the repetition codes .

We also enumerate the above procedures as follows. We say
that is split onto two “paths” and and assign the path value

to a -component and to a -component. In
each step of our splitting, we repeat the same procedure for
the component . If our splitting ends at some left-end code

, this gives us the corresponding binary path

of length . Otherwise, if the splitting ends at the right-end

node , we obtain a path of length , which is denoted
as

Fig. 1. Decomposition of RM code .

Example: In Fig. 1, this decomposition process is shown for

the RM code of length 2.

This code is first split into code and code .

Code is then split into codes and , while

is split into and . In the final step, two codes

obtained in the previous step are again split into codes and

. This gives six different paths:

the leftmost path , which ends at the code ;

the paths and , which end at ;

the paths and , which end at ;

the rightmost path , which ends at .

Note that our polynomial is defined by the set of binary
coefficients

which in essence form information bits that encode a vector
. Then the preceding procedure also decomposes

into two information subblocks which encode vectors and .
Proceeding in the same way, we see that any codeword can be
encoded from the information strings assigned to the different

end nodes and . Also, the encoding follows the same

splitting process and can be enumerated by the above paths .

Thus, any path that ends at the left-end code gives

information bits, while any path terminated at the right-end code

gives bits. In the sequel, we use notation for the

specific information string associated with any path .

IV. RECURSIVE DECODING ALGORITHM

Let any binary symbol be mapped onto . Then any
codeword of RM code belongs to and has the form

This codeword is transmitted over a memoryless channel .
The received block consists of the two halves and ,
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which are the corrupted images of vectors and . By taking
the symbols and for each , the decoder
finds the posterior probabilities

We first try to find the codeword from and then pro-

ceed with the block .

Step 1. Here we use both probabilities and to derive the
posterior probability

of the symbol of codeword . Obviously,
iff the symbols and are equal. Thus, using the formula
of total probability, we find

(16)

Symbols are combined into the vector of length . Then
we use some soft-decision decoder specified later. The

decoding result is then passed to Step 2.

Step 2. We first take the channel outputs and the decoded
symbols to find the posterior probability

of the symbol on the right half . Here we assume that Step
1 gives the correct vector , and take

if
if

Now we have the two posterior probabilities and of the
same symbol . By using the Bayes’ rule, we find the combined
estimate

(17)

Symbols form the vector of length . Then we use some
(soft-decision) decoding algorithm and find a subblock

.

To simplify our notation, in the following we use an equiva-
lent description. Given position , we use (3) to find the differ-
ence between the two posterior probabilities and of
sending and

Similarly, define the differences on the right
half and combine all symbols and into the vector

. It is readily verified that formulas (16) and (17) are
rewritten as follows:

(18)

(19)

However, it is yet an open problem to estimate the asymptotic
thresholds when function (19) is used in our recalculations.

Therefore, we keep the first rule (18) but replace (19) with

(20)

We will see in Section VII that such a replacement does not
degrade the decoding threshold.

In a more general scheme , we keep decomposing sub-
blocks and using vectors and as our new inputs,
instead of the former vectors and . In all intermediate
steps, we only recalculate the quantities and using (18)
and (20). Finally, we perform (soft-decision) minimum-distance

(MD) decoding once we reach the biorthogonal codes or

full spaces . In the latter case, the decoder performs trivial

bit-by-bit decision, while in the biorthogonal codes this is done
by choosing the code vector with the maximum inner product

(21)

The decoded codeword and the corresponding information
block are now obtained as follows.

Algorithm ( for an input vector .
1. If , execute the following.

1.1. Calculate quantities .
Decode into the vector .
Pass and to Step 1.2
1.2. Calculate quantities .
Decode into the vector .
Output decoded components

.

2. If , use MD decoding (21) at .

3. If , use MD decoding at .

Note that recalculations (18) require operations. In ad-
dition, note that MD decoding (21) of any node gives the same
results if all symbols of the input vector are scaled proportion-
ally. Therefore, we can replace (20) by a simpler rule

which requires (floating-point) operations. Therefore, our de-
coding complexity satisfies the following recursion:

To find the complexity order , we also use the following
“boundary” conditions. MD decoding of trivial codes of
any length can be executed in operations. MD decoding of
biorthogonal codes of any length requires at most

operations (see [9, Sec. 14.4]). Now we obtain the complexity
estimate, which is similar to that of [13].

