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Abstract: We introduce a new jet substructure technique called “soft drop declustering”,

which recursively removes soft wide-angle radiation from a jet. The soft drop algorithm

depends on two parameters — a soft threshold zcut and an angular exponent β — with

the β = 0 limit corresponding roughly to the (modified) mass drop procedure. To gain an

analytic understanding of soft drop and highlight the β dependence, we perform resummed

calculations for three observables on soft-dropped jets: the energy correlation functions, the

groomed jet radius, and the energy loss due to soft drop. The β = 0 limit of the energy loss

is particularly interesting, since it is not only “Sudakov safe” but also largely insensitive

to the value of the strong coupling constant. While our calculations are strictly accurate

only to modified leading-logarithmic order, we also include a discussion of higher-order

effects such as multiple emissions and (the absence of) non-global logarithms. We compare

our analytic results to parton shower simulations and find good agreement, and we also

estimate the impact of non-perturbative effects such as hadronization and the underlying

event. Finally, we demonstrate how soft drop can be used for tagging boosted W bosons,

and we speculate on the potential advantages of using soft drop for pileup mitigation.
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1 Introduction

The study of jet substructure has significantly matured over the past five years [1–3], with

numerous techniques proposed to tag boosted objects [4–46], distinguish quark from gluon

jets [44, 47–51], and mitigate the effects of jet contamination [6, 52–61]. Many of these

techniques have found successful applications in jet studies at the Large Hadron Collider

(LHC) [50, 62–89], and jet substructure is likely to become even more relevant with the

anticipated increase in energy and luminosity for Run II of the LHC.

In addition to these phenomenological and experimental studies of jet substructure,

there is a growing catalog of first-principles calculations using perturbative QCD (pQCD).

These include more traditional jet mass and jet shape distributions [90–95] as well as more

sophisticated substructure techniques [44, 59, 60, 96–103]. Recently, refs. [59, 60] considered

the analytic behavior of three of the most commonly used jet tagging/grooming methods

— trimming [53], pruning [54, 55], and mass drop tagging [6]. Focusing on groomed

jet mass distributions, this study showed how their qualitative and quantitative features

could be understood with the help of logarithmic resummation. Armed with this analytic

understanding of jet substructure, the authors of ref. [59] developed the modified mass

drop tagger (mMDT) which exhibits some surprising features in the resulting groomed

jet mass distribution, including the absence of Sudakov double logarithms, the absence of

non-global logarithms [104], and a high degree of insensitivity to non-perturbative effects.

In this paper, we introduce a new tagging/grooming method called “soft drop declus-

tering”, with the aim of generalizing (and in some sense simplifying) the mMDT procedure.

Like any grooming method, soft drop declustering removes wide-angle soft radiation from

a jet in order to mitigate the effects of contamination from initial state radiation (ISR),

underlying event (UE), and multiple hadron scattering (pileup). Given a jet of radius R0

with only two constituents, the soft drop procedure removes the softer constituent unless

Soft Drop Condition:
min(pT1, pT2)

pT1 + pT2
> zcut

(
∆R12

R0

)β
, (1.1)

where pT i are the transverse momenta of the constituents with respect to the beam, ∆R12

is their distance in the rapidity-azimuth plane, zcut is the soft drop threshold, and β is an

angular exponent. By construction, eq. (1.1) fails for wide-angle soft radiation. The degree

of jet grooming is controlled by zcut and β, with β → ∞ returning back an ungroomed

jet. As we explain in section 2, this procedure can be extended to jets with more than two

constituents with the help of recursive pairwise declustering.1

Following the spirit of ref. [59], the goal of this paper is to understand the analytic

behavior of the soft drop procedure, particularly as the angular exponent β is varied.

There are two different regimes of interest. For β > 0, soft drop declustering removes soft

radiation from a jet while still maintaining a fraction (controlled by β) of the soft-collinear

radiation. One of the consequences is that the soft drop procedure gives infrared/collinear

1The soft drop procedure takes some inspiration from the “semi-classical jet algorithm” [58], where a

variant of eq. (1.1) with zcut = 1/2 and β = 3/2 is tested at each stage of recursive clustering (unlike

declustering considered here).
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(IRC) safe results even on a jet with just one constituent. In this regime, soft drop acts

like a “groomer”, meaning that it changes the constituents of a jet without affecting the

overall jet production cross section. For β < 0, soft drop declustering can remove both soft

and collinear radiation. For a jet to pass the soft drop procedure, it must have at least

two constituents satisfying eq. (1.1). Thus, in this regime, soft drop acts like a “tagger”,

since it vetoes jets that do not have two well-separated hard prongs. Roughly speaking,

the boundary β = 0 corresponds to mMDT, which acts like a tagger at any fixed-order in

an αs expansion, but can be thought of as a “Sudakov safe” [105] groomer when all orders

in αs are considered.

To demonstrate the behavior of the soft drop procedure, we will present three calcu-

lations performed on soft-dropped jets.

• Energy correlation functions. The generalized energy correlation functions (ECF)

were introduced in ref. [44], where ECF (N,α) corresponds to an N -point correlation

function with angular exponent α. In this paper, we will focus on the 2-point correla-

tor through the combination C
(α)
1 ≡ ECF (2, α) /ECF (1, α)2 (see also refs. [32, 106]).

For a jet with two constituents,

C
(α)
1 ' pT1 pT2

(pT1 + pT2)2

(
∆R12

R0

)α
, (1.2)

where we have added an extra R0 normalization factor for later convenience. The

value α = 2 is related to jet thrust/mass [7, 91, 107], α = 1 is related to jet

broadening/girth/width [25, 47], and arbitrary α > 0 is related to the recoil-free

angularities [102]. In section 3, we calculate C
(α)
1 in the modified leading logarith-

mic (MLL) approximation, which accounts for all terms αnsL
2n−q with q = 0, 1 and

L ≡ log(1/C
(α)
1 ) in the expansion of the C

(α)
1 cumulative distribution. We will also

compute higher-order effects due to multiple emissions and we will find an interesting

interplay between the ECF exponent α and the soft drop exponent β, especially as

relates to non-global logarithms.

