
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-32, NO. 1, JANUARY 1986

Soft Decoding Techniques for Codes and
Lattices, Including the Golay Code

and the Leech Lattice
JOHN H. CONWAY AND N. J. A. SLOANE, FELLOW, IEEE

41

Abstrti-Two kinds of a&orithms are considered. 1) ff 59 is a binary
code of length n, a “soft decision” decodhg afgorithm for Q changes ao
arbitrary point of R” into a nearest codeword (nearest in Euclideao
distance). 2) Similarly, a deco&g afgorithm for a lattice A in R” changes

an arbitraq point of R” into a closest lattice point. Some general methods
are given for constructing such algorithnq and arc used to obtain new and
faster decoding algorithms for the C&set lattice E,, the Cofay code and
the Leech lattice.

I. INTRODUCTION

L ET V be an [n, k] binary code. We regard the code-
words as points of n-dimensional Euclidean space R”,

and wish to find a “soft decision” decoder for V (also
called an “analog” or “maximum likelihood” decoder). By
this we mean an algorithm which, when presented with an
arbitrary point x of R”, will find a codeword u E V that
minimizes dist (x, u), the distance being Euclidean dis-
tance. Soft decision decoding has been investigated by
many distinguished information theorists over the years-
see PI-U21, i.141, [311-1351, WI-[451, [511, WI, [541, [5&
[60], [62], [66]-[69]. However, the majority of these papers
study decoding algorithms that only perform correctly
most of the time. For example, Hackett’s decoding al-
gorithm [42] for the Golay code is “only a few tenths of a
decibel different from ideal correlation detection.” In the
present paper we are only interested in algorithms that
always find a closest codeword or lattice point.

The decoding problem for a lattice A in R” is similar.
We wish to find an algorithm which, when presented with
an arbitrary point of R”, will find a lattice point u E A
that minimizes dist (x, u). D&oding alg&thms for several
classes of lattices were given in [22], [28].

In Section II we collect together all the methods we
know for constructing decoding algorithms (of the type just
mentioned, that always give the correct answer) for codes
and lattices. Most of these methods were known already,
although some are new. We then apply these methods to
obtain improved decoding algorithms for the Es lattice

Manuscript received October 10,1984; rev&d June 21, 1985.
J. H. Conway is with the Department of Pure Mathematics and

Mathematical Statistics, University of Cambridge, Cambridge CB2 lSB,
England.

N. J. A. Sloane is with the Mathematical Sciences Research Center,
Room 2C-376, BelI Laboratories, Murray I-Ii& NJ 07974.

IEEE Log Number 8406089.

(Section II, paragraph 13)), the Golay code (Section III),
and the Leech lattice (Section IV).

Potential applications of these algorithms are to channel
coding and vector quantizing (see the references already
mentioned, and [12], [13], [21], [27], [36], [37], [64]). It is
worth mentioning that there is already a considerable
literature devoted to “hard decision” or conventional bi-
nary decoding of the Golay code ([50, ch. 16, 9 91, [5], [31],

t391, 1701, [711).
Notation: Two codes or lattices & and G? are geometri-

cuZZy similar if one can be obtained from the other by
(possibly) a translation, rotation, reflection, and change of
scale. The direct sum [50, p. 761 of two codes or lattices zz?
and a is written AT?@ 9. The componentwise product of
two vectors u and u is written I(* u.

II. FAST DECODING ALGORITHMS

We first consider codes. Let V be an [n, k] binary code.
It is often more convenient to write the codewords as
vectors of + l’s and - l’s rather than O’s and 1’s. Note that
if

w=u+u in 0,l notation (1)
then

w=u*v in + 1, - 1 notation. (2)

The + 1, - 1 notation allows us to replace distance calcula-
tions with inner product calculations. For, if x E R” and
u E %T,

dist’(x, U) = (x - U) * (x - U)

=x~x-2x-u+u~u

=x-x-22x.u+n. (3)

Thus finding a closest codeword to x is equivalent to
finding a codeword (in +l, -1 notation) that has the
largest inner product with x.

The following codes, and those geometrically similar to
them, are most of the codes we know that have a fast “soft
decision” decoding algorithm as described in Section I. We
give rough estimates’ of the number of arithmetic steps

‘As the automobile advertisements say, use these figures for comparison
only. The actual running time will depend on the relative speeds of
addition and multiplication, etc., and will probably be greater than the
figures given here. We have tried, however, to evaluate aU the algorithms
in a uniform manner.

0018-9448/86/0100-0041$01.00 01986 IEEE

42 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-32, NO. 1, JANUARY 1986

(additions, multiplications, etc.) required. “Fast” means
that the algorithm is substantially faster than the following
direct search method.

1) Any small code may be decoded by a direct search.
For an [n, k] code we compute the inner product of the
given vector x with every codeword and choose the closest.
Assuming we have precomputed a list of the codewords,
this requires roughly 2n . 2k steps and is therefore only
applicable to small codes. If the code contains the vector
(-1, -1,--a, - 1)-i.e., the ah l’s vector in 0,l notation
-the codewords come in pairs + u and - U, and the
number of steps drops to n2k.

2) A first-order Reed-Muller code, with parameters [n =
2”, k = m + 11, may be efficiently decoded using the fast
Hadamard transform (the so-called Green machine de-
scribed in [40], [41], [58], [50, ch. 141). This computes the
2 m+l inner products x - U, u E V, in about m2” steps. It
is worth pointing out that a first-order Reed-Muller code
is geometricaIIy similar to an octahedron (8, in Coxeter’s
notation [30]). For example, the codewords of the code of
length 4 shown in Fig. l(a) when multiplied by the or-
thogonal matrix of Fig. l(b) become the eight vertices

(~2,0,0,0);-~,(0,0,0 f 2)

of a four-dimensional octahedron.

+4 +4 +4 +I

+4 -1 +4 -4

+4 +4 -4 -1

+4 -4 -4 +4
1

-4 -1 -4 -1 2

-4 -4-d -4 +4

-4 -1 +4 +1

-1 +4 +-I -1

(a)

+1 +4 +4 +4

: +1 +4 +4 -4 -4 4-4 -1 +4 -4 +4 -4 -4

1

(b)
Fig. 1. (a) First-order Reed-Muller code of length 4. (b) Orthogonal

matrix.

A 12”’ - 1, m] simplex code [50, p. 301 may be decoded
by a straightforward modification of the fast Hadamard
transform. (Set one of the inputs, say the last, to zero, and
only calculate the linear combinations in which the last
variable occurs with a + sign.) This code is geometrically
similar to a simplex (cy,, in the notation of [30]).