Lemma 7: Algorithm decodes RM codes with

complexity

Note that has the maximum order of operations
claimed in Theorems 3 and 5. Our goal now is to estimate the
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correcting capability of the algorithm, which will be done in the
following two sections.

V. PRELIMINARY PROBABILISTIC ANALYSIS

OF THE ALGORITHM

A. Recalculation of the Outputs for

Our next goal is to analyze the decoding error probabilities
obtained on the different paths . First, consider two paths and
, and let be the first (senior) position where these two disagree.

Then we say that succeeds and write , if and
. Note that after identical decoding steps, path

moves left while moves right. Therefore, is processed after
.

Now let us consider any left-end subpath , that ends on the

biorthogonal code . For any , let denote

the th codeword of this code, and let be its support, that is
the subset of code positions with symbols . Let also denote
the vector that consists of identical symbols . Here
we take and . Then

Without loss of generality, we assume that the codeword is
transmitted. Then the correct decoding outputs an all-one code-

word on any end node . Given the original vector , let

be the vector obtained by recalculations (18) and (20) on a
subpath . For any support , it will be convenient to use the
weighted sum

(22)

It follows from definition (21) of MD decoding, that the code-
word is not chosen if1 for any . To sim-
plify our recalculations (18) and (20) on any path , we wish
to consider only the case when all preceding MD decodings
(21) return correct vectors from all the previous paths

. In this case, recalculations (18) and (20) are reduced on
any path to a simpler form

(23)

Below we also consider any incomplete (sub)path of some
length and its immediate prefix

For any subpath and any step , we can now recalculate the
outputs using a simplified recursion

if
if (24)

which is independent of the previous results. Then the event

(25)

1Here we assume that Y = 0 is accounted as a negative quantity with
probability 1=2.

represents the decoding failure on any path . This has proba-
bility

(26)

Now consider any right-end path , that ends on the code

of length . Here, the vector consists of symbols .
We shall see that the index can be dropped; therefore, in the
sequel denotes any symbol obtained on this path . Corre-
spondingly, MD decoder (21) makes a bit-wise decision

which is incorrect with probability

(27)

These probabilities are used in the following lemma.

Lemma 8: Block error probability taken over all infor-
mation paths satisfies inequalities

(28)

Proof: Here the lower bound is the probability of the im-
mediate failure on the first (leftmost) path . To derive the
upper bound, consider the probability

(29)

that is the first erroneous path. Here we take the complemen-
tary events on all previous paths . Obvi-
ously, , since the right-hand side of (29) includes
intersecting events, of which definition (26) keeps only the event

. Also, note that . Thus, we obtain the
upper bound (28).

B. Asymptotic Setting

Our goal now is to estimate the maximum error probability
obtained over all paths . To proceed further, we use the

following setup.
1. First, note that the original blocks and are derived

from the different channel bits . Consequently, their descen-
dants and are also obtained from the different channel bits.
Then this process repeats itself in (24). Thus, all symbols
of any vector are independent and identically distributed

RVs. It is for this reason that we use the common nota-
tion for any random symbol in (27).

2. Next, note that any RV of (22) is the sum of
i.i.d. RV for any . Therefore, it has the same pdf for
any subset , and we can consider the single RV

(30)

In the sequel, we also add the suffix to any left-end path

ending at the node and obtain the extended paths, all of

which have the same length and end at the same “sink”
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. In this case, RV can be considered as the result of

recalculations (24) performed on the suffix .
3. Let , denote the expectation of an RV .

Originally, all RV have positive expectations . Thus, the
expectations remain positive on any path due to recalcu-
lations (24). Below, we consider the normalized RV

(31)

By replacing the sum in definition (25) with , we
obtain the following bounds:

(32)

Here, the probability of incorrect decoding into any single code-
word serves as a lower bound, and the union bound is used
as its upper counterpart.

4. For any path , we consider the RV and define its th
central moment

(33)

where is a positive integer. To upper-bound the error probabil-
ities , we shall combine (32) with the Chebyshev inequality
for the moments of any even order

(34)

5. We shall take and use a relatively high central
moment , which will give the best estimates in the upper
bound (32). By contrast, the low moments—say —yield
much weaker bounds. In the sequel, we shall estimate the largest
moment taken over all paths .