• Groomed jet radius. The soft drop declustering procedure terminates when eq. (1.1)

is satisfied, and the corresponding ∆R12 gives the effective radius Rg of the groomed

jet. Roughly speaking, the active jet area [108] is ' πR2
g. In section 4, we calculate

the Rg distribution to MLL accuracy to gain an understanding of how the soft drop

procedure might perform in a pileup environment.

• Jet energy drop. Strictly speaking, the groomed jet energy distribution after mMDT

(i.e. β = 0) is not IRC safe. One of the motivations for introducing the generalized soft

drop procedure with β > 0 is to have a method (in the same spirit of trimming [53])

that gives IRC safe distributions for any (otherwise) IRC safe observable measured

on groomed jets. In section 5, we calculate the fractional drop in the jet energy

after the soft drop procedure to MLL accuracy, including higher-order corrections

due to multiple emissions. Intriguingly, we will find that the β → 0 limit is “Sudakov

safe” [105], and the resulting jet energy drop spectrum is independent of αs in the

fixed coupling approximation.
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While the focus of this paper is on the analytic properties of the soft drop procedure, we

will cross check our results using parton shower Monte Carlo simulations. In addition to

these analytic studies, we will perform a Monte Carlo study of non-perturbative corrections

(hadronization and UE) in section 6, and estimate the tagging performance of soft drop

for boosted W bosons in section 7. We present our conclusions in section 8.

2 Soft drop declustering

2.1 Definition

The starting point for soft drop declustering is a jet with characteristic radius R0. For

definiteness, we will always consider jets defined with the anti-kt algorithm [109], but other

jet algorithms would work equally well. We then recluster the jet constituents using the

Cambridge-Aachen (C/A) algorithm [110, 111] to form a pairwise clustering tree with an

angular-ordered structure.

The soft drop declustering procedure depends on two parameters, a soft threshold zcut

and an angular exponent β, and is implemented as follows:

1. Break the jet j into two subjets by undoing the last stage of C/A clustering. Label

the resulting two subjets as j1 and j2.

2. If the subjets pass the soft drop condition
(

min(pT1,pT2)
pT1+pT2

> zcut

(
∆R12
R0

)β
, see eq. (1.1)

)
then deem j to be the final soft-drop jet. (Optionally, one could also impose the mass-

drop condition max(m1,m2) < µm as in ref. [6], but we will not use that here.)

3. Otherwise, redefine j to be equal to subjet with larger pT and iterate the procedure.

4. If j is a singleton and can no longer be declustered, then one can either remove j

from consideration (“tagging mode”) or leave j as the final soft-drop jet (“grooming

mode”).

By building a C/A tree, we can apply the pairwise soft drop condition from eq. (1.1) to

a jet with more than two constituents. Tagging mode is only IRC safe for β ≤ 0 whereas

grooming mode is only IRC safe for β > 0. In this paper, we will typically consider

zcut ' 0.1 but we will explore a wide range of β values.2

The above algorithm can be thought of as a generalization of the (modified) mass-

drop tagger (mMDT) [6, 59], with β = 0 roughly corresponding to mMDT itself. There

are, however, a few important differences. First, soft drop declustering does not require

a mass drop condition (or equivalently, the mass drop parameter µ is set to unity). As

shown in ref. [59], the mass drop condition is largely irrelevant for understanding the

analytic behavior of mMDT on quark/gluon jets, so we have decided not to include it in

the definition here. Second, we note that the β = 0 limit corresponds to a mMDT variant

2Throughout this paper, we will assume that ∆R12 < R0 at every stage of the declustering, such that

the algorithm returns the whole jet in the β →∞ limit. In practice, it is possible for a jet of characteristic

radius R0 to have ∆R12 > R0 when reclustered with C/A, and in that case we simply apply step 2 without

change, such that wide angle emissions can still be vetoed even in the β →∞ limit.
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where step 2 is implemented directly on the transverse momentum fractions of subjets,

rather than indirectly through a ratio of a kt-distance to a mass [59]. Of course, the two

give the same behavior in the small min(pT1, pT2)/(pT1 + pT2) limit, but eq. (1.1) makes it

obvious that the soft drop condition drops soft radiation (true to its name). Finally and

most importantly, for β 6= 0, the soft drop condition involves a relation between energies

and angular distances, rather than just energies as is the case for β = 0. It is this additional

angular dependence (exploited by the exponent β) that we wish to highlight in this paper.

As mentioned in footnote 1, the soft drop condition takes some inspiration from the

“semi-classical jet algorithm” [58]. The semi-classical algorithm is a pairwise clustering

algorithm that only allows mergings which satisfy

Semi-classical Condition:
min(mT1,mT2)

mT1 +mT2
>

1

2

(
∆R12

R0

)3/2

, (2.1)

where mT i =
√
m2
i + p2

T i. Apart from the change of pT i → mT i, the semi-classical con-

dition looks like the soft drop condition with β = 3/2 and zcut = 1/2, but there is an

important difference. For semi-classical jets, one is recursively clustering a jet using a

novel measure. For soft-drop jets, one is taking an existing jet defined with a traditional

algorithm and using soft drop declustering to groom away soft wide-angle emissions. Of

course, the distinction between clustering and declustering is irrelevant for a jet with only

two constituents, but it is very important for our analytic calculations which only apply to

declustering of a C/A tree.3

2.2 Dependence on β

Before studying the analytic behavior of soft-drop distributions in detail, it is worth making

a few general comments about the expected β dependence. For simplicity of discussion,

we will work with central jets (i.e. rapidity y = 0) with small radius (R0 � 1). This way,

we can freely exchange transverse momentum pT for energy E, as well as rapidity-azimuth

distance R for opening angle θ. All of the results of this paper extend to non-zero rapidity

as well, up to power corrections in the jet radius, which we neglect.

In figure 1, we show the phase space for a single gluon emission from an eikonal hard

quark/gluon on the (log 1
z , log R0

θ ) plane, where 0 ≤ z ≤ 1 is the energy fraction and

0 ≤ θ ≤ R0 is the angle of the emission. We have labeled three modes in the phase space:

soft, soft-collinear, and collinear. For this paper, we define the various modes in terms of

their z and θ behavior:

soft modes: z → 0, θ = constant,

soft-collinear modes: z → 0, θ → 0,

collinear modes: z = constant, θ → 0.