3) The universe code 9,, consisting of ah binary vectors
of length n, may be decoded in just n steps. To decode
x = (Xl,. . -, x,), we simply replace each xi by sgn(x,),
where

sgn(x) = +l, ifx 2 0,
= -1, ifx < 0.

This is more efficient even than the fast Hadamard trans-
form of 2), since it selects one out of 2” codewords in n
steps, whereas the fast Hadamard transform selects one of
2n codewords in n log, n steps. 9n is geometrically simi-
lar to a cube (y, in the notation of [30]), the reciprocal
polytope to the octahedron.

Of course not many interesting codes contain %n itself
as a subcode. But codes geometrically similar to Rn are
quite common. For example, the Golay code 9z24 (see
Section III) contains a subcode of dimension 3 generated

by

I

11111111 00000000 00000000
00000000 11111111 00000000 1 (4
00000000 00000000 11111111

in 0,l notation, i.e., by

- lx + 1’6, + 1s - 1s + 18, + 1’6 - 1s in rf: 1 notation.

This subcode is geometrically similar to sj and may be
decoded as follows. Given x = (x,; . . , xz4), we decode it
as

U=UU . . . a bb . . . b cc .a.. c 3 (5)

where a, 6, and c each appear eight times, and

a = sgn(x, + ... +x8),

b = sgn (x9 + . *. +xr6),

c = sgn(x,, + ..a +x1,).

Furthermore, we see from (5) that the maximal inner
product x . u is given by

A slightly more general family of codes can be decoded
in the same way. Let T, denote the [a, l] repetition code of
length a. Then

TU, CB TO, 8 . . . $ T, , n

although in general not geometrically similar to .%$, can be
decoded by an obvious modification of the preceding al-
gorithm.

4) The even weight code J?,,:,, with parameters [n, k =
n - 11, consists of all 0,l vectors with an even number of
ones and may be decoded in about 2n steps. To decode
x = (Xl,. . -, x,), we first replace each xi by sgn(xi). If
there are an even number of minus signs we stop, but if
there are an odd number we reverse the sign on an xi of
smallest magnitude. 6’n is geometrically similar to a hemi-
cube (hy,, in the notation of [30, p. 1551).

Example 1: The Golay code contains a [24,5] subcode
with generator matrix

[

1111 1111 0000 0000 0000 0000
1111 0000 1111 0000 0000 0000
1111 0000 0000 1111 0000 0000) (7)
1111 0000 0000 0000 1111 0000
1111 0000 0000 0000 0000 1111 1

the sextet code (cf. [15]), which is geometrically similar to
g6. Since this code plays a key role in Section III, we give
the precise decoding algorithm. To decode x = (x,, . . . ,
xz4) we first compute

4 8 24

SI:= ~~;,SII:= &,,*-,svI:= c x,, (8)
i=l i=5 i=21

CONWAY AND SLOANE: SOFT DECODING TECHNIQUES FOR CODES AND LATTICES 43

and

UI := sgn(s,);.., uvr := sgn(sv,). (9)

If an odd number of the uN are negative we change the
sign of a uN for which],sN] is minimal. Then x is decoded

as

u := UIUIUIUI z411#IIuIIuII * * * ~vI~vI~vI~vI~ 00)

and the maximal inner product is given by

x * u = lSIl + . . . +lsvIl W>

if an even number of the uN in (9) are negative, otherwise

by

x * u = lSIl + . . . +hIl - 29bNI. (lib)

Example 2: The [2n, n - l] code d, generated by
111100~~~,0011110~~~,000011110~~~, ... [57,p.320]

is geometrically similar to gn.
Remark: Permutation codes 161, [7], [62] are a class of

(in general) nonbinary codes that include first-order
Reed-Muller codes, simplex codes, %n and &n as special

cases, and may also be decoded rapidly.
5) Codes with small rhdundancy may be regarded as

trellis codes, as pointed out by Solomon [ll], [66] and Wolf
[69], and therefore can be efficiently decoded by the Viterbi
algorithm [35], [68]. For an [n, k] code, the trellis has 2”-k
states, and the number of decoding steps is roughly 4n2”pk.

6) Direct sums of codes on this list can also be decoded
easily. To decode sP@ B”, for example, we apply the de-
coder for .J&’ to the first part of x and the decoder for .%? to
the second part. The number of steps is the sum of the
numbers of steps for decoding .B? and .%.

7) Supercodes: If g is one of the foregoing codes, and 9

contains ?Z? as a subcode of small index, then %? can also be
decoded easily. Let us write

t-1

v= u (p(J) + .98)

j=O

where t := ~%?~/~.FJ??~ is the index of g in %?, and the p(j)

(j = o;.., t - 1) are coset representatives for g in %?. V
is called a supercode of JZ?. Equation (12) applies to 0,l
vectors, while in terms of + 1, - 1 vectors we have

t-1

V= Up(j)*g 03)
J=o

(compare (l),(2)). F in d ing the largest inner product of x
with the vectors in p(j) * 9 is equivalent to finding the
largest inner product of p(J) *x with the vectors in g. So
provided t is not too large, we may decode x as follows.

Compute y (J) := p(j) * X, and
(14

use the decoder for Q to find u(j) := the closest vector in
B to y(I) and

ip(i) := u(j) . y(A

After doing this for j = 0,l; . ., t - 1, the largest ip(j’ is
the final inner product, and the corresponding u(J) is used
to produce the decoder output, p(j) * u(j).

This is similar to [22, algorithm 31. The number of steps
required is about t times the number of steps to decode 9,
plus 2nt to compute the y(j) in (14). In practice this
number 2nt can often be greatly reduced, as we shall see in
Section III.

Example: Codes formed by “gluing” several subcodes
together can be decoded in this way. Fig. 2 shows a
generator matrix for a typical code of this type, consisting
of a direct sum of subcodes .%‘i, gz,. . . , together with
certain additional generators called glue vectors. If there
are g additional generators, the index of the subcode
.GiYl 03A?*03 ... in the full code is t = 2g. Furthermore,
the subcode generated by these g glue vectors (the glue
code) consists of precisely the coset representatives p(j)
appearing in (12). Numerous examples of such codes may
be found in [18], [56], [57].

T
P

GLUE
J VECTORS

Fig. 2. Code formed by “gluing” subcodes 8,) S?, (4 together.

