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Abstrti-Two kinds of a&orithms are considered. 1) ff 59 is a binary 
code of length n, a “soft decision” decodhg afgorithm for Q changes ao 
arbitrary point of R” into a nearest codeword (nearest in Euclideao 
distance). 2) Similarly, a deco&g afgorithm for a lattice A in R” changes 

an arbitraq point of R” into a closest lattice point. Some general methods 
are given for constructing such algorithnq and arc used to obtain new and 
faster decoding algorithms for the C&set lattice E,, the Cofay code and 
the Leech lattice. 

I. INTRODUCTION 

L ET V be an [n, k] binary code. We regard the code- 
words as points of n-dimensional Euclidean space R”, 

and wish to find a “soft decision” decoder for V (also 
called an “analog” or “maximum likelihood” decoder). By 
this we mean an algorithm which, when presented with an 
arbitrary point x of R”, will find a codeword u E V that 
minimizes dist (x, u), the distance being Euclidean dis- 
tance. Soft decision decoding has been investigated by 
many distinguished information theorists over the years- 
see PI-U21, i.141, [311-1351, WI-[451, [511, WI, [541, [5& 
[60], [62], [66]-[69]. However, the majority of these papers 
study decoding algorithms that only perform correctly 
most of the time. For example, Hackett’s decoding al- 
gorithm [42] for the Golay code is “only a few tenths of a 
decibel different from ideal correlation detection.” In the 
present paper we are only interested in algorithms that 
always find a closest codeword or lattice point. 

The decoding problem for a lattice A in R” is similar. 
We wish to find an algorithm which, when presented with 
an arbitrary point of R”, will find a lattice point u E A 
that minimizes dist (x, u). D&oding alg&thms for several 
classes of lattices were given in [22], [28]. 

In Section II we collect together all the methods we 
know for constructing decoding algorithms (of the type just 
mentioned, that always give the correct answer) for codes 
and lattices. Most of these methods were known already, 
although some are new. We then apply these methods to 
obtain improved decoding algorithms for the Es lattice 
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(Section II, paragraph 13)), the Golay code (Section III), 
and the Leech lattice (Section IV). 

Potential applications of these algorithms are to channel 
coding and vector quantizing (see the references already 
mentioned, and [12], [13], [21], [27], [36], [37], [64]). It is 
worth mentioning that there is already a considerable 
literature devoted to “hard decision” or conventional bi- 
nary decoding of the Golay code ([50, ch. 16, 9 91, [5], [31], 

t391, 1701, [711). 
Notation: Two codes or lattices & and G? are geometri- 

cuZZy similar if one can be obtained from the other by 
(possibly) a translation, rotation, reflection, and change of 
scale. The direct sum [50, p. 761 of two codes or lattices zz? 
and a is written AT?@ 9. The componentwise product of 
two vectors u and u is written I( * u. 

II. FAST DECODING ALGORITHMS 

We first consider codes. Let V be an [n, k] binary code. 
It is often more convenient to write the codewords as 
vectors of + l’s and - l’s rather than O’s and 1’s. Note that 
if 

w=u+u in 0,l notation (1) 
then 

w=u*v in + 1, - 1 notation. (2) 

The + 1, - 1 notation allows us to replace distance calcula- 
tions with inner product calculations. For, if x E R” and 
u E %T, 

dist’(x, U) = (x - U) * (x - U) 

=x~x-2x-u+u~u 

=x-x-22x.u+n. (3) 

Thus finding a closest codeword to x is equivalent to 
finding a codeword (in +l, -1 notation) that has the 
largest inner product with x. 

The following codes, and those geometrically similar to 
them, are most of the codes we know that have a fast “soft 
decision” decoding algorithm as described in Section I. We 
give rough estimates’ of the number of arithmetic steps 

‘As the automobile advertisements say, use these figures for comparison 
only. The actual running time will depend on the relative speeds of 
addition and multiplication, etc., and will probably be greater than the 
figures given here. We have tried, however, to evaluate aU the algorithms 
in a uniform manner. 
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(additions, multiplications, etc.) required. “Fast” means 
that the algorithm is substantially faster than the following 
direct search method. 

1) Any small code may be decoded by a direct search. 
For an [n, k] code we compute the inner product of the 
given vector x with every codeword and choose the closest. 
Assuming we have precomputed a list of the codewords, 
this requires roughly 2n . 2k steps and is therefore only 
applicable to small codes. If the code contains the vector 
(-1, -1,--a, - 1)-i.e., the ah l’s vector in 0,l notation 
-the codewords come in pairs + u and - U, and the 
number of steps drops to n2k. 

2) A first-order Reed-Muller code, with parameters [n = 
2”, k = m + 11, may be efficiently decoded using the fast 
Hadamard transform (the so-called Green machine de- 
scribed in [40], [41], [58], [50, ch. 141). This computes the 
2 m+l inner products x - U, u E V, in about m2” steps. It 
is worth pointing out that a first-order Reed-Muller code 
is geometricaIIy similar to an octahedron (8, in Coxeter’s 
notation [30]). For example, the codewords of the code of 
length 4 shown in Fig. l(a) when multiplied by the or- 
thogonal matrix of Fig. l(b) become the eight vertices 

(~2,0,0,0);-~,(0,0,0 f 2) 

of a four-dimensional octahedron. 