3In principle, it is possible to use any of the generalized kt algorithms [112, 113] to perform the soft

drop declustering. The choice of C/A is motivated by the approximate angular ordering of emissions in the

parton shower.
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Figure 1: Phase space for emissions on the (log 1
z , log R0

θ ) plane. In the strongly-ordered

limit, emissions above the dashed line (eq. (2.2)) are vetoed by the soft drop condition.

For β > 0, soft emissions are vetoed while much of the soft-collinear region is maintained.

For β = 0 (mMDT), both soft and soft-collinear emissions are vetoed. For β < 0, all

(two-prong) singularities are regulated by the soft drop procedure.

No relative scaling is assumed between energy fraction z and splitting angle θ for soft-

collinear modes. In these logarithmic coordinates, the emission probability is flat in the

soft-collinear limit. In the soft limit, the soft drop criteria reduces to

z > zcut

(
θ

R0

)β
⇒ log

1

z
< log

1

zcut
+ β log

R0

θ
. (2.2)

Thus, vetoed emissions lie above a straight line of slope β on the (log 1
z , log R0

θ ) plane, as

shown in figure 1.

For β > 0, collinear radiation always satisfies the soft drop condition, so a soft-drop

jet still contains all of its collinear radiation. The amount of soft-collinear radiation that

satisfies the soft drop condition depends on the relative scaling of the energy fraction z to

the angle θ. As β → 0, more of the soft-collinear radiation of the jet is removed, and in

the β = 0 (mMDT) limit, all soft-collinear radiation is removed. Therefore, we expect that

the coefficient of the double logarithms of observables like groomed jet mass (and C
(α)
1 )

will be proportional to β, when β is small. Similarly, because the soft drop procedure does

not change the structure of collinear emissions, observables like the groomed jet energy are

IRC safe. Note that running β > 0 soft drop in tagging mode is not IRC safe, since a jet

would (would not) be tagged if it contained two (one) collinear particles.

In the strict β = 0 or mMDT limit, collinear radiation is only maintained if z > zcut.

Because soft-collinear radiation is vetoed, the resulting jet mass (and C
(α)
1 ) distributions

will only exhibit single logarithms, as emphasized in refs. [59, 60]. Because the structure

– 6 –
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of collinear emissions is modified, observables like groomed jet energy are only IRC safe

if soft drop is used in tagging mode, since that forces the jet to have a hard two-prong

structure, which regulates the collinear singularity. We will see in section 5, however, that

β = 0 grooming mode is still “Sudakov safe” [105].

Finally, for β < 0, there are no logarithmic structures for observables like groomed

jet mass at arbitrarily low values of the observable. Effectively, soft drop with negative

β acts like a cut which enforces C
(α)
1 > z

α/|β|
cut , and this cut regulates the soft-collinear

singularities. For example, β = −1 roughly corresponds to a cut on the relative transverse

momentum of the two prongs under scrutiny. Like for β = 0, β < 0 is only IRC safe in

tagging mode.

3 Energy correlation functions after soft drop

Generalized energy correlation functions ECF (N,α) and their double ratios C
(α)
N−1 were

introduced in ref. [44] (see also refs. [32, 106] for N = 2). In this paper, we only consider

the double ratio for N = 2 (hereafter referred to as simply the energy correlation functions):

C
(α)
1 =

ECF (2, α) ECF (0, α)

ECF (1, α)2 , (3.1)

where

ECF (0, α) = 1,

ECF (1, α) =
∑
i∈jet

pT i,

ECF (2, α) =
∑

i<j ∈jet

pT i pTj

(
∆Rij
R0

)α
. (3.2)

In this study, we will measure C
(α)
1 on jets which have been groomed according to the

soft-drop declustering described above. We will work to lowest non-trivial order in zcut,

such that we can ignore the effect of grooming on ECF (1, α). As stated above, we will

focus on central jets (y = 0) and assume R0 � 1. In those limits,

C
(α)
1 '

∑
i<j

zizj

(
θij
R0

)α
, (3.3)

where zi ' Ei/Ejet is the energy fraction carried by particle i, and θij is the opening angle

between particles i and j. Up to power-suppressed effects in R0, the results of this paper can

be extended to non-zero rapidity (y 6= 0) by simply replacing θij with the rapidity-azimuth

distance Rij and the energy fraction zi with the momentum fraction pT i/pT jet.

3.1 Leading-order calculation

We start our analysis with a relatively simple calculation, by computing the leading order

(LO) contribution to the C
(α)
1 distribution in the collinear limit. This limit is appropriate

for the small R0 assumption considered throughout this paper.

– 7 –
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At LO, the jet consists of only two partons at an angular distance ∆R12 ' θ, which

carry fractions z and (1− z) of the jet’s energy. To have a non-zero contribution to C
(α)
1 ,

both partons must pass the soft-drop condition. In the collinear limit, the groomed C
(α)
1

distribution is

1

σ

dσLO

dC
(α)
1

=
αs
π

∫ R0

0

dθ

θ

∫ 1

0
dz pi(z) Θ

(
z − zcut

(
θ

R0

)β)
Θ

(
1− z − zcut

(
θ

R0

)β)

× δ
(
C

(α)
1 − z(1− z)

(
θ

R0

)α)
, (3.4)

where pi(z) is the appropriate splitting function for a quark-initiated jet (i = q) or a gluon-

initiated jet (i = g), as defined in eq. (A.4). The two theta functions impose the soft drop

condition, and the delta function implements the C
(α)
1 measurement.