C. Ordering of the Paths

Our goal now is to find the maximum moment . Direct
calculations —using recursive formulas (24)—yield very bulky
expressions for the general moments and even the vari-
ances on most paths . Therefore, we shall replace exact
calculations with a partial ordering of the moments . This
ordering will be performed in Theorems 9 and 10, and shows
that is achieved on the leftmost (first) path

(35)

Thus, our problem will be reduced to finding .
Discussion: Recall that for any path ,

we take two i.i.d. RVs and on any intermediate step .
Then for , we perform a “non-Gaussian” recalculation

, while for , the transformation makes
the result more Gaussian-like. Therefore, we can assume that
the Gaussian approximation is valid for any path with a long
all-one tail . However, it is easy to verify that most paths

end at the nodes with a small , and have distributions

different from the normal pdf (similarly to the message-passing
algorithms). It is for this reason that we seek the worst path .
Now consider two subpaths and that disagree in their
last two positions

(36)

We also add the same suffix to both paths and say that the
paths and are neighbors. The

following theorem is central to our analysis. Its proof—given
in Appendix I—does not depend on the original pdf of random
variables and can be applied to a general channel .

Theorem 9: For any even positive , any two neighbors
and satisfy inequality

(37)

This theorem leads to the following important statement
proven in Appendix II.

Theorem 10: For any path and any even positive , the error
probability on any path can be bounded using the moment

of the leftmost path

(38)

The overall block error probability can be bounded as follows:

(39)

VI. DECODING THRESHOLDS

A. Recalculation of the Largest Variance

It is readily verified that for any position , the normalized
channel outputs have the range and the
variance

(40)

that only depends on the parameter of (5). Our next goal is to
estimate the variance on the leftmost path .

Lemma 11: On a memoryless channel , the leftmost path
has the variance

(41)

Proof: We use equalities (24). Consider any path
with the last bit . Then it is easy to verify that the vari-

ance satisfies recursions

if

if (42)

The first recursion in (42) shows that on the prefix , the
original variance of (40) is replaced with

Then the second recursion of (42) is applied to the suffix .
This gives equality (41).

B. Asymptotic Threshold

Proof of Theorem 3: To prove estimates (8) and (9), we
take the corresponding boundary values

(43)

(44)

and find the two values of the variance in (41)

(45)

Next, recall that is the sum of i.i.d. RVs
. All these variables have the mean and the

variance . Note that for both
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values of in (43) and (44). Also, condition (7) shows that all
RVs are limited as

(46)

Now it follows from [10, Theorem VIII.3] that the sum has
the pdf that tends to the Gaussian distribution where
the variance is defined in (41). Also, restriction (6) shows
that the number of these RVs grows faster than any polyno-
mial order . For this reason, we can approximate the residual
behavior of by the Gaussian distribution as .
(See also Remark 1 following the proof.) In particular, the lower
bound (39) is approximated as

(47)

where

Thus, our choice of gives a nonvanishing block error proba-
bility, and (9) is proven.

To prove (8), we approximate by the Gaussian distri-
bution . To apply the upper bound (39), we need to
estimate the moment . Here we first calculate the cen-
tral moment of the normal RV

(48)

Next, we use as an asymptotic approximation of .
(See also Remark 2 following the proof.) Then the upper bound
in (39) reads

(49)

Thus, we obtain the vanishing block error probability for
, and the proof is completed.
Remarks:
1. Consider the sum of i.i.d. RV with the

mean value of . It follows from [10, Theorem XVI.7.1] that
the residual probability tends to its Gaussian ap-
proximation (47) if the corresponding number of standard devi-
ations is small relative to

Both quantities and satisfy this asymptotic due to the
restriction (6).

2. Asymptotic approximation for large is
also related to Remark 1. Namely, to estimate the moment

we first take and approximate the pdf by
. For , we use Hoeffding’s or Bennett’s

inequalities [11, eqs. 2.8 or 2.9], which show that for the RV
limited by (46), the pdf of their sum declines faster than

, which is smaller than .
3. Finally, note that the normal RV considered

above attains its smallest moment at , and that
has the same exponential order as the Gaussian approximation

. It is for this reason that we use in (48).
Now consider a slightly different algorithm , which

does not stop at the biorthogonal codes but proceeds further

to the repetition codes . The following—almost iden-

tical—theorem shows that requires a bigger parameter
that is the square root of (43). Thus, this algorithm is

inferior to .