+4 +4 +4 +I 

+4 -1 +4 -4 

+4 +4 -4 -1 

+4 -4 -4 +4 
1 

-4 -1 -4 -1 2 

-4 -4-d -4 +4 

-4 -1 +4 +1 

-1 +4 +-I -1 

(a) 

+1 +4 +4 +4 

: +1 +4 +4 -4 -4 4-4 -1 +4 -4 +4 -4 -4 

1 

(b) 
Fig. 1. (a) First-order Reed-Muller code of length 4. (b) Orthogonal 

matrix. 

A 12”’ - 1, m] simplex code [50, p. 301 may be decoded 
by a straightforward modification of the fast Hadamard 
transform. (Set one of the inputs, say the last, to zero, and 
only calculate the linear combinations in which the last 
variable occurs with a + sign.) This code is geometrically 
similar to a simplex (cy,, in the notation of [30]). 

3) The universe code 9,, consisting of ah binary vectors 
of length n, may be decoded in just n steps. To decode 
x = (Xl,. . -, x,), we simply replace each xi by sgn(x,), 
where 

sgn(x) = +l, ifx 2 0, 
= -1, ifx < 0. 

This is more efficient even than the fast Hadamard trans- 
form of 2), since it selects one out of 2” codewords in n 
steps, whereas the fast Hadamard transform selects one of 
2n codewords in n log, n steps. 9n is geometrically simi- 
lar to a cube (y, in the notation of [30]), the reciprocal 
polytope to the octahedron. 

Of course not many interesting codes contain %n itself 
as a subcode. But codes geometrically similar to Rn are 
quite common. For example, the Golay code 9z24 (see 
Section III) contains a subcode of dimension 3 generated 

by 

I 

11111111 00000000 00000000 
00000000 11111111 00000000 1 (4 
00000000 00000000 11111111 

in 0,l notation, i.e., by 

- lx + 1’6, + 1s - 1s + 18, + 1’6 - 1s in rf: 1 notation. 

This subcode is geometrically similar to sj and may be 
decoded as follows. Given x = (x,; . . , xz4), we decode it 
as 

U=UU . . . a bb . . . b cc .a.. c 3 (5) 

where a, 6, and c each appear eight times, and 

a = sgn(x, + ... +x8), 

b = sgn (x9 + . *. +xr6), 

c = sgn(x,, + ..a +x1,). 

Furthermore, we see from (5) that the maximal inner 
product x . u is given by 

A slightly more general family of codes can be decoded 
in the same way. Let T, denote the [a, l] repetition code of 
length a. Then 

TU, CB TO, 8 . . . $ T, , n 

although in general not geometrically similar to .%$, can be 
decoded by an obvious modification of the preceding al- 
gorithm. 

4) The even weight code J?,,:,, with parameters [n, k = 
n - 11, consists of all 0,l vectors with an even number of 
ones and may be decoded in about 2n steps. To decode 
x = (Xl,. . -, x,), we first replace each xi by sgn(xi). If 
there are an even number of minus signs we stop, but if 
there are an odd number we reverse the sign on an xi of 
smallest magnitude. 6’n is geometrically similar to a hemi- 
cube (hy,, in the notation of [30, p. 1551). 

Example 1: The Golay code contains a [24,5] subcode 
with generator matrix 

[ 

1111 1111 0000 0000 0000 0000 
1111 0000 1111 0000 0000 0000 
1111 0000 0000 1111 0000 0000 ) (7) 
1111 0000 0000 0000 1111 0000 
1111 0000 0000 0000 0000 1111 1 

the sextet code (cf. [15]), which is geometrically similar to 
g6. Since this code plays a key role in Section III, we give 
the precise decoding algorithm. To decode x = (x,, . . . , 
xz4) we first compute 

4 8 24 

SI:= ~~;,SII:= &,,*-,svI:= c x,, (8) 
i=l i=5 i=21 
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and 

UI := sgn(s,);.., uvr := sgn(sv,). (9) 

If an odd number of the uN are negative we change the 
sign of a uN for which ],sN] is minimal. Then x is decoded 

as 

u := UIUIUIUI z411#IIuIIuII * * * ~vI~vI~vI~vI~ 00) 

and the maximal inner product is given by 

x * u = lSIl + . . . +lsvIl W> 

if an even number of the uN in (9) are negative, otherwise 

by 

x * u = lSIl + . . . +hIl - 29bNI. (lib) 

Example 2: The [2n, n - l] code d, generated by 
111100~~~,0011110~~~,000011110~~~, ... [57,p.320] 

is geometrically similar to gn. 
Remark: Permutation codes 161, [7], [62] are a class of 

(in general) nonbinary codes that include first-order 
Reed-Muller codes, simplex codes, %n and &n as special 

cases, and may also be decoded rapidly. 
5) Codes with small rhdundancy may be regarded as 

trellis codes, as pointed out by Solomon [ll], [66] and Wolf 
[69], and therefore can be efficiently decoded by the Viterbi 
algorithm [35], [68]. For an [n, k] code, the trellis has 2”-k 
states, and the number of decoding steps is roughly 4n2”pk. 