Because we work in the limit where C
(α)
1 � zcut � 1, we can ignore terms suppressed

by powers of zcut (but we do not need to resum logarithms of zcut); this implies that we

can ignore the second theta function in eq. (3.4). Only focusing on the logarithmically-

enhanced contributions, we can also drop the factor of (1− z) in the delta function. These

simplifications lead to

1

σ

dσLO

dC
(α)
1

' αs
π

∫ R0

0

dθ

θ

∫ 1

0
dz pi(z) Θ

(
z − zcut

(
θ

R0

)β)
δ

(
C

(α)
1 − z

(
θ

R0

)α)
. (3.5)

For β ≥ 0, the evaluation of the two integrals is straightforward:

β ≥ 0 :
C

(α)
1

σ

dσLO

dC
(α)
1

' αsCi
π

2

α
×

log 1

C
(α)
1

+Bi, C
(α)
1 > zcut,

β
α+β log 1

C
(α)
1

+ α
α+β log 1

zcut
+Bi, C

(α)
1 < zcut,

(3.6)

up to terms that are power-suppressed in C
(α)
1 or zcut. Here, Ci is the overall color factor

for the jet (Cq = CF = 4/3 for quarks and Cg = CA = 3 for gluons) and Bi originates from

hard-collinear emissions (Bq = −3/4 for quarks and Bg = −11
12 +

nf
6CA

for gluons, where nf
is the number of active quark flavors). For β < 0, there is an additional restriction which

imposes a minimum allowed value for the observable

β < 0 : Same as eq. (3.6) with additional cut C
(α)
1 > z

α/|β|
cut . (3.7)

As often happens for grooming and tagging algorithms [59, 60], the C
(α)
1 distribution

exhibits a transition point at C
(α)
1 = zcut. Unlike trimming and pruning, though, soft-

drop energy correlation functions do not exhibit further (perturbative) transition points

at lower values of the observable. For C
(α)
1 > zcut, soft drop is not active and we recover

the ungroomed result. For C
(α)
1 < zcut, soft drop is active and jets that fail the soft

drop condition are either removed from consideration (tagging mode) or assigned C
(α)
1 = 0

(grooming mode). Note that for β > 0, the logarithmic structure of eq. (3.6) is of the

same order on both sides of the transition point, so the overall cumulative distribution

exhibits Sudakov double logarithms. The effect of the soft drop procedure is to reduce the

coefficient of the double logarithm by a factor of β/(α+ β).

– 8 –
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log
1

zcut

log
1

z

log
R0

θ

Soft
 D

rop
ped

1

α
log

1

C
(α)
1

Figure 2: Phase space for emissions relevant for C
(α)
1 in the (log 1

z , log R0
θ ) plane. The soft

dropped region is gray and the first emission satisfying the soft drop criteria is illustrated

by the red dot. The leading emission for C
(α)
1 is illustrated by the green dot with the

forbidden emission region (the Sudakov exponent) shaded in pink.

It is instructive to take different limits of the result in eq. (3.6). Consider the β →∞
limit at fixed α and zcut. This limit should correspond to no grooming, and indeed, in

this limit, we recover the expected LO result for the energy correlation function of the

ungroomed jet. Now consider the case β = 0, which should correspond to the mMDT limit.

This limit kills the logarithmic contribution for C
(α)
1 < zcut, which results in a cumulative

distribution that only has single logarithms in C
(α)
1 . This result is the generalization

to C
(α)
1 of the fact that the mMDT jet mass distribution (here α = 2) is only single

logarithmic [59, 60].

3.2 Modified leading logarithmic approximation

Because of the potentially large logarithms L ≡ log(1/C
(α)
1 ) in eq. (3.6), we need to perform

some kind of resummation in order to get realistic predictions for the C
(α)
1 distribution.

Here, we investigate a simple approximation to the all-order C
(α)
1 distribution by working

to modified leading logarithmic (MLL) accuracy, i.e. we aim to capture the terms αnsL
2n−q

with q = 0, 1 in the expansion of the cumulative distribution Σ(C
(α)
1 ), which gives the

probability for the observable to be less than a given value C
(α)
1 .

To MLL order, we need to consider the independent emission of any number of soft

or collinear gluons within a jet, with the scale of the (one-loop) coupling chosen at the

relative transverse momentum scale κ of the splitting. In the collinear approximation used

throughout this paper, we have κ = z θ pT jet for jets at arbitrary rapidity.

Virtual emissions are associated with C
(α)
1 = 0 and therefore always contribute to

– 9 –
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Σ(C
(α)
1 ). A real emission contributes to Σ(C

(α)
1 ) either if it has been groomed away or if it

lies at an angle smaller than the first emission that passes the soft drop condition. This is

illustrated in figure 2. Note that the dominant emission contributing to the value of C
(α)
1

must always lie at an angle less than or equal to the angle of the first emission that passes

the soft drop condition, so we do not need to consider the correlation of the groomed jet

radius and the value of C
(α)
1 .

The details of the MLL calculation and explicit results are presented in appendix A.

After one explicitly does the sum over all included real emissions, the cumulative distribu-

tion can be interpreted in terms of the phase space for vetoed real emissions. This gives

the Sudakov exponent

Σ(C
(α)
1 ) = exp

− 1

α

∫ 1

C
(α)
1

dc

c

∫ 1

max

(
c, zcut

α
α+β c

β
α+β

) dz pi(z)αs (κ)

π

 , (3.8)

where we have introduced the convenient change of variables c = z
(
θ
R0

)α
. The integral in

the exponent corresponds to real emissions that are not removed by the soft drop procedure,

but would give a too large contribution to C
(α)
1 (corresponding to the pink shaded region

in figure 2). As expected, the β →∞ limit corresponds to the ungroomed result, and the

β = 0 (mMDT) limit matches the jet mass (α = 2) distribution in ref. [59].

To better understand the logarithmic structure of the soft-dropped energy correla-

tion functions, it is instructive to perform the integrals in eq. (3.8) in a fixed coupling

approximation. For β ≥ 0, neglecting power-suppressed terms, we obtain

Σ(C
(α)
1 )

f.c.
= exp

{
− αsCi

π

2

α

[(
1

2
log2 1

C
(α)
1

+Bi log
1

C
(α)
1

)
Θ
(

1− C(α)
1

)
Θ
(
C

(α)
1 − zcut

)
+

(
β

2(α+ β)
log2 1

C
(α)
1

+
α

α+ β
log

1

zcut
log

1

C
(α)
1

− α

2(α+ β)
log2 1

zcut
+Bi log

1

C
(α)
1

)

×Θ
(
zcut − C(α)

1

)]}
, (3.9)

which is the exponential of the cumulative distribution at LO (i.e. the integral of eq. (3.6)).