8) Shortened codes: If an [n, k] code V can be decoded
efficiently, so can the [n - 1, k] code .% obtained by
deleting the last coordinate of every codeword. To decode

x = (Xl,.“, xn-i), we simply apply the decoder for %?

to (Xl,. . -9 X,-l, 0). Since the codewords in ‘Z end with

+1 or - 1, this will find the closest codeword

to x.
Next we consider lattices. Given a lattice A in R”, the

decoding algorithm changes an arbitrary point of R” into a
closest lattice point. (We can no longer work with inner
products.) The following lattices, and those geometrically
similar to them, are most of the lattices we know that have
a fast decoding algorithm.

9) The cubic lattice Z”, consisting of all points (ur; * *,
u,,) with integer coordinates, can be decoded in about n
steps. If x, is a real number, we define

f(xi) := nearest integer to xi, (15)

rounding towards zero in case of a tie, and for a vector
x = (Xl,. . -, x,) we define

f(x) = (f(xl)~* * -> fbA (16)

Then the decoder for Z” simply changes x to f(x) [22,
sect. III].

10) The lattice D,,, consisting of all points in Z” whose

coordinates add to an even number, can be decoded in

44 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-32, NO. 1, JANUARY 1986

about 4n steps. For x E Z”, we define g(x) to be the same
as f(x), except that the worst component of x-that
furthest from an integer-is rounded the wrong way. In
case of a tie, the component with the lowest subscript is
rounded the wrong way. (Formal definitions of f and g
may be found in [22, p. 2281.)

be reduced to a constant times n by the following argu-

each of the n components of x, we compute a) f(x,) and
b) the error e, = xi - f(x;), c) test if e, is a new worst

ment. If the discrepancy is A (see [22]), it is necessary to

error [needed to determine g(x)], and d) update Zf (xi).

find the IAl largest (if A > 0, or smallest, if A < 0) of the

Thus the total number of steps is about 4n.

The decoder for D, computes f(x) and g(x), and the
sum f(xJ + . . .

11) The lattice A,,,

+f(x,) of the components of f(x). If the

consisting of all points in Z ‘+l

sum is even, the output is f(x), and if it is odd, the output
is g(x). (See [22] for a proof and an example.)

whose coordinates add to zero, can be decoded in a con-

The number of steps may be estimated as follows. For

stant times n log, n steps by the algorithm given in [22,
sec. VII]. As pointed out to us by A. M. Odlyzko, this can

Decoding Algorithm for A(V):
1) Given x = (xi, * . ., x,), we first reduce all xi to the

range - 1 I xi < 3 by subtracting a vector 42.
2) Let S denote the set of i for which 1 < xi < 3. For

i E S, replace x, by 2 - xi.
3) Since x is now in the cube - 1 I x, I 1 (i =

1; . *, n), by the Lemma we are justified in applying

the decoder for 9 to x, obtaining an output c =

(cl,. . ., c,), say.

Then we apply the decoder for % to (d;, . * 1, d,), produc-

The number of steps may be estimated as follows. For

each xi we compute

ing c = (ci, . . . , c,,). Finally, we

the nearest integer to xi - 1 that is a multiple

(19)

4) For i E S, change ci to 2 - ci. Then c + 42 is a

of 4, say 4z,,

closest point of A(g) to the original vector x.

the difference d, = xi - 4z,, and (20)

if d, > 2, change di to 2 - di (for i E S, say). (21)

-
numbers 6(x:). This can be done in a constant times n
steps using the Rivest-Tarjan algorithm (see [46]). For
n = 2 and 3 there are better algorithms. A, is the familiar
two-dimensional hexagonal lattice and is best decoded
using the fact that it is the union of a rectangular lattice
and a translate, as suggested by Gersho [37, p. 1651, [28, p.
2991. A, is geometrically similar to the face-centered cubic
lattice D, and is best decoded by the D, algorithm.

12) Lattices obtained from Construction A: If % is an
[n, k] binary code, Construction A [48], [63] produces a
lattice A(%) in R”. If the codewords of % are written in
0,l notation, the points of h(V) consist of all vectors of
the form

c + 22, for c E %, z E Z”, (17)

where we regard the zeros and ones in c as real numbers
rather than elements of the Galois field GF(2). For our
present purposes we wish to write the codewords in + 1, - 1
notation, in which case the points of A(V) consist of all
vectors of the form

c + 42, for c E V, z E Z” (18)

[The set of points (18) strictly speaking no longer forms a
lattice but rather is a translate of a lattice by the vector

(1,l; . ., 11.1
The following lemma makes it possible to use a decoding

algorithm for Q? to decode A(%).
Lemma: Suppose x = (x1,. . *, x,) lies in the cube - 1

I x, 5 1 (i = l;.., n). Then no point of A(%) is closer
to x than the closest codeword of V.

Proof: Suppose the contrary, and let u = (ur, . . . , u,)
be a closest lattice point to x. By hypothesis some u,‘s are
neither + 1 nor - 1. By subtracting a suitable vector 4z, we
may change these coordinates to + 1 or - 1 (depending on
their parity) to produce a point of A(%‘) that is in %?, and
is at least as close to x as u is, a contradiction.

change c, to 2 - ci for i E S, and (22)

add 42 to c. (23)

The total number of steps is roughly 5n plus the number to
decode %.

Many interesting sphere packings can be obtained from
Construction A [29], [48], [63], the most important being
the E, lattice-see paragraph 13).

Remark: Unfortunately, it does not appear possible to
modify this algorithm to apply to lattices obtained from
Construction B [48], [63]. (Construction B differs from
Construction A in that in (17) and (18) z = (zi;.., I,,)
must satisfy Zz, = 0 (mod 2).) If such a modification were
found, it would further speed up the decoding algorithm
for the Leech lattice given in Section IV.

13) The Gosset lattice Es: This important lattice can be
constructed in several ways (see [12], [21], [22], [24]-[26],
[29], [48]), one of which is to apply Construction A (see
12)) to the [8, 41 first-order Reed-Muller code %?. In this
form E, consists of the vectors

c + 42, CE%?, ZEZ8, (24)

c being a + 1, - 1 vector of length 8. [As mentioned earlier,
with these coordinates E, is not a lattice but a translate of
a lattice by the vector (1,1,-s *,l).] %? can be decoded in
about 3 . 8 + 8 = 32 steps by a fast Hadamard transform
(see 2)). Therefore the algorithm given in 12) will decode
this version of E, in roughly 72 steps. This is faster than
the algorithm proposed in [22] (see paragraph 15) to fol-
low) which requires about 104 steps.