6) Direct sums of codes on this list can also be decoded 
easily. To decode sP@ B”, for example, we apply the de- 
coder for .J&’ to the first part of x and the decoder for .%? to 
the second part. The number of steps is the sum of the 
numbers of steps for decoding .B? and .%. 

7) Supercodes: If g is one of the foregoing codes, and 9 

contains ?Z? as a subcode of small index, then %? can also be 
decoded easily. Let us write 

t-1 

v= u (p(J) + .98) 

j=O 

where t := ~%?~/~.FJ??~ is the index of g in %?, and the p(j) 

(j = o;.., t - 1) are coset representatives for g in %?. V 
is called a supercode of JZ?. Equation (12) applies to 0,l 
vectors, while in terms of + 1, - 1 vectors we have 

t-1 

V= Up(j)*g 03) 
J=o 

(compare (l),(2)). F in d ing the largest inner product of x 
with the vectors in p(j) * 9 is equivalent to finding the 
largest inner product of p(J) *x with the vectors in g. So 
provided t is not too large, we may decode x as follows. 

Compute y (J) := p(j) * X, and 
(14 

use the decoder for Q to find u(j) := the closest vector in 
B to y(I) and 

ip(i) := u(j) . y(A 

After doing this for j = 0,l; . ., t - 1, the largest ip(j’ is 
the final inner product, and the corresponding u(J) is used 
to produce the decoder output, p(j) * u(j). 

This is similar to [22, algorithm 31. The number of steps 
required is about t times the number of steps to decode 9, 
plus 2nt to compute the y(j) in (14). In practice this 
number 2nt can often be greatly reduced, as we shall see in 
Section III. 

Example: Codes formed by “gluing” several subcodes 
together can be decoded in this way. Fig. 2 shows a 
generator matrix for a typical code of this type, consisting 
of a direct sum of subcodes .%‘i, gz,. . . , together with 
certain additional generators called glue vectors. If there 
are g additional generators, the index of the subcode 
.GiYl 03A?*03 ... in the full code is t = 2g. Furthermore, 
the subcode generated by these g glue vectors (the glue 
code) consists of precisely the coset representatives p(j) 
appearing in (12). Numerous examples of such codes may 
be found in [18], [56], [57]. 

T 
P 

GLUE 
J VECTORS 

Fig. 2. Code formed by “gluing” subcodes 8,) S?, (4 together. 

8) Shortened codes: If an [n, k] code V can be decoded 
efficiently, so can the [n - 1, k] code .% obtained by 
deleting the last coordinate of every codeword. To decode 

x = (Xl,.“, xn-i), we simply apply the decoder for %? 

to (Xl,. . -9 X,-l, 0). Since the codewords in ‘Z end with 

+1 or - 1, this will find the closest codeword 

to x. 
Next we consider lattices. Given a lattice A in R”, the 

decoding algorithm changes an arbitrary point of R” into a 
closest lattice point. (We can no longer work with inner 
products.) The following lattices, and those geometrically 
similar to them, are most of the lattices we know that have 
a fast decoding algorithm. 

9) The cubic lattice Z”, consisting of all points (ur; * *, 
u,,) with integer coordinates, can be decoded in about n 
steps. If x, is a real number, we define 

f( xi) := nearest integer to xi, (15) 

rounding towards zero in case of a tie, and for a vector 
x = (Xl,. . -, x,) we define 

f(x) = (f(xl)~* * -> fbA (16) 

Then the decoder for Z” simply changes x to f(x) [22, 
sect. III]. 

10) The lattice D,,, consisting of all points in Z” whose 

coordinates add to an even number, can be decoded in 



44 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-32, NO. 1, JANUARY 1986 

about 4n steps. For x E Z”, we define g(x) to be the same 
as f(x), except that the worst component of x-that 
furthest from an integer-is rounded the wrong way. In 
case of a tie, the component with the lowest subscript is 
rounded the wrong way. (Formal definitions of f and g 
may be found in [22, p. 2281.) 

be reduced to a constant times n by the following argu- 

each of the n components of x, we compute a) f(x,) and 
b) the error e, = xi - f(x;), c) test if e, is a new worst 

ment. If the discrepancy is A (see [22]), it is necessary to 

error [needed to determine g(x)], and d) update Zf ( xi). 

find the IAl largest (if A > 0, or smallest, if A < 0) of the 

Thus the total number of steps is about 4n. 

The decoder for D, computes f(x) and g(x), and the 
sum f(xJ + . . . 