For β < 0, we find an expression analogous to eq. (3.9), but with a lower bound which

enforces C
(α)
1 > z

α/|β|
cut , thus regulating the soft-collinear behavior. The limiting values of

eq. (3.9) behave as expected. For β →∞, the regions above and below zcut give identical

results, so they can be combined to return the ungroomed distribution. For β = 0, the

coefficient of the double logarithm in the region C
(α)
1 < zcut vanishes and we obtain the

expected mMDT single logarithmic result.

3.3 Multiple emissions

Multiple gluon emissions within a jet can affect the value of C
(α)
1 . While this effect is strictly

speaking beyond MLL accuracy, it is an important component of a full NLL calculation, so

it is worth considering how they might affect the C
(α)
1 distribution. For multiple emissions,
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we need to determine what region of phase space can have several emissions that contribute

to the measured value of the observable. To logarithmic accuracy, these emissions must

give comparable contributions to the final measured value of the observable.

For the case of the energy correlation function C
(α)
1 , the region of phase space where

multiple emissions contribute can be seen in figure 2. For the green emission that sets the

value of C
(α)
1 , multiple emissions that contribute logarithmically must lie near the diagonal

line defining a fixed value for C
(α)
1 . Everywhere along this diagonal line satisfies the soft

drop groomer, and therefore all emissions that contribute to the value of C
(α)
1 pass the soft

drop phase space requirements.4 Also, because C/A clustering enforces angular ordering,

these multiple emissions must lie at angles smaller than the first emission that passes the

soft drop requirement. Therefore, accounting for multiple emissions requires including an

arbitrary number of emissions that contribute to C
(α)
1 and pass the soft drop requirement.

To single logarithmic accuracy, the cumulative distribution of soft drop groomed C
(α)
1

can then be expressed as an explicit sum over uncorrelated emissions as

Σ(C
(α)
1 ) =

∞∑
n=1

n∏
m=1

[∫ R0

0

dθm
θm

∫ 1

0
dzm pi(zm)

αs(κm)

π
Θ

(
zm − zcut

(
θm
R0

)β)
Θ (θi−1 − θi)

]

×Θ

(
C

(α)
1 −

n∑
m=1

zm

(
θm
R0

)α)
e
−
∫R0
0

dθ
θ

∫ 1
0 dz pi(z)

αs(κ)
π

Θ

(
z−zcut

(
θ
R0

)β)
.

(3.10)

The requirement Θ (θi−1 − θi) imposes angular ordering and the explicit exponential is the

sum of virtual contributions. The explicit sum can be evaluated by a Laplace transforma-

tion which yields

Σ(C
(α)
1 ) =

∫
dν

2πiν
eνC

(α)
1 e−R(ν−1) , (3.11)

where the ν integral represents the inverse Laplace transform. The function R(ν−1) is

called the radiator and is

R
(
ν−1

)
=

∫ R0

0

dθ

θ

∫ 1

0
dz p(z)

αs(κ)

π
Θ

(
z − zcut

(
θ

R0

)β)(
1− exp

[
−νz

(
θ

R0

)α])
.

(3.12)

Because they are Laplace conjugates of one another, logarithmic accuracy in C
(α)
1 corre-

sponds to the same logarithmic accuracy in ν. Therefore, for single logarithmic accuracy in

C
(α)
1 , we must compute the radiator to single logarithmic accuracy in ν. Expanding around

ν−1 = C
(α)
1 , the inverse Laplace transform can be evaluated explicitly (see e.g. ref. [114–

116]) and we find

Σ(C
(α)
1 ) =

e−γER
′(C

(α)
1 )

Γ
(

1 +R′(C
(α)
1 )

)e−R(C
(α)
1 ) , (3.13)

4One might worry that if the emission that sets the value of C
(α)
1 lies near the boundary between the

soft-drop groomed region and soft-drop kept region, then emissions that contribute to the observable may

not satisfy the soft-drop requirement on their own. While this is true, the contributions from such emissions

are subleading to the accuracy to which we work and can therefore be ignored.
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where

R(C
(α)
1 ) =

∫ R0

0

dθ

θ

∫ 1

0
dz p(z)

αs(κ)

π
Θ

(
z − zcut

(
θ

R0

)β)
Θ

(
z

(
θ

R0

)α
− C(α)

1

)
, (3.14)

γE is the Euler-Mascheroni constant, Γ is the gamma function, and

R′(C
(α)
1 ) = − ∂

∂ logC
(α)
1

R(C
(α)
1 ) . (3.15)

The prefactor in eq. (3.13) containing R′(C
(α)
1 ) captures the effect of multiple emissions on

the distribution of C
(α)
1 . We remind the reader that to single-logarithmic accuracy, we can

neglect the hard-collinear contribution in the multiple-emission prefactor, i.e. we can take

Bi = 0 in eq. (3.15).

Multiple-emission contributions to the ungroomed C
(α)
1 distribution were considered

in ref. [44]. The effect is non-negligible for the jet-mass like case (α = 2) and increases

as α grows smaller. However, we expect these kind of contributions to be reduced by the

soft-drop procedure, essentially because the coefficient of the soft-collinear terms, which

give the single-logarithmic contribution to R′, is reduced by a factor O (β). We shall come

back to this discussion in section 3.5, when we compare the resummed calculation to a

result obtained with a parton shower event generator.

The differential distribution for the observable C
(α)
1 with multiple emissions, i.e. the

derivative of eq. (3.13), depends on the second derivative of the radiator function R. How-

ever, within our approximations, R′′ is not continuous across C
(α)
1 = zcut (see for instance

eq. (3.9)). Physically, this is a consequence of the fact that emissions that contribute simi-

larly to the observable can occur on either side of the zcut transition point. As a result, the

distribution with multiple emission exhibits a discontinuity at C
(α)
1 = zcut because of terms

which are beyond NLL accuracy in log Σ. In order to restore continuity, we can simply

replace the logarithmic derivative with its discrete version:

R′(C
(α)
1 )→ R(C

(α)
1 e−δ)−R(C

(α)
1 )

δ
. (3.16)

The specific choice of δ is irrelevant to single logarithmic accuracy, and we take δ = 1

for definiteness. One can think of the δ-dependence as being one source of theoretical

uncertainty.