If we require not only the closest point u E E, to x, but
also dist2(x, u), this can be obtained at the end of step 3)
of the algorithm, using (3), at the cost of about 16 ad-
ditional steps to compute x . x. If steps 1) and 2) can be
carried out in advance, as will be the case when we use this
algorithm in decoding the Leech lattice in Section IV, the

CONWAY AND SLOANE: SOFT DECODING TECHNIQUES FOR CODES AND LATTICES 45

number of steps to decode one x drops to about 48, or 56 III. FASTDECODINGALGORITHMSFORTHEGOLAY

if dist2(x, u) is needed. CODE

14) Direct sums of lattices on this list can be handled in
the same way as direct sums of codes-see 6).

The direct search algorithm (see Section II, paragraph

15) Superlattices: If M is one of the foregoing lattices
1)) for the [24, 121 Golay code %‘zb takes about 24 . 212 =

and A contains M as a sublattice of small index, then A
98 304 steps, while the trellis decoding method of Section

can also be decoded easily. We write
II, paragraph 5) is even slower. Hwang’s algorithm [44],

[45] for the shortened Golay code of length 23 takes
t-1

A = Jvo(~cj) + M), (25)
roughly 24 . 1376 = 33024 steps. In this section we give
two algorithms that are much faster. The first is based on
the subcode (7) takes about 1584 steps, and is described in

where t := det M/det A is the index of M in A, det M is detail. The second is based on the subcode (4) takes about

the volume of a fundamental domain for M (see]21], 1631,
[65]), and the p(j) (j = 0, 1,. . . , t - 1) are coset repre-

1728 steps, and is only sketched. The second algorithm is

included because it could easily be faster than the first if a
sentatives for M in A. Let @ be a decoder for M. different method were used to count steps.

To decode A we proceed as follows. Given x, we calcu-

late A. The First Algorithm

y(j) := x - p(J) t26) Th ere are three parts to the algorithm: the design stage,

z(J) := a(y(A) (27) which is only performed once, and the precomputation and

d, := (z (A _ y(A) . (,(A _ y(j)),
main stages, which are both performed each time a vector

(28) is decoded.

for j = 0,. . ., t - 1, and find a j, j* say, for which dj is The Design Stage: 9224 contains the [24, 51 subcode g

minimized. Then the decoder output is shown in (7). As coset representatives for g in ??224 we take

the 128 words of the code defined by the following genera-
u := ,(i*) + p(i*), (29) tor matrix:

and d,, is the squared distance from x to u [22, sec. V]. 1100 1100 1100 1100 0000 0000

The number of steps required is about t times the 1010 1010 1010 1010 OOOQ 0000

number of steps to decode M, plus n(t - 1) steps to 1010 1001 1100 0000 1100 0000

compute the y (J) (in practice this can often be greatly 1001 1100 1010 0000 1010 0000 (31)

reduced-see Section IV), plus 3nt steps to compute 0111 1000 1000 1000 1000 1000

the d,. 0000 0000 1100 1100 1100 1100

Example 1: The E, lattice (see 13)) is also given by ~0000 0000 1010 1010 1010 lOlO_

E, = D, u (i:i$+++:) + D,, (30) Equations (7) and (31) together generate g2,, [28, fig. 61.
We begin by preparing a table of all 128 coset repre-

an example in which t = 2 and M = D,. The foregoing sentatives, written in + 1, -1 notation, labeling them
algorithm (proposed in [22]) therefore takes about 2 . 32 +
8 + 32 = 104 steps. This drops to about 96 if y(O) and y(l)

p(Q,. . . , p(iz7) in some arbitrary order. The beginning of
this table (using one obvious ordering) is shown in Table I.

have been precomputed. For a typical coset representative
Example 2: The dual lattices D,* and AZ (the so-called

Voronoi lattice of the first type, which is important for the
p(A = (p{,. . . , p&)

covering problem [61]) may also be decoded by this al- the algorithm will involve the componentwise product

gorithm (see [22]).
Example 3: Lattices formed by “gluing” sublattices to-

gether (in exactly the same way the codes were glued
together in 7)) may be decoded by this algorithm. This
includes the twenty-three 24-dimensional Niemeier lattices

1531, 1191, as well as many other lattices described in [19],

p(j) *x= (p{xl,...,p~4x2,).

TABLE I
12X COSET REPRESENTATIVES FOR 37 IN $4, WRITTEN IN + 1, ~ 1

NOTATION AND ARRANGED IN SOME ARBITRARY ORDER”

/
WI. I II 1 III IV 1 v VI

Based on the results assembled in this section, we can

now state our general strategy for finding an efficient
decoding algorithm for a code or lattice: find a subcode (or
sublattice) of smallest index for which a fast algorithm
exists, and then use 7) 12), or 15). Algorithms for decoding

the lattices E,, Ez, E,, ET, K,,, and A,, were obtained

in [28] by using this strategy. For example, the
Coxeter-Todd lattice K,, contains A, $. . . @A, (six
summands) as a sublattice of index 64. In the next two

1111

ii11

iiT1

1111

1111

1111 1111

ii1 1 ii1 1

iii1 iiT1

1111 1111

1111 ii1 I

1 1

1111 1111

ii1 1 1111

iii1 1111

1
1111 1111

1111 ii11

1111

1111

1111

1111

1111

sections we apply the strategy to the Golay code and the “The coordinates are divided into six blocks of four. A bar indicates a

Leech lattice. negative number.

46 IEEI

Inspection of (31) reveals that, in the first block of four
coordinates of p(J) * X, all possible sign combinations of

Xl, x2, x3, xq occur. The precomputation stage of the al-

gorithm will calculate these 16 combinations in the Gray
code order shown in Table III. Similarly in the other five
blocks of coordinates, except that in blocks III-VI, the
final x,‘s (i.e., xi2, xi6, x20, x24) only occur with + signs.

We now prepare a second table, the cross-reference table,
as follows. For each entry p(j) in Table I, we write down
for each block of four coordinates where that sign combi-

nation is to be found in Table III. For pc4), for example, the
sign combinations on the six blocks are

-+-+ -++- --++
++++ --++ ++++

which are entries

6
0

14 2
2 0

respectively, of Table III. This gives the fifth line

x; zz 6, -& = 14, x;‘II = 2;. ’ 9 ?&I = ’

of Table II.

TABLE II
THECROSS-REFERENCETABLE xv

j I II III IV v VI

00 0 0 0 0 0

1222200

26 6 6 6 0 0

34 4 4 4 0 0

4 6 14 2 0 2 0

“An entry x(y = m indicates that the sign combination appearing in
block N of p(l) (in Table I) is to be found in row m of Table III.