11) The lattice A,,, 

+f(x,) of the components of f(x). If the 

consisting of all points in Z ‘+l 

sum is even, the output is f(x), and if it is odd, the output 
is g(x). (See [22] for a proof and an example.) 

whose coordinates add to zero, can be decoded in a con- 

The number of steps may be estimated as follows. For 

stant times n log, n steps by the algorithm given in [22, 
sec. VII]. As pointed out to us by A. M. Odlyzko, this can 

Decoding Algorithm for A(V): 
1) Given x = (xi, * . ., x,), we first reduce all xi to the 

range - 1 I xi < 3 by subtracting a vector 42. 
2) Let S denote the set of i for which 1 < xi < 3. For 

i E S, replace x, by 2 - xi. 
3) Since x is now in the cube - 1 I x, I 1 (i = 

1; . *, n), by the Lemma we are justified in applying 

the decoder for 9 to x, obtaining an output c = 

(cl,. . ., c,), say. 

Then we apply the decoder for % to (d;, . * 1, d,), produc- 

The number of steps may be estimated as follows. For 

each xi we compute 

ing c = (ci, . . . , c,,). Finally, we 

the nearest integer to xi - 1 that is a multiple 

(19) 

4) For i E S, change ci to 2 - ci. Then c + 42 is a 

of 4, say 4z,, 

closest point of A(g) to the original vector x. 

the difference d, = xi - 4z,, and (20) 

if d, > 2, change di to 2 - di (for i E S, say). (21) 

- 
numbers 6(x:). This can be done in a constant times n 
steps using the Rivest-Tarjan algorithm (see [46]). For 
n = 2 and 3 there are better algorithms. A, is the familiar 
two-dimensional hexagonal lattice and is best decoded 
using the fact that it is the union of a rectangular lattice 
and a translate, as suggested by Gersho [37, p. 1651, [28, p. 
2991. A, is geometrically similar to the face-centered cubic 
lattice D, and is best decoded by the D, algorithm. 

12) Lattices obtained from Construction A: If % is an 
[n, k] binary code, Construction A [48], [63] produces a 
lattice A(%) in R”. If the codewords of % are written in 
0,l notation, the points of h(V) consist of all vectors of 
the form 

c + 22, for c E %, z E Z”, (17) 

where we regard the zeros and ones in c as real numbers 
rather than elements of the Galois field GF(2). For our 
present purposes we wish to write the codewords in + 1, - 1 
notation, in which case the points of A(V) consist of all 
vectors of the form 

c + 42, for c E V, z E Z” (18) 

[The set of points (18) strictly speaking no longer forms a 
lattice but rather is a translate of a lattice by the vector 

(1,l; . ., 11.1 
The following lemma makes it possible to use a decoding 

algorithm for Q? to decode A(%). 
Lemma: Suppose x = (x1,. . *, x,) lies in the cube - 1 

I x, 5 1 (i = l;.., n). Then no point of A(%) is closer 
to x than the closest codeword of V. 

Proof: Suppose the contrary, and let u = (ur, . . . , u,) 
be a closest lattice point to x. By hypothesis some u,‘s are 
neither + 1 nor - 1. By subtracting a suitable vector 4z, we 
may change these coordinates to + 1 or - 1 (depending on 
their parity) to produce a point of A(%‘) that is in %?, and 
is at least as close to x as u is, a contradiction. 

change c, to 2 - ci for i E S, and (22) 

add 42 to c. (23) 

The total number of steps is roughly 5n plus the number to 
decode %. 

Many interesting sphere packings can be obtained from 
Construction A [29], [48], [63], the most important being 
the E, lattice-see paragraph 13). 

Remark: Unfortunately, it does not appear possible to 
modify this algorithm to apply to lattices obtained from 
Construction B [48], [63]. (Construction B differs from 
Construction A in that in (17) and (18) z = (zi;.., I,,) 
must satisfy Zz, = 0 (mod 2).) If such a modification were 
found, it would further speed up the decoding algorithm 
for the Leech lattice given in Section IV. 

13) The Gosset lattice Es: This important lattice can be 
constructed in several ways (see [12], [21], [22], [24]-[26], 
[29], [48]), one of which is to apply Construction A (see 
12)) to the [8, 41 first-order Reed-Muller code %?. In this 
form E, consists of the vectors 

c + 42, CE%?, ZEZ8, (24) 

c being a + 1, - 1 vector of length 8. [As mentioned earlier, 
with these coordinates E, is not a lattice but a translate of 
a lattice by the vector (1,1,-s *,l).] %? can be decoded in 
about 3 . 8 + 8 = 32 steps by a fast Hadamard transform 
(see 2)). Therefore the algorithm given in 12) will decode 
this version of E, in roughly 72 steps. This is faster than 
the algorithm proposed in [22] (see paragraph 15) to fol- 
low) which requires about 104 steps. 

If we require not only the closest point u E E, to x, but 
also dist2(x, u), this can be obtained at the end of step 3) 
of the algorithm, using (3), at the cost of about 16 ad- 
ditional steps to compute x . x. If steps 1) and 2) can be 
carried out in advance, as will be the case when we use this 
algorithm in decoding the Leech lattice in Section IV, the 
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number of steps to decode one x drops to about 48, or 56 III. FASTDECODINGALGORITHMSFORTHEGOLAY 

if dist2(x, u) is needed. CODE 

14) Direct sums of lattices on this list can be handled in 
the same way as direct sums of codes-see 6). 