3.4 Non-global logarithms

The jet-based C
(α)
1 is an example of a non-global observable [104], meaning that it receives

single-logarithmic contributions coming from an ensemble of gluons that are outside of the

jet which then radiate soft gluons into the jet. The resummation of non-global logarithms

for the specific case of the mass of anti-kt jets (α = 2) was performed in refs. [92, 93] in

the large NC limit (for recent work at finite NC see ref. [117]). A key result of refs. [59, 60]

is that the mass distribution of an mMDT jet is free of non-global logarithms, since the

mMDT eliminates all sensitivity to soft emissions. Since non-global logarithms contribute
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only at the single-logarithmic level, they are formally beyond MLL accuracy. That said, it

is interesting to study the structure of non-global logarithms for soft-dropped C
(α)
1 as β is

varied, especially since we know non-global logarithms must vanish at β = 0.

Consider the lowest-order configuration that can produce a non-global logarithm,

namely the correlated emission of two gluons where k1 is outside the original anti-kt jet

and a softer gluon k2 is inside it.5 To contribute to a non-global logarithm, k2 has to pass

the soft-drop condition, so the relevant phase space constraints are

ΘNG ≡ Θ (z1 − z2) Θ (θ1 −R0) Θ (R0 − θ2) Θ

(
z2 − zcut

(
θ2

R0

)β)
. (3.17)

To extract the non-global contribution, we have consider the CFCA correlated emission

term of the squared matrix element for two gluon emissions that satisfy the ΘNG constraint:

1

σ

dσNG

dC
(α)
1

= 4CFCA

(αs
2π

)2
∫
dz1

z1

dz2

z2

∫
θ2dθ2

∫
θ1dθ1 Ω2 ΘNGδ

(
C

(α)
1 − z2

(
θ2

R0

)α)
,

(3.18)

where Ω2 is the (azimuthally averaged) angular function (see for example [119])

Ω2 =
2

(1− cos θ1) (1 + cos θ2) | cos θ1 − cos θ2|
' 4

θ2
1(θ2

1 − θ2
2)
. (3.19)

It is now relatively easy to evaluate eq. (3.18). For definiteness, we consider β ≥ 0 and

obtain

C
(α)
1

σ

dσNG

dC
(α)
1

= 4CFCA

(αs
2π

)2
∫ 1

R2
0

dθ2
1

∫ R2
0

0
dθ2

2Θ
(
θα2 −Rα0C

(α)
1

)
Θ

R0

(
C

(α)
1

zcut

) 1
α+β

−θ2


× 1

θ2
1(θ2

1 − θ2
2)

log
θα2

Rα0C
(α)
1

= 4CFCA

(αs
2π

)2
[

Li2

(C(α)
1

zcut

) 2
α+β

 α log 1
zcut

+ β log 1

C
(α)
1

α+ β

+
α

2
Li3

(
C

(α)
1

2
α

)
− α

2
Li3

(C(α)
1

zcut

) 2
α+β

]+O
(
R2

0

)
. (3.20)

By itself, eq. (3.20) is not particularly enlightening, so it is instructive to take the no

grooming limit (β → ∞) and the mMDT limit (β = 0). To get a sensible result, we first

take the limit of eq. (3.20) with respect to β and then consider the behavior of the resulting

expression at small C
(α)
1 . For β →∞,

lim
β→∞

C
(α)
1

σ

dσNG

dC
(α)
1

=CFCA

(αs
2π

)2
(

2

3
π2 log

1

C
(α)
1

+· · ·

)
+O

(
β−1

)
, (3.21)

5Because the original jet is defined with the anti-kt algorithm, we are not sensitive to clustering loga-

rithms first described in ref. [118].
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where the dots indicate terms that are not logarithmically enhanced at small C
(α)
1 .

Eq. (3.21) is precisely the result for anti-kt jets in the small jet radius limit [92], and

extends to all α > 0 since the non-global logarithms arise from soft wide-angle emissions

for which the specific angular exponent is a power correction.

For β = 0, there are no non-global logarithms. In particular, the logC
(α)
1 term in

eq. (3.20) has null coefficient and, after taking the small C
(α)
1 limit, we obtain

lim
β→0

C
(α)
1

σ

dσNG

dC
(α)
1

= CFCA

(αs
2π

)2
(
C

(α)
1

zcut

) 2
α (

4 log
1

zcut
− 2α

(
1− z

2
α
cut

)
+ · · ·

)
+ O (β) .

(3.22)

This expression is consistent with the small-zcut and small-R0 limit of result for the mMDT

mass distribution (α = 2) [60].

In general, for finite values of β > 0, the non-global logarithms are suppressed by

powers of C
(α)
1 with respect to the anti-kt (β → ∞) case. Taking the small C

(α)
1 limit of

eq. (3.20), we find6

lim
C

(α)
1 →0

C
(α)
1

σ

dσNG

dC
(α)
1

= 4CFCA

(αs
2π

)2 β

α+ β

(
C

(α)
1

zcut

) 2
α+β

log
1

C
(α)
1

+ O
(
C

(α)
1

2
α+β

)
. (3.23)

Because the non-global logarithms are formally power suppressed, we can consistently

neglect their resummation to NLL accuracy. As expected, soft drop declustering removes

soft divergences, and hence removes non-global logarithms.

3.5 Comparison to Monte Carlo

We conclude our discussion of C
(α)
1 by comparing our analytic MLL calculation in sec-

tion 3.2 (plus the multiple-emission corrections from section 3.3) to a standard Monte Carlo

parton shower. For these simulations, we use Pythia 8.175 [120] (pt-ordered shower) with

the default 4C tune [121]. We consider proton-proton collisions at 14 TeV at parton level,

including initial- and final-state showering but without multiple parton interactions (i.e.

UE). We discuss UE and hadronization corrections in section 6.