The decoding algorithm After the 127th step, a closest codeword in the Golay code

to x is
To decode x = (xi;. ., x24).
Precomputation Stage: We compute six Gray code ta-

bles, the first of which is shown in Table III. Each entry
differs from the previous one in only one coordinate (since

the entries are ordered by a Gray code [38], [55], [59]), and
so can be computed with just one subtraction. Note also
that the entries in the second half of Table III are simply
the negatives of the entries in the first half.

where

uN = w(%(x/N*)), N= I;..,VI,

with the sign of the smallest]GN(xjN*)] reversed if an even
number of the uN are negative. “Record” gives the inner

product u . x.

Table III is the Gray code table for block I, and involves The number of steps is roughly 48 for the precompu-

Xl,‘. .> x4. The other five tables correspond to blocks tation stage, plus 12 . 128 = 1536 for the main stage, a

11; . .) VI, and involve x5,.. ., xs; . . . ; x2i;. ., xz4, re- total of 1584. To see that this works, we remark that it is

spectively, but have the same sign combinations. However, just the algorithm of Section II, paragraph 7), modified so

the last eight rows of the tables for blocks III-VI can be as to precompute the y(j) (using the Gray code tables). We

omitted, since xi2, xi6, xlo, and xz4 only occur with + have also made use of the special structure of the subcode

signs. We let GN(i) denote the ith entry in the table for B to streamline the calculation of the inner products ip”)

block N (N = I;..,VI). ((32) follows from (ll), and (33) from (10)).

IXANSACTIONS ON INFORMATIONTHEORY,VOL.IT-32,N0. l,JANUARYl986

TABLE III
GRAYCODETABLEFORBLOCKI,THE~THENTRYISG~(~)

0

1

IO

11

I2

13

14

15

Main Stage: Set record = 0 and j* = 0. For j = 0

through 127,

l obtain xi,. . . , x$t from Table II;

l obtain G,(xf); . ., G,,(x-&) from the Gray code ta-

bles, and compute the inner product

ip = IGI(+ *.- +IGVI(x&)I (324

if an even number of the]GN(x,,)] are even, or

ip = IGI(+ -.+ +IGvI(~~I)I - 2m!lG,(xi,)l

(32’4

otherwise; and
l if ip > record, set record = ip and j* = j.

CONWAY AND SLOANE: SOFT DECODING TECHNIQUES FOR CODES AND LATTICES 41

B. The Second Algorithm

The overall structure of the second algorithm is the
same, but now we use the [24,3] subcode g shown in (4).
The 512 coset representatives for .@ in gz24 are generated
by the following matrix:

1111 0000 1111 0000 0000 0000
1100 1100 1100 1100 0000 0000
1010 1010 1010 1010 0000 0000
1010 1001 1100 0000 1100 0000

1001 1100 1010 0000 1010 0000 (34)
1100 1010 1001 0000 1001 0000
0111 1000 1000 1000 1000 1000
0000 0000 1100 1100 1100 1100

~0000 0000 1010 1010 1010 1010,

(4) and (34) together generate gzd. The precomputation
stage computes three Gray code tables, the first containing
all 128 combinations

the second all 64 combinations

+x9 * ** ’ kxls + x1Cj,

and the third all 64 combinations

with an even number of minus signs in each case.
In the main stage j now runs from 0 to 511, and (32a)

and (32b) are replaced by the much simpler formula

ip = IGt(x:)l + IG,,(x!t)l + IG,,,(x~II)L (35)

obtained from (6). The final output is

241 * * . UIUII . . * UIIUIII . . . UIII, (36)

where uN = sgn (GN(xj)), N = I, II, III (cf. (5)). The total
number of steps is roughly 192 for the precomputation
stage, plus 3 . 512 = 1536 for the main stage, a total of

1728.
The Golay code of length 23 can be decoded by a

straightforward modification of either algorithm (or alter-
natively by using the algorithms as they stand and the

method of (Section II, paragraph 8)).

IV. A FASTDECODINGALGORITHMFORTHELEECH
LATTICE

The Leech lattice A,, is a 24-dimensional lattice that

can be defined in a number of ways [lo], [15], [17], [23]-[25],
[29], [47]-[49], [53], 1641, [65]. For example it may be
obtained by applying Construction B (see Section II, para-
graph 12)) to the Golay code g224, and then doubling the
number of points. In [28] we proposed a decoding al-
gorithm for A,, based on the fact that A,, contains D,, as
a sublattice of index 8192. In view of 10) and 15) in Section

II, this algorithm takes about

4 . 24 . 8192 = 786432

steps to decode one point. In contrast the algorithm given
below takes only about 55 968 steps, which is about 14

times as fast. This algorithm is based on the “Turyn

construction” of A,,.

A. The “Twyn Construction” of the Leech Lattice

Turyn showed around 1965 that the Golay code may be
constructed by gluing together three copies of the [8, 41
first-order Reed-Muller code (see [50, ch. IS]). The Leech
lattice may be constructed in a similar manner by gluing
together three copies of the E, lattice. Although this con-
struction has been known for many years, the following
particularly simple version has not appeared in print be-
fore. We give two sets of coordinates, the first being more
elegant, while the second is easier to decode.

Let As denote the particular version of E, obtained by
multiplying the vectors in (30) by 4. Typical vectors in A,
are (Os), (+ 4, f 4, 06) and (+ 28) with an even number of
minus signs.

Definition I: The Leech lattice A, consists of the vec-
tors

(el + a + t, e2 + b + t, e3 + c + t), (37)

where e,, e2, e3 are arbitrary vectors of A,, a, b are arbi-
trary vectors from the list of 16 given in Table IV(a),

TABLE IV
(u) THE 16 CHOICES FOR a, h, c IN (37), AND (1) THE 16 CHOICES

FOR ta

(a) (t)

0000 0000 0000 0000

4000 0000 2220 0200

2222 0000 2202 0002

1.222 0000 2022 0020

2200 2200 0222 2000

2200 2200 2200 2020

2200 0022 2020 2002

5200 0022 2002 2200

2020 2020 5111 1111

I020 2020 3111 Iii1

2020 0202 3ili 11Ii

2020 0202 3111 i Iii

2002 2002 3111 1111

5002 2002 371 I ii ii

2002 0220 3111 Ill1

2002 0220
--

3111 Ill1

"A bar indicates a negative number. When multiplied by two these
vectors are in A,.

c is the unique vector in Table IV(a) satisfying

a+b+c=O(modA,), (38)

and t is an arbitrary vector from the list of 16 given in

Table IV(t).
To see that (37) does define the Leech lattice, we begin

with the standard miracle octad generator (MOG) con-
struction of A,, (see [16] or [25], for example), in which the
24 coordinates are divided into three sets of eight. The
intersection of A,, with any one of these eight-dimensional

spaces is our A,, and the projection onto the same space is
:A s. The quotient iA,/A, is an Abelian group of order