The direct search algorithm (see Section II, paragraph 

15) Superlattices: If M is one of the foregoing lattices 
1)) for the [24, 121 Golay code %‘zb takes about 24 . 212 = 

and A contains M as a sublattice of small index, then A 
98 304 steps, while the trellis decoding method of Section 

can also be decoded easily. We write 
II, paragraph 5) is even slower. Hwang’s algorithm [44], 

[45] for the shortened Golay code of length 23 takes 
t-1 

A = Jvo(~cj) + M), (25) 
roughly 24 . 1376 = 33024 steps. In this section we give 
two algorithms that are much faster. The first is based on 
the subcode (7) takes about 1584 steps, and is described in 

where t := det M/det A is the index of M in A, det M is detail. The second is based on the subcode (4) takes about 

the volume of a fundamental domain for M (see ]21], 1631, 
[65]), and the p(j) (j = 0, 1,. . . , t - 1) are coset repre- 

1728 steps, and is only sketched. The second algorithm is 

included because it could easily be faster than the first if a 
sentatives for M in A. Let @ be a decoder for M. different method were used to count steps. 

To decode A we proceed as follows. Given x, we calcu- 

late A. The First Algorithm 

y(j) := x - p(J) t26) Th ere are three parts to the algorithm: the design stage, 

z(J) := a( y(A) (27) which is only performed once, and the precomputation and 

d, := (z (A _ y(A) . (,(A _ y(j)), 
main stages, which are both performed each time a vector 

(28) is decoded. 

for j = 0,. . ., t - 1, and find a j, j* say, for which dj is The Design Stage: 9224 contains the [24, 51 subcode g 

minimized. Then the decoder output is shown in (7). As coset representatives for g in ??224 we take 

the 128 words of the code defined by the following genera- 
u := ,(i*) + p(i*), (29) tor matrix: 

and d,, is the squared distance from x to u [22, sec. V]. 1100 1100 1100 1100 0000 0000 

The number of steps required is about t times the 1010 1010 1010 1010 OOOQ 0000 

number of steps to decode M, plus n(t - 1) steps to 1010 1001 1100 0000 1100 0000 

compute the y (J) (in practice this can often be greatly 1001 1100 1010 0000 1010 0000 (31) 

reduced-see Section IV), plus 3nt steps to compute 0111 1000 1000 1000 1000 1000 

the d,. 0000 0000 1100 1100 1100 1100 

Example 1: The E, lattice (see 13)) is also given by ~0000 0000 1010 1010 1010 lOlO_ 

E, = D, u (i:i$+++:) + D,, (30) Equations (7) and (31) together generate g2,, [28, fig. 61. 
We begin by preparing a table of all 128 coset repre- 

an example in which t = 2 and M = D,. The foregoing sentatives, written in + 1, -1 notation, labeling them 
algorithm (proposed in [22]) therefore takes about 2 . 32 + 
8 + 32 = 104 steps. This drops to about 96 if y(O) and y(l) 

p(Q,. . . , p(iz7) in some arbitrary order. The beginning of 
this table (using one obvious ordering) is shown in Table I. 

have been precomputed. For a typical coset representative 
Example 2: The dual lattices D,* and AZ (the so-called 

Voronoi lattice of the first type, which is important for the 
p(A = (p{,. . . , p&) 

covering problem [61]) may also be decoded by this al- the algorithm will involve the componentwise product 

gorithm (see [22]). 
Example 3: Lattices formed by “gluing” sublattices to- 

gether (in exactly the same way the codes were glued 
together in 7)) may be decoded by this algorithm. This 
includes the twenty-three 24-dimensional Niemeier lattices 

1531, 1191, as well as many other lattices described in [19], 

p(j) *x= (p{xl,...,p~4x2,). 

TABLE I 
12X COSET REPRESENTATIVES FOR 37 IN $4, WRITTEN IN + 1, ~ 1 

NOTATION AND ARRANGED IN SOME ARBITRARY ORDER” 

/ 
WI. I II 1 III IV 1 v VI 

Based on the results assembled in this section, we can 

now state our general strategy for finding an efficient 
decoding algorithm for a code or lattice: find a subcode (or 
sublattice) of smallest index for which a fast algorithm 
exists, and then use 7) 12), or 15). Algorithms for decoding 

the lattices E,, Ez, E,, ET, K,,, and A,, were obtained 

in [28] by using this strategy. For example, the 
Coxeter-Todd lattice K,, contains A, $ . . . @A, (six 
summands) as a sublattice of index 64. In the next two 

1111 

ii11 

iiT1 

1111 

1111 

1111 1111 

ii1 1 ii1 1 

iii1 iiT1 

1111 1111 

1111 ii1 I 

1 1 

1111 1111 

ii1 1 1111 

iii1 1111 

1 
1111 1111 

1111 ii11 

1111 

1111 

1111 

1111 

1111 

sections we apply the strategy to the Golay code and the “The coordinates are divided into six blocks of four. A bar indicates a 

Leech lattice. negative number. 
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Inspection of (31) reveals that, in the first block of four 
coordinates of p(J) * X, all possible sign combinations of 

Xl, x2, x3, xq occur. The precomputation stage of the al- 

gorithm will calculate these 16 combinations in the Gray 
code order shown in Table III. Similarly in the other five 
blocks of coordinates, except that in blocks III-VI, the 
final x,‘s (i.e., xi2, xi6, x20, x24) only occur with + signs. 