Jets clustering is performed with the anti-kt algorithm [109] with radius R0 = 1.0 7

using a development version of FastJet 3.1 (which for the features used here behaves

identically to the 3.0.x series [123]). A transverse momentum selection cut pT > 3 TeV

is applied on the jets before grooming. To implement the soft drop procedure described

in section 2, jets are reclustered using exclusive C/A [110, 111] to return the same jet.

The soft drop code will be made available as part of the FastJet contrib project (http:

//fastjet.hepforge.org/contrib/).

We start by considering the case α = 2, which corresponds to the familiar case of the

jet mass distribution. In figure 3 we show results for qq → qq scattering for different values

6Note that the limits β → ∞ and C
(α)
1 → 0 do not commute with one another as eq. (3.21) does not

follow from the β →∞ limit of eq. (3.23).
7We choose R0 = 1.0 primarily to ease the comparison with previous studies of mMDT in ref. [59].

While we take the small jet radius approximation in this paper, it is known to be reasonable even up to

R0 ∼ 1 [93, 122].
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Figure 3: The energy correlation functions C
(α=2)
1 for quark-initiated jets. Here we com-

pare Pythia 8 [120] (left), our MLL formula in eq. (3.8) (right, dashed curves), and our

MLL plus multiple-emissions formula in eq. (3.13) (right, solid curves). These α = 2 curves

correspond to the case of jet mass-squared (normalized to jet energy squared). We show

both the ungroomed (plain jet) distribution, as well as groomed distributions from soft

drop declustering with zcut = 0.1 and various values of β. For β = 2, 1, we see the expected

Sudakov double logarithmic peaks, while β = 0 (mMDT) has only single logarithms and

β = −1 cuts off at small values. The Pythia 8 distributions do not have hadronization

effects, and the MLL distributions are evaluated by freezing αs in the infrared.

of angular power β in the soft-drop declustering procedure (β = 0 is the mMDT already

studied in ref. [59]). The plot on the left has been obtained from Pythia 8, while the one

on the right has been obtained with the analytic resummation, evaluated numerically by

freezing the strong coupling in the infrared (see appendix A). Dashed curves correspond to

MLL accuracy eq. (3.8), while solid ones include the multiple-emission effect from eq. (3.13).

The plain jet mass case (β →∞, shown in black) exhibits the characteristic Sudakov

peak. All the other curves exhibit a transition point at C
(α)
1 = zcut and soft drop is

active for C
(α)
1 < zcut. Soft-dropped distributions with β > 0 (blue and red) are double

logarithmic and indeed we can recognize this behavior in the shape of the distribution

(i.e. an upside-down parabola on a log-linear plot). The case β = 0 (mMDT, green) has

no soft logarithms, so the resulting distribution is single logarithmic. The distribution is

nearly flat because the choice zcut = 0.1 is close to the value that minimizes higher-order

corrections for quark-initiated jets [59]. As discussed in eq. (3.7), the choice of negative

β (here β = −0.5 in pink) leads to a distribution with a minimum allowed value, thus

regulating both soft and collinear divergencies.

For the groomed distributions, there is good agreement between the parton shower
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Figure 4: The energy correlation functions C
(α)
1 with α = 1.5, 1, 0.5 (top to bottom) for

quark-initiated jets. The plots on the left are obtained with Pythia 8, while the ones of

the right are our MLL predictions (dashed) with multiple emissions included (solid).
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and our analytics. Moreover, we also note that the impact of multiple emissions, i.e. the

difference between solid and dashed curves in figure 3b, decreases with β. It is perhaps sur-

prising that we find worst agreement between analytics and Monte Carlo in the ungroomed

(plain jet) case. However, one should keep in mind that although the two approximations

are roughly of the same accuracy (MLL), Monte Carlo parton showers also partially contain

many subleading effects. Using the results of refs. [92, 93], we have checked that sublead-

ing effects (like initial-state radiation and non-global logarithms) play a non-negligible role.

Indeed, Pythia 8 is closer to the full NLL result than to the (less accurate) MLL plus

multiple emissions one presented here. Because the action of soft drop is to remove large-

angle soft radiation (e.g. initial state radiation and non-global logarithms), it is reassuring

that our calculations for the finite β soft-drop curves are indeed in better agreement with

the parton shower.

In figure 4, we compare our analytic resummation to the parton shower for C
(α)
1 with

α = 1.5, 1, 0.5. Again, the plots on the left are obtained with Pythia 8 while the ones on

the right are the MLL plus multiple emissions results. The same gross features seen with

α = 2 are also present here, including the fact that the agreement between Monte Carlo and

analytics is better with grooming than without. Overall, however, the agreement gets worse

as α decreases. This is likely because, as seen in eq. (3.6), the expansion parameter is really

αs/α, so both logarithmically-enhanced and non-singular fixed-order corrections are more

important at small α. It is encouraging that the peak locations are still roughly the same

in the analytic calculations and Pythia 8 results, even if the overall peak normalizations

slightly differ. We note that the dashed curves in figure 4f have kinks; indeed all the curves

in this section obtained from analytic calculations suffer from the same behavior, although

this feature is not visible on the other plots. The position of the kink is C
(α)
1 =

(
µNP
pTR0

)α
and it is a consequence of the way we freeze the running coupling at κ = µNP. As detailed

in appendix A, this effect is beyond the accuracy of our calculation. Finally, in figures 4e

and 4f, note the sharp cutoff of the plots when α + β = 0, which can be understood

from eq. (3.7). In figure 4f, we only show the MLL result since fixed-order corrections

are expected to be important and our treatment of multiple emissions effects in eq. (3.16)

becomes singular when α+ β = 0.

4 Groomed jet radius

Because the soft drop procedure is defined through declustering a C/A branching tree,

there is a well-defined and IRC-safe meaning to the groomed jet radius. Concretely, the

groomed jet radius Rg is the angle between the branches that first satisfy eq. (1.1), which

is sensible because for a C/A tree, all subsequent branches are separated by an angle less

than Rg. From a practical perspective, Rg is particularly interesting, since the groomed jet

area is approximately πR2
g. Thus, Rg serves as a proxy for the sensitivity of the groomed

jet to possible contamination from pileup [124, 125].
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Figure 5: Phase space for emissions relevant for groomed jet radius Rg in the (log 1
z , log R0

θ )

plane. The soft dropped region is gray and the first emission satisfying the soft drop criteria

is illustrated by the red dot. The forbidden emission region (the Sudakov exponent) is

shaded in pink.