Theorem 12: Algorithm has complexity order of

for decoding RM codes on a memo-

ryless channel . Provided that and
, algorithm gives

• a vanishing decoding error probability if

• a nonvanishing decoding error probability if

C. Applications for BSC and AWGN Channels

First, we apply Theorem 3 for a BSC with transition error
probability . Then the RV is defined according to (3) as

if
if

Then it is easy to verify that and are
equal

In this case, we remove restriction (7) and obtain Corollary 4.
Next, consider an AWGN channel with normal pdf

. If the symbol is transmitted, the channel output
has pdf . Then definition (3) gives RV

We will need the following results of [12].

Lemma 13: Consider the normal RV and its
function

Then both moments and tend to only if , and
they tend to only if . Also,

if

if (50)

Proof of Theorem 5: Recall that we obtain a vanishing
error probability if we take in (43). It is also easy to
verify that in this case

if (51)

if (52)

First, we study the case of (51). By definition of
, (43) and (50) give

(53)

Now we see that restriction (7) can be removed due to the
stronger restriction (53).
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Let a noise vector with the normal components
be added to the transmitted codeword . Then the vectors and

are separated by the squared Euclidean distance

The squared sum has -distribution with degrees of
freedom. It is well known [10] that tends to the normal
distribution as . Thus, we have asymptotic
equality

Now we see that the error patterns of the squared Euclidean
weight up to have probability about . However, all but a
vanishing fraction of these errors get corrected given of (53).
Therefore, the Euclidean threshold satisfies the lower bound
(14)

On the other hand, (44) shows that a slightly different
gives a nonvanishing error probability. In this case, condition
(53) is now replaced by the asymptotic equality

This immediately gives the upper bound in (14).
Similarly, consider the second case (52). Since , we

have . Then also satisfies restriction (7). Also, (50)
gives the approximation . Then condition
(52) guarantees a vanishing block error probability provided that

satisfies condition

(54)

Taking the logarithms of both sides, we rewrite the latter as

Thus, the squared threshold satisfies the lower bound

To obtain the upper bound, we apply the same arguments to (44).
Then equality (54) is only slightly modified to

(55)

which gives the same asymptotic threshold in
(15) after we take the logarithms of both sides.

Proof of Corollary 6: Consider any RM code of

code rate

It is easy to verify that is bounded away from both and
only if as . Thus, we use restrictions (52)
to consider long codes of nonvanishing rate .

Next, note that on the AWGN channels, each symbol is in-
verted with the probability . Then all the error patterns
with or fewer inversions have combined probability
that tends to . Most of these error patterns are corrected if

satisfies condition (54). On the other hand, a nonvan-
ishing fraction of them is not corrected given condition (55).
Now we see that both conditions give a similar threshold ,
which satisfies asymptotic equality

and increases times the hard-decision threshold
of (2).

VII. POSSIBLE IMPROVEMENTS AND CONCLUDING REMARKS

In this paper, we designed a recursive decoding algorithm for
RM codes and developed probabilistic tools that give its asymp-
totic decoding threshold on an arbitrary memoryless channel.
Our study yet leaves many open problems. First, note that the
thresholds of different paths can only show when the output
error rates begin their asymptotic decline. Therefore, we need
to tightly estimate the error probabilities instead of these
thresholds. This problem is especially important if decoding
is performed on good channels since computer simulation be-
comes prohibitively time consuming. Estimating the exponen-
tial moments instead of the power moments can
give a solution to this problem.

The second direction is to refine the algorithm and fur-
ther increase its threshold. In particular, we can consider the al-
gorithm that performs the original recalculations

(56)

instead of the simplified rule . To date, no analytical
techniques are known for this modification, due to the nonlinear
transformation (56) of the two random variables. However, the
following simple statement shows that this algorithm has
limited advantages.

Lemma 14: Algorithm cannot increase the threshold of
the simplified algorithm .

Proof: Both algorithms use the same transformation
in (18) while proceeding on the weakest (leftmost) subpath

. Thus, we obtain the same RV and the same
error probability in MD decoding (21). On the other hand, this
path completely defines the decoding threshold of the
simplified algorithm , according to Theorem 10. Therefore,
the threshold of is at least equal to that of .