We now prepare a second table, the cross-reference table, 
as follows. For each entry p(j) in Table I, we write down 
for each block of four coordinates where that sign combi- 

nation is to be found in Table III. For pc4), for example, the 
sign combinations on the six blocks are 

-+-+ -++- --++ 
++++ --++ ++++ 

which are entries 

6 
0 

14 2 
2 0 

respectively, of Table III. This gives the fifth line 

x; zz 6, -& = 14, x;‘II = 2;. ’ 9 ?&I = ’ 

of Table II. 

TABLE II 
THECROSS-REFERENCETABLE xv 

j I II III IV v VI 

00 0 0 0 0 0 

1222200 

26 6 6 6 0 0 

34 4 4 4 0 0 

4 6 14 2 0 2 0 

“An entry x(y = m indicates that the sign combination appearing in 
block N of p(l) (in Table I) is to be found in row m of Table III. 

The decoding algorithm After the 127th step, a closest codeword in the Golay code 

to x is 
To decode x = (xi;. ., x24). 
Precomputation Stage: We compute six Gray code ta- 

bles, the first of which is shown in Table III. Each entry 
differs from the previous one in only one coordinate (since 

the entries are ordered by a Gray code [38], [55], [59]), and 
so can be computed with just one subtraction. Note also 
that the entries in the second half of Table III are simply 
the negatives of the entries in the first half. 

where 

uN = w(%(x/N*)), N= I;..,VI, 

with the sign of the smallest ]GN(xjN*)] reversed if an even 
number of the uN are negative. “Record” gives the inner 

product u . x. 

Table III is the Gray code table for block I, and involves The number of steps is roughly 48 for the precompu- 

Xl,‘. .> x4. The other five tables correspond to blocks tation stage, plus 12 . 128 = 1536 for the main stage, a 

11; . .) VI, and involve x5,.. ., xs; . . . ; x2i;. ., xz4, re- total of 1584. To see that this works, we remark that it is 

spectively, but have the same sign combinations. However, just the algorithm of Section II, paragraph 7), modified so 

the last eight rows of the tables for blocks III-VI can be as to precompute the y(j) (using the Gray code tables). We 

omitted, since xi2, xi6, xlo, and xz4 only occur with + have also made use of the special structure of the subcode 

signs. We let GN( i) denote the ith entry in the table for B to streamline the calculation of the inner products ip”) 

block N (N = I;..,VI). ((32) follows from (ll), and (33) from (10)). 
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TABLE III 
GRAYCODETABLEFORBLOCKI,THE~THENTRYISG~(~) 

0 

1 

IO 

11 

I2 

13 

14 

15 

Main Stage: Set record = 0 and j* = 0. For j = 0 

through 127, 

l obtain xi,. . . , x$t from Table II; 

l obtain G,(xf); . ., G,,(x-&) from the Gray code ta- 

bles, and compute the inner product 

ip = IGI( + *.- +IGVI(x&)I (324 

if an even number of the ]GN(x,,)] are even, or 

ip = IGI( + -.+ +IGvI(~~I)I - 2m!lG,(xi,)l 

(32’4 

otherwise; and 
l if ip > record, set record = ip and j* = j. 
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B. The Second Algorithm 

The overall structure of the second algorithm is the 
same, but now we use the [24,3] subcode g shown in (4). 
The 512 coset representatives for .@ in gz24 are generated 
by the following matrix: 

1111 0000 1111 0000 0000 0000 
1100 1100 1100 1100 0000 0000 
1010 1010 1010 1010 0000 0000 
1010 1001 1100 0000 1100 0000 

1001 1100 1010 0000 1010 0000 (34) 
1100 1010 1001 0000 1001 0000 
0111 1000 1000 1000 1000 1000 
0000 0000 1100 1100 1100 1100 

~0000 0000 1010 1010 1010 1010, 

(4) and (34) together generate gzd. The precomputation 
stage computes three Gray code tables, the first containing 
all 128 combinations 

the second all 64 combinations 

+x9 * ** ’ kxls + x1Cj, 

and the third all 64 combinations 

with an even number of minus signs in each case. 
In the main stage j now runs from 0 to 511, and (32a) 

and (32b) are replaced by the much simpler formula 

ip = IGt(x:)l + IG,,(x!t)l + IG,,,(x~II)L (35) 

obtained from (6). The final output is 

241 * * . UIUII . . * UIIUIII . . . UIII, (36) 

where uN = sgn (GN(xj)), N = I, II, III (cf. (5)). The total 
number of steps is roughly 192 for the precomputation 
stage, plus 3 . 512 = 1536 for the main stage, a total of 

1728. 
The Golay code of length 23 can be decoded by a 

straightforward modification of either algorithm (or alter- 
natively by using the algorithms as they stand and the 

method of (Section II, paragraph 8)). 