4.1 Modified leading logarithmic approximation

The calculation of the groomed jet radius to MLL accuracy follows much of the same logic

as the C
(α)
1 calculation in section 3.2. As illustrated in figure 5, Rg actually corresponds to

a simpler phase space than C
(α)
1 . A given value of Rg simply means that all emissions at

angles larger than Rg failed the soft drop criteria. Therefore, the Rg distribution can be

calculated by demanding that all emissions at angles larger than Rg were groomed away.

As explained in more detail in appendix B, this understanding translates into the following

cumulative distribution for the groomed jet radius:

Σradius(Rg) = exp

[
−
∫ R0

Rg

dθ

θ

∫ 1

0
dz pi(z)

αs(κ)

π
Θ

(
z − zcut

θβ

Rβ0

)]
, (4.1)

where the integral in the exponent again corresponds to vetoed emissions (i.e. the pink

region in figure 5).

Besides the simpler phase space for one emission, Rg is also simpler than C
(α)
1 with

respect to multiple emissions. In the case of C
(α)
1 , multiple emissions could contribute to the

value of C
(α)
1 , but the MLL approximation effectively only considers the contribution from a

single dominant emission. For Rg, though, once one emission satisfies the soft drop criteria,

the jet radius is set, so multiple emissions do not contribute to this observable. We have

also verified that non-global contributions are suppressed by Rg for β <∞, analogously to

the energy correlation case. For these reasons, we believe that the expression in eq. (4.1)
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Figure 6: Comparison of the jet radius Rg distribution extracted from Pythia 8 (left,

solid) and inferred from the active area in Pythia 8 using Reff =
√
Aactive/πξ (left,

dashed), and computed to MLL accuracy (right). The original jet radius is set to be

R0 = 1 and the jets have an ungroomed energy of 3 TeV. The soft drop parameter is

zcut = 0.1, while β is varied.

is fully accurate to single-logarithmic level,8 though for consistency with the rest of this

paper, we will only evaluate eq. (4.1) to MLL accuracy.

4.2 Comparison to Monte Carlo

There are two different ways one can define the groomed jet radius in Monte Carlo. The

first method is to simply measure the Rg value of the C/A branching that satisfies the

soft drop condition. A second approach, more directly relevant for pileup mitigation, is to

determine the effective radius of the groomed jet from its active area [108]. The active area

of a jet is defined as the area over which infinitesimally soft particles are clustered into the

jet. An effective jet radius Reff can then be defined from the groomed jet active area using:

Reff ≡
(
Aactive

πξ

)1/2

, (4.2)

where Aactive is the active jet area, and ξ ' (1.16)2 accounts for the fact that a typical

C/A jet of radius R0 has an average active area ξπR2
0.9

8Strictly speaking, NLL accuracy requires evaluating the strong coupling at two loops, i.e. with β1, in

the CMW scheme [126].
9The numerical value for ξ can be read from figure 8 in ref. [108]. Strictly speaking, this result is only

valid for a jet made of two particles separated by R0, with one of them much softer than the other. However,

for C/A jets, one expects that this would not vary much for more symmetric two-particle configurations

(see e.g. ref. [125]).

– 19 –



J
H
E
P
0
5
(
2
0
1
4
)
1
4
6

log
1

zcut

log
1

z

log
R0

θ

log
1

∆E

log
R0

Rg

Soft Dropped

(a)

log
1

zcut

log
1

z

log
R0

θ

Soft Dropped
log

1

∆E

log
R0

Rg

(b)

Figure 7: Phase space for emissions relevant for groomed jet energy loss ∆E in the

(log 1
z , log R0

θ ) plane. The soft dropped region is gray/pink and the first emission satisfying

the soft drop criteria is illustrated by the red dot, located at the groomed jet radius, Rg.

The blue dot represents the leading contribution to ∆E , with subleading contributions

above it. The location in angle of all soft dropped emissions is larger than Rg. The

forbidden emission region for a given value of Rg (the Sudakov exponent) is shaded in

pink. The left (right) plot shows ∆E larger (smaller) than zcut(Rg/R0)β.

In figure 6a we show the Rg and Reff distributions as measured on the same Pythia

jet samples introduced in section 3.5. To obtain Reff in practice, we have computed the

groomed jet area using active areas as implemented in FastJet (v3), and we used a

ghost area of 0.0005 and 10 repetitions in order to reach sufficiently small values of Reff .

With the ξ offset factor, the two techniques give remarkably similar results, giving strong

evidence that the groomed jet radius Rg is an effective measure of pileup sensitivity. The

main difference is the spike at Reff = 1/
√
ξ, corresponding to cases where the first C/A

branching already satisfies the soft drop condition, yet typically with Rg < 1. The nice

reduction of the jet area even with mild grooming (e.g. β = 2) suggests that soft drop

should work well for pileup mitigation, but we leave a detailed study to future work.

In figure 6b, we show the MLL distribution from eq. (4.1). There is good qualitative

agreement with Pythia for a range of angular exponents β, suggesting that our MLL cal-

culation for Rg captures the relevant physics effects present in the Monte Carlo simulation.

5 Jet energy drop

Our final analytic calculation is for the groomed jet energy. Unlike for many other grooming

procedures, the energy of a soft-drop jet (β > 0) is an IRC safe observable and so can be

computed in pQCD. In particular, we will study the fractional energy drop due to grooming
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∆E defined as

∆E ≡
E0 − Eg
E0

, (5.1)

where E0 is the energy of the jet before grooming and Eg is the energy of the groomed jet.

∆E can be interpreted as a measure of the fraction of the original jet’s energy contained in

soft wide-angle emissions. In the small R0 limit, ∆E is the same as the fractional pT loss,

which is the more relevant quantity for non-central (y 6= 0) jets in hadronic collisions.

5.1 Modified leading logarithmic approximation

At MLL order, the calculation of