256, and the vectors a + t, a E Table IV(a), t E Table

48 IEEE TRANSACTIONSON INFORMATIONTHEORy,VOL. IT-32, NO. 1,JANUARY 1986

IV(t), are coset representatives for As in +A,. (The blocks

of four coordinates in Tables IV(a) and IV(t) represent

columns of the MOG. See also [16, fig. 271.) The quotient
A 24/(A a CB As CB A,) is an abelian group of order 4096,
and the vectors

(a + t, b + t, c + t), (39)

with a, b, c E Table IV(a), t E Table IV(t), and

a+b+c=O(modA,)

are coset representatives for As @ A, CB As in A 24.
Definition 1 is based on the version of E, constructed in

(30). However, as we saw in Section II, paragraph 13) the
version constructed in (24) is easier to decode. To convert
from (30) to (24) we multiply by

1 10 00 00 0
1 -10 00 00 0
0 01 10 00 0

lo 01 -10 00 0
To 00 01 10 0

0 00 01 -10 0
0 00 00 01 1

-0 00 00 01-l

(40)

and add (1,l; * *, 1). This leads to the second definition of

A,,.
Let A’, denote the E, lattice in the form in which the

240 minimal vectors consist of 16 of the shape (* 4,0’),

and 24 . 14 = 224 obtained from

(2222 0000)

(2200 2200)

(2200 0022)

(2020 2020) (41)

(2020 0202)

(2002 2002)

(2002 0220)

by inserting arbitrary signs, and by interchanging O’s and
+ 2’s. Also let A’; = 1 + A’s, where 1 = (1, 1, . . . , 1). Then
A’i is precisely the version of E, defined in (24). Typical
vectors in A’; are

(1111 llll),

(1111 llll),
_---

(1111 llll),

(iii1 iiii),
(42)

(3111 llll),
. . .

where the bar indicates a negative number.
Definition 2: The Leech lattice A,, consists of the vec-

tors
1 + (e, + a + t, e2 + b + t, e3 + c + t) (43)

where e,, e2, e3 are arbitrary vectors of A’,, a, b are arbi-
trary vectors from Table V(a), c is the unique vector in
Table V(a) satisfying

a + b + c = 0 (mod A’,), (44)

and t is an arbitrary vector from Table V(t).

TABLE V
(U)THE 16 CHOICES FOR a,h,c IN (43), AND(~) 16 CHOICES

FOR t”

(a) (t)

0000 0000 0000 0000

2200 0000 IIII Till

2020 0000 ii I I 2000

2002 0000 2000 I I I I

2000 2000 1102 II00

2000 0200 201 I ooli

2000 0020 i 100 2011
- -

2000 0002 2011 1100

IIII Ill1 1210 1010

iill Ill1 2101 oiol

ilii liii lo10 2101

Ill1 Ill1 2101 iolo

ii I I ii I I 1021 1001

ill1 liil 21 IO oil0

iii1 iii1 1001 2310

Till lili 2110 iool

“When multiplied by two these vectors are in A’g.

B. Decoding Algorithm for the Leech Lattice A,,

We define A,, by (43). As in Section III-A there are
three parts to the algorithm.

The Design Stage: We begin by preparing a list of the
256 sums a + t, a E Table V(a), t E Table V(t), label-
ing them p(O), + . . , p(255) in some arbitrary order. The begin-

ning of this table (using one obvious ordering) is shown in
Table VI.

TABLE VI
THE 256 SUMS (I + t, u E Table V(a), t E Table V(r),

ARRANGEDINSOMEARBITRARY ORDER

p(o) 0000 0000

p(l) 2200 0000

/)(a 2020 0000

/)(a) Ill1 Ill1

p(16) IIII ill1

pm) 3311 ill1

-l--L--
We now prepare a second table, the cross-reference table,

as follows. For each of the 4096 vectors

(u + t, b + t, c + t), (45)

with a, b, c E Table V(a), t E Table V(t), and satisfying

(44), we write down a triple

x’ = (XL xi, xi), 0 I j I 4095,

CONWAY AND SLOANE: SOFT DECODING TECHNIQUES FOR CODES AND LATTICES 49

TABLEVII
THE CROSS REFERENCE TABLE

x0 - (O,O,O)

x’ - (l,l,O)

x2 - (l,O,l)

XJ - (0.1.1)

x4 = (16 16 16) > 1

x5 = (17,17,16)

indicating that a + t is entry xi of Table VI, b + t is

entry ~4, and c + t is entry x’;. In other words

i
p(x9, f$x:), $x3

1
is a triple (45) that satisfies (44). Part of the cross-reference

table based on Table VI is shown in Table VII.

The decoding algorithm

To decode x = (x1,. . a, x&.
Precomputation Stage: In a moment we shall apply the

E, decoder of Section II, paragraph 13) to the 256 vectors

(XI,. * *) xs) + a + t, a E TableV(a), t E TableV(t).

Before doing this we carry out steps (19)-(21) of the
decoder in advance. The components of the vectors a + t
range from - 2 to + 4. So our first step is to

compute the 7 . 24 = 168 numbers

yim=xi+m (-2<mI4),

find the nearest integer to y,, - 1 that is a multiple of

four, 4zim say,
find the difference d,, = y,, - 4zj,,
if d!,,, > 2, change di, to 2 - dim, keeping a record of
this change, and

calculate dfm.

The second precomputation step is the most time-con-
suming part of the algorithm. For j = O-255 we calculate

(x1;-, X8) + p(j), (46)

(x9,. . * > $6) + P”‘, (47)

(XI,,. . . , x24) + P”‘, (48)

and apply the E, decoder of 13) in Section II to these three
vectors (making use of the fact that we have already carried
out steps (19)-(21) of the algorithm). Let the closest points

of A$ to (46)-(48) be

respectively, and let

d(j, k) = dist*(x, p(j, k)). (49)

Main Stage: Set record = 0 and j* = 0. For j =

o-4095, obtain xi, xj2, xi from Table VII and calculate

the squared distance

d = d(x:J) + d(xiJ) + d(x:,3). (50)

If d < record, set record = d and j* = j. After the 4095th
step, a closest point of A,, to x is

24 = (P(XLl)> P(XL2)9 P(XL3))
and

dist*(x, U) = record.

The number of steps is roughly 4 . 168 = 672 for the
first precomputation step, 3 * 256 * 56 = 43 008 for the
second, plus 3 . 4096 = 12288 for the main stage, a total

of 55 968.
To see that this works, we remark that this is the

algorithm of Section II, paragraph 15) based on the sub-
lattice A’s $ A’s $ A’R of index 4096 in A,,. The quantity d
in (50) is the squared distance from x to a nearest vector in
the coset

i + A’s @ A’R @ A’, + (a + t, b + t,c + t).