IV. A FASTDECODINGALGORITHMFORTHELEECH 
LATTICE 

The Leech lattice A,, is a 24-dimensional lattice that 

can be defined in a number of ways [lo], [15], [17], [23]-[25], 
[29], [47]-[49], [53], 1641, [65]. For example it may be 
obtained by applying Construction B (see Section II, para- 
graph 12)) to the Golay code g224, and then doubling the 
number of points. In [28] we proposed a decoding al- 
gorithm for A,, based on the fact that A,, contains D,, as 
a sublattice of index 8192. In view of 10) and 15) in Section 

II, this algorithm takes about 

4 . 24 . 8192 = 786432 

steps to decode one point. In contrast the algorithm given 
below takes only about 55 968 steps, which is about 14 

times as fast. This algorithm is based on the “Turyn 

construction” of A,,. 

A. The “Twyn Construction” of the Leech Lattice 

Turyn showed around 1965 that the Golay code may be 
constructed by gluing together three copies of the [8, 41 
first-order Reed-Muller code (see [50, ch. IS]). The Leech 
lattice may be constructed in a similar manner by gluing 
together three copies of the E, lattice. Although this con- 
struction has been known for many years, the following 
particularly simple version has not appeared in print be- 
fore. We give two sets of coordinates, the first being more 
elegant, while the second is easier to decode. 

Let As denote the particular version of E, obtained by 
multiplying the vectors in (30) by 4. Typical vectors in A, 
are (Os), ( + 4, f 4, 06) and (+ 28) with an even number of 
minus signs. 

Definition I: The Leech lattice A, consists of the vec- 
tors 

(el + a + t, e2 + b + t, e3 + c + t), (37) 

where e,, e2, e3 are arbitrary vectors of A,, a, b are arbi- 
trary vectors from the list of 16 given in Table IV(a), 

TABLE IV 
(u) THE 16 CHOICES FOR a, h, c IN (37), AND (1) THE 16 CHOICES 

FOR ta 

(a) (t) 

0000 0000 0000 0000 

4000 0000 2220 0200 

2222 0000 2202 0002 

1.222 0000 2022 0020 

2200 2200 0222 2000 

2200 2200 2200 2020 

2200 0022 2020 2002 

5200 0022 2002 2200 

2020 2020 5111 1111 

I020 2020 3111 Iii1 

2020 0202 3ili 11Ii 

2020 0202 3111 i Iii 

2002 2002 3111 1111 

5002 2002 371 I ii ii 

2002 0220 3111 Ill1 

2002 0220 
-- 

3111 Ill1 

"A bar indicates a negative number. When multiplied by two these 
vectors are in A,. 

c is the unique vector in Table IV(a) satisfying 

a+b+c=O(modA,), (38) 

and t is an arbitrary vector from the list of 16 given in 

Table IV(t). 
To see that (37) does define the Leech lattice, we begin 

with the standard miracle octad generator (MOG) con- 
struction of A,, (see [16] or [25], for example), in which the 
24 coordinates are divided into three sets of eight. The 
intersection of A,, with any one of these eight-dimensional 

spaces is our A,, and the projection onto the same space is 
:A s. The quotient iA,/A, is an Abelian group of order 

256, and the vectors a + t, a E Table IV(a), t E Table 
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IV(t), are coset representatives for As in +A,. (The blocks 

of four coordinates in Tables IV(a) and IV(t) represent 

columns of the MOG. See also [16, fig. 271.) The quotient 
A 24/( A a CB As CB A,) is an abelian group of order 4096, 
and the vectors 

(a + t, b + t, c + t), (39) 

with a, b, c E Table IV(a), t E Table IV(t), and 

a+b+c=O(modA,) 

are coset representatives for As @ A, CB As in A 24. 
Definition 1 is based on the version of E, constructed in 

(30). However, as we saw in Section II, paragraph 13) the 
version constructed in (24) is easier to decode. To convert 
from (30) to (24) we multiply by 

1 10 00 00 0 
1 -10 00 00 0 
0 01 10 00 0 

lo 01 -10 00 0 
To 00 01 10 0 

0 00 01 -10 0 
0 00 00 01 1 

-0 00 00 01-l 

(40) 

and add (1,l; * *, 1). This leads to the second definition of 

A,,. 
Let A’, denote the E, lattice in the form in which the 

240 minimal vectors consist of 16 of the shape (* 4,0’), 

and 24 . 14 = 224 obtained from 

(2222 0000) 

(2200 2200) 

(2200 0022) 

(2020 2020) (41) 

(2020 0202) 

(2002 2002) 

(2002 0220) 

by inserting arbitrary signs, and by interchanging O’s and 
+ 2’s. Also let A’; = 1 + A’s, where 1 = (1, 1, . . . , 1). Then 
A’i is precisely the version of E, defined in (24). Typical 
vectors in A’; are 

(1111 llll), 
---- 

(1111 llll), 
_--- 

(1111 llll), 

(iii1 iiii), 
(42) 

(3111 llll), 
. . . 

where the bar indicates a negative number. 
Definition 2: The Leech lattice A,, consists of the vec- 

tors 
1 + (e, + a + t, e2 + b + t, e3 + c + t) (43) 

where e,, e2, e3 are arbitrary vectors of A’,, a, b are arbi- 
trary vectors from Table V(a), c is the unique vector in 
Table V(a) satisfying 

a + b + c = 0 (mod A’,), (44) 

and t is an arbitrary vector from Table V(t). 