It is interesting to note that algorithm can be further ad-
vanced by using the likelihoods of the received
symbols in the decoding rule (21) instead of their differences

used in . Simulation results show that this enhanced al-
gorithm slightly outperforms the simplified version at
the expense of a higher complexity. For example, in Fig. 2,

we present simulation results for RM code and also give

thecorresponding complexity estimates using the number of the
floating-point operations. We note, however, that the algorithm

increases its gain over for the longer codes that we
tested.
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Fig. 2. (128; 64) RM code . Word error rate (WER) for the algorithms � and �̂ . Number of operations: j� j = 1072; j�̂ j = 3888.

Finally, it is important to extend the preceding analysis to
the subcodes of RM codes. In particular, it turns out that the
probabilities rapidly decline as the decoding proceeds to
the new paths . Thus, code performance can be substantially
improved by pruning a few leftmost paths. For example, this can
be done by setting the corresponding information bits as zeros.
To date, however, the path ordering established in this paper
is rather incomplete; therefore, optimal pruning is yet another
open problem.

APPENDIX I
PROOF OF THEOREM 9

The proof consists of two parts and generalizes the proof of
Theorem 13 of [14].

1. We first prove inequality (37) for the paths and de-
fined in (36). Let us consider four different i.i.d. RVs ,
and , which all have expected values and represent four
different outputs obtained on the common part of

and . Then it is readily verified that and have the
outputs

We then study their moments and defined in
(36). First, we replace with the new RV

that has the same and the moments . Then and
are related by the equality

(57)

where

Note that the function has a symmetric distribution for
any given sum (though these two variables are obviously
dependent). The same fact holds for given any .
Therefore, RV satisfies the equality

(58)

for any value of . Below we say that is symmetric given
. Equality (57) also shows that RV and have the same

expectation, which is equal to .
Since is symmetric given , the conditional moments

satisfy conditions

if is odd
if is even

where is a positive integer. Now we study the power expansion

(59)

and take the expectations of both sides. Since RVs and
have the same pdf, the left-hand side gives

Now consider the expansion of the right-hand side in (59)
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For an even , its expectation can be represented as

Indeed, we obtain the first equality, by removing all the sum-
mands, where is odd, since . For any
even , the remaining summands include the terms with even
powers and . These terms are nonnegative. Thus, (37)
holds for and .

2. Next, we prove general property (37) for any two neigh-
bors and . Note that Part 1 of
the proof only used the fact that is a symmetric RV in the rep-
resentation (57). Obviously, it suffices to prove that this property
holds for both immediate suffixes and provided that
it holds on and . This directly follows from recursion (24)
and equality (57). Indeed, for , we have the equalities

Note that is a symmetric RV given .
Similarly, for , we have equalities

Given two symmetric RVs and , we now see that the last
three summands are again symmetric RVs given the product

. Thus, both descendant subpaths also satisfy
conditions (57) and (58).

APPENDIX II
PROOF OF THEOREM 10

Consider any left-end path . From The-
orem 9 we see that for any even , the central moment
does not decrease if any combination of the two consecutive bits

in is replaced with . These changes can be performed
until all zeros precede all ones, which gives the leftmost path .
Thus, any left-end path satisfies inequalities

(60)

Next, we need to prove (60) for the right-end paths , which

end at the different nodes . Note that all right-end paths

are decoded bit-wise. Therefore, any decoding error probability
is accounted separately as .

To proceed, we first use the all-zero suffix and extend
any right-end path into . This extension makes all

paths end at the same node as their left-end counterparts.

Thus, we can order all extended right-end paths and see that they
also satisfy inequalities similar to (60)

Secondly, we prove that for any original path
and its extension . Obviously, it suffices to consider a one-bit
extension . Consider two i.i.d. outputs of the path

and the output of the path . Then

In the latter inequality, we use the fact that is a
convex function of for any given and any even . Thus,
we can use the Jensen inequality and replace with its mean

. Now we see that inequalities (60) hold for all paths .
Finally, note that any path ends at the node with .
Now we combine (60) with our original bound (34) to obtain
inequality (38). In turn, by combining (38) and (28), we obtain
our main statement (39).
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