ACKNOWLEDGMENT

We thank A. R. Calderbank, A. M. Odlyzko, M. R.
Schroeder, and A. D. Wyner for some helpful discussions.

REFERENCES

Ul

PI

[31

[41

[51

[61

[71

PI

[91

PO1

Pll

u21

[131

[141

[151

G. Battail, “Decodage pond&i optimal des codes lin&ires en blocs.
I. Emploi simplifie du diagramme du trellis,” Ann. T~l~commun.,
vol. 38, pp. 443-459, 1983.
G. Battail, M. C. Decouvelaere, and P. Godlewski, “Replication
decoding,” IEEE Trans. Inform. Theoty, vol. IT-25, pp. 332-345,
1979.
L. D. Baumert and R. J. McEliece, “Performance of some block
codes on a Gaussian channel,” in Proc. 1975 Int. Telemetering
conf., pp. 189-195.
-. “Soft decision decodine of block codes.” Jet Pronulsion Lab..
Calii. Inst. Tech., Deep Spaie Network Progress Rep: 42-47, July
1978, pp. 60-64.
L. D. Baumert, R. J. McEliece, and G. Solomon, “Decoding with
multipliers,” Jet Propulsion Lab., Calif. Inst. Tech., Deep Space
Network Progress Rep. 42-34, Aug. 1976, pp. 43-46.
T. Berger, “Optimum quantizers and permutation codes,” IEEE
Trum. Inform. Theory, vol. IT-18, pp. 759-765, 1972.
T. Berger, F. Jelinek, and J. K. Wolf, “Permutation codes for
sources,” IEEE Trans. In/arm. Theory, vol. IT-18, pp. 160-169,
1972.
E. R. Berlekamp, “The technology of error-correcting codes,” Proc.
IEEE, vol. 68, pp. 564-593, 1980.
R. E. Blahut, Theory and Practice of Error Control Codes. Reading,
MA: Addison-Wesley, 1983, especially p. 482.
I. F. Blake, “The Leech lattice as a code for the Gaussian channel,”
Inform. Co&r., vol. 19, pp. 66-74, 1971.
R. W. D. Booth, M. A. Herro, and G. Solomon, “Convolutional
coding techniques for certain quadratic residue codes,” in Proc.
1975 Int. Telemetering Conf., pp. 168-177.
P. de Buda, “Encoding and decoding algorithms for an optimal
lattice-based code,” in IEEE Conf. Rec. 81CHl648-5, Int. Con&
Commun., June 1981, pp. 65.3.1-65.3.5.
R. de Buda, “The upper error bound of a new near-optimal code,”
IEEE Trans. Inform. Theory, vol. IT-21, pp. 441-445, 1975.
D. Chase, “A class of algorithms for decoding block codes with
channel measurement information,” IEEE Trans. Inform. Theory,
vol. IT-l& pp. 170-182, 1972.
J. H. Conway, “Three lectures on exceptional groups,” in Finite
Simple Groups. M. B. Powell and G. Higmann, Eds. New York:

50 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-32, NO. 1, JANUARY 1986

Academic, 1971, pp. 215-247.

[I61

P71

1181

1191

PO1

w

J. H. Conway, “The Golay codes and the Mathieu groups,” in The
Leech Lattice, Sphere Packings, and Reluted Topics, J. H. Conway
and N. J. A. Sloane. New York: Springer-Verlag. (in preparation).
J. H. Conway, R. A. Parker, and N. J. A. Sloane, “The covering
radius of the Leech lattice,” Proc. Royal Sot. London, Ser. A, vol.
380, pp. 261-290, 1982.
J. H. Conway and V. Pless, “On the enumeration of self-dual
codes,” J. Combinatorial Theory, vol. 28A, pp. 26-53, 1980.
J. H. Conway and N. J. A. Sloane, “On the enumeration of lattices
of determinant one,” J. Number Theory, vol. 15, pp. 83-94, 1982.
-, “The unimodular lattices of dimension up to 23 and the
Minkowski-Siegel mass constants,” Europ. J. Combinatorics, vol. 3,
pp. 219-231, 1982.
-, “Voronoi regions of lattices, second moments of polytopes,
and quantization,” IEEE Trans. Inform. Theory, vol. IT-28, pp.
211-226, 1982.
-, “Fast quantizing and decoding algorithms for lattice quan-
tizers and codes,” IEEE Trans. Inform. Theory, vol. IT-28, pp.
227-232, 1982.
-. “Twenty-three constructions for the Leech lattice,” Proc.
Royul Sot. London, Ser. A, vol. 381, pp. 275-283, 1982.
__ “Lorentzian forms for the Leech lattice,” Bull. Amer. Math.
Soc.,‘vol. 6, pp. 215-217, 1982.
_ “Laminated lattices,”
1982:

Ann. Math., vol. 116, pp. 593-620,

_ “Complex and integral laminated lattices,” Trans. Amer.
Math. Sot., vol. 280, pp. 463-490, 1983.
-, “A fast encoding method for lattice codes and quantizers,”
IEEE Trans. Inform. Theory, vol. IT-29, pp. 820-824, 1983.
-, “On the Voronoi regions of certain lattices,” SIAM J. Alge-
braic Discrete Methods. vol. 5. DD. 294-305. 1984.
-. The Leech Lattice, Sp&re Packings, and Related Topics.
New York: Springer-Verlag, in preparation.
H. S. M. Coxeter, Regular Polytopes, 3rd ed. New York: Dover,
1973.

[451

[461

[471

[481

[491

_ “Efficient optimal decoding of linear block codes,” IEEE
Trans. Inform. Theory, vol. IT-26, pp. 603-606, 1980.
D. E. Knuth, The Art of Computer Programming, vol. 3. Reading,
MA: Addison-Wesley, 1973, p. 216.
J. Leech, “Notes on sphere packings,” Cunad. J. Math., vol. 19, pp.
251-267, 1967.
J. Leech and N. J. A. Sloane, “Sphere packing and error-correcting
codes,” Canad. J. Math., vol. 23, pp. 718-745, 1971.
J. I. Lepowsky and A. E. Meurman, “An Es-approach to the Leech
lattice and the Conway group,” J. Algebra, vol. 77, pp. 484-504,
1982.