TABLE V 
(U)THE 16 CHOICES FOR a,h,c IN (43), AND(~) 16 CHOICES 

FOR t” 

(a) (t) 

0000 0000 0000 0000 

2200 0000 IIII Till 

2020 0000 ii I I 2000 

2002 0000 2000 I I I I 

2000 2000 1102 II00 

2000 0200 201 I ooli 

2000 0020 i 100 2011 
- - 

2000 0002 2011 1100 

IIII Ill1 1210 1010 

iill Ill1 2101 oiol 

ilii liii lo10 2101 

Ill1 Ill1 2101 iolo 

ii I I ii I I 1021 1001 

ill1 liil 21 IO oil0 

iii1 iii1 1001 2310 

Till lili 2110 iool 

“When multiplied by two these vectors are in A’g. 

B. Decoding Algorithm for the Leech Lattice A,, 

We define A,, by (43). As in Section III-A there are 
three parts to the algorithm. 

The Design Stage: We begin by preparing a list of the 
256 sums a + t, a E Table V(a), t E Table V(t), label- 
ing them p(O), + . . , p(255) in some arbitrary order. The begin- 

ning of this table (using one obvious ordering) is shown in 
Table VI. 

TABLE VI 
THE 256 SUMS (I + t, u E Table V(a), t E Table V(r), 

ARRANGEDINSOMEARBITRARY ORDER 

p(o) 0000 0000 

p(l) 2200 0000 

/)(a 2020 0000 

/)(a) Ill1 Ill1 

p(16) IIII ill1 

pm) 3311 ill1 

-l--L-- 
We now prepare a second table, the cross-reference table, 

as follows. For each of the 4096 vectors 

(u + t, b + t, c + t), (45) 

with a, b, c E Table V(a), t E Table V(t), and satisfying 

(44), we write down a triple 

x’ = (XL xi, xi), 0 I j I 4095, 
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TABLEVII 
THE CROSS REFERENCE TABLE 

x0 - (O,O,O) 

x’ - (l,l,O) 

x2 - (l,O,l) 

XJ - (0.1.1) 

x4 = (16 16 16) > 1 

x5 = (17,17,16) 

indicating that a + t is entry xi of Table VI, b + t is 

entry ~4, and c + t is entry x’;. In other words 

i 
p(x9, f$x:), $x3 

1 
is a triple (45) that satisfies (44). Part of the cross-reference 

table based on Table VI is shown in Table VII. 

The decoding algorithm 

To decode x = (x1,. . a, x&. 
Precomputation Stage: In a moment we shall apply the 

E, decoder of Section II, paragraph 13) to the 256 vectors 

(XI,. * *) xs) + a + t, a E TableV(a), t E TableV(t). 

Before doing this we carry out steps (19)-(21) of the 
decoder in advance. The components of the vectors a + t 
range from - 2 to + 4. So our first step is to 

compute the 7 . 24 = 168 numbers 

yim=xi+m (-2<mI4), 

find the nearest integer to y,, - 1 that is a multiple of 

four, 4zim say, 
find the difference d,, = y,, - 4zj,, 
if d!,,, > 2, change di, to 2 - dim, keeping a record of 
this change, and 

calculate dfm. 

The second precomputation step is the most time-con- 
suming part of the algorithm. For j = O-255 we calculate 

(x1;-, X8) + p(j), (46) 

(x9,. . * > $6) + P”‘, (47) 

(XI,,. . . , x24) + P”‘, (48) 

and apply the E, decoder of 13) in Section II to these three 
vectors (making use of the fact that we have already carried 
out steps (19)-(21) of the algorithm). Let the closest points 

of A$ to (46)-(48) be 

respectively, and let 

d(j, k) = dist*(x, p(j, k)). (49) 

Main Stage: Set record = 0 and j* = 0. For j = 

o-4095, obtain xi, xj2, xi from Table VII and calculate 

the squared distance 

d = d(x:J) + d(xiJ) + d(x:,3). (50) 

If d < record, set record = d and j* = j. After the 4095th 
step, a closest point of A,, to x is 

24 = (P(XLl)> P(XL2)9 P(XL3)) 
and 

dist*(x, U) = record. 

The number of steps is roughly 4 . 168 = 672 for the 
first precomputation step, 3 * 256 * 56 = 43 008 for the 
second, plus 3 . 4096 = 12288 for the main stage, a total 

of 55 968. 
To see that this works, we remark that this is the 

algorithm of Section II, paragraph 15) based on the sub- 
lattice A’s $ A’s $ A’R of index 4096 in A,,. The quantity d 
in (50) is the squared distance from x to a nearest vector in 
the coset 

i + A’s @ A’R @ A’, + (a + t, b + t,c + t). 
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