[501

[511
VI

1521

1231

1241

1251

WI

1271

WI

~291

[301

Pll

~321

1531

[541

[551

[561

[571

[581

[591

Lb01

[331 [611

1341

[351

[361

1371

[3X1

[391

[621

[631

[641

Lb51

[661

[401

[411

(421

[431

[441

P. Delsarte, “Partial-optimal piecewise decoding of linear codes,”
IEEE Trans. Inform. Theory, vol. IT-24, pp. 70-75, 1978.
B. G. Dorsch, “A decoding algorithm for binary block codes and
I-ary output channels,” IEEE Trans. Inform. Theory, vol. IT-20, pp.
391-394, 1974.
G. S. Evseev, “Complexity of decoding for linear codes” (in Rus-
sian), Probl. Peruduch. Inform., vol. 19, no. 1, pp. 3-8, 1983.
English translation in Probl. Inform. Transmission, vol. 19, no. 1,
pp. 1-6, 1983.
G. D. Forney, Jr., “Generalized minimum distance decoding,”
IEEE Trans. Inform. Theory, vol. IT-12, pp. 125-131, 1966.
-, “The Viterbi algorithm, “Proc. IEEE, vol. 61, pp. 268-278,
1973.
A. Gersho, “Asymptotically optimal block quantization,” IEEE
Truns. Inform. Theory, vol. IT-25, pp. 373-380, 1979.
A. Gersho, “On the structure of vector quantizers,” IEEE Truns.
Inform. Theory, vol. IT-28, pp. 157-166, 1982.
E. N. Gilbert, “Gray codes and paths on the n-cube,” Bell Syst.
Tech. J., vol. 37, pp. 815-826, 1958.
D. M. Gordon, “Minimal permutation sets for decoding the binary
Golay code,” IEEE Trans. Inform. Theoty, vol. IT-28, pp. 541-543,
1982.
R. R. Green, “A serial orthogonal decoder,” JPL Space Progrums
Summu<v, vol. 37-39-IV, pp. 247-253, 1966.
_ “Analysis of a serial orthogonal decoder,” JPL Space Pro-
grands Summary, vol. 37-53-111, pp. 185-187, 1968.
C. M. Hackett, “An efficient algorithm for soft decision decoding of
the (24,12) extended Golay code,” IEEE Trans. Commun., vol.
COM-29, pp. 909-911, 1981 and vol. COM-30, p. 554, 1982.
C. R. P. Hartmann and L. D. Rudolph, “An optimum symbol-by-
symbol decoding rule for linear codes,” IEEE Trans. Inform.
Theory, vol. IT-22, pp. 514-517, 1976.
T. Y. Hwang, “Decoding linear block codes for minimizing word
error rate, IEEE Trans. Inform. Theory,” vol. IT-25, pp. 733-737,
1979.

[671

[681

1691

[701

[711

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Cor-
recting Codes. Amsterdam, The Netherlands: North-Holland, 1977.
J. L. Massey, “Foundation and method of channel encoding,” in
Proc. Int. Conf. on Info. Theory and Systems, NTG-Fachberichte
(Berlin), vol. 65, 1978, pp. 148-157.
H. Miyakawa and T. Kaneko, “Decoding algorithm for error-cor-
recting codes by use of analog weights,” Electron. Commun. Japan,
vol. 58-A, pp. 18-27, 1975.
H. V. Niemeier, “Definite quadratischer Formen der Dimension 24
und Diskriminante 1,” J. Number Theory, vol. 5, pp. 142-178, 1973.
J. Paluszkiewicz, R. Stasinski, and 2. Szymanski, “An algorithm for
soft-decision decoding of the Golay and other linear codes,” in I983
IEEE Int. Symp. Information Theory, Abstructs of Pupers. New
York: IEEE Press, 1983, p. 137.
M. Phister, Jr., Logical Design of Digital Computers. New York:
Wiley, 1960, pp. 232-234, 399-401.
V. Pless, “The children of the (32,16) doubly even codes,” IEEE
Trans. Inform. Theory, vol. IT-24, pp. 738-746, 1978.
V. Pless and N. J. A. Sloane, “On the classification and enumer-
ation of self-dual codes,” J. Combinutoriul Theory, vol. 18, pp.
313-335,1975.
E. C. Posner, “Combinatorial structures in planetary reconnais-
sance,” in Error Correcting Codes, H. B. Mann, Ed. New York:
Wiley, 1969, pp. 15-46.
E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Ai-
gorithms: Theory and Practice. Englewood Cliffs, NJ: Prentice-
Hall, 1977.
L. D. Rudolph, C. R. P. Hartmann, T. Y. Hwang, and N. Q. Due,
“Algebraic analog decoding of lineary binary codes,” IEEE Truns.
Inform. Theory, vol. IT-25, pp. 430-440, 1979.
S. S. Ryskov and E. P. Baranovskii, “Solution of the problem of
least dense lattice coverings of five-dimensional space by equal
spheres” (in Russian), Dokl. Akad. Nauk SSSR, vol., 222, pp.
39-42, 1975. English translation in Soviet Math. Dokludy, vol. 6,
pp. 586-590, 1975.
D. Slepian, “Permutation modulation,” Proc. IEEE, vol. 53, pp.
228-236, 1965.
N. J. A. Sloane, “Binary codes, lattices and sphere packings,” in
Combinatorial Surveys, P. J. Cameron, Ed. New York: Academic,
1977, pp. 117-164.
_ “A note on the Leech lattice as a code for the Gaussian
channel,” Inform. Contr., vol 46, pp. 270-272, 1980.
_ “Tables of sphere packings and spherical codes,” IEEE
Trani. Inform. Theory. vol. IT-27, DD. 327-338. 1981.
G. Solomon and H.’ C. A. van ‘Tiiborg, “A connection between
block and convolutional codes,” SIAM J. Appl. Math., vol. 37, pp.
358-369, 1979.
N. N. Tendolkar and C. R. P. Hartmann, “Generalization of Chase
algorithms for soft decision decoding of binary linear codes,” IEEE
Trans. Inform. Theory, vol. IT-29, pp. 714-721, 1984.
A. J. Viterbi, “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm,” IEEE Trans. Inform.
Theory, vol. IT-13, pp. 260-269, 1967.
J. K. Wolf, “Efficient maximum likelihood decoding of linear block
codes using a trellis,” IEEE Trans. Inform. Theory, vol. IT-24, pp.
76-80, 1978.
J. Wolfmann, “Nouvelles methodes de decodage du code de Golay
(24. 12, 8),” Rev. CETIIEDEC Cahier, no. 2, pp. 79-88, 1981.
J. Wolfmann, “A permutation decoding of the (24, 12, 8) Golay
code,” IEEE Trans. Inform. Theory, vol. IT-29, pp. 748-750, 1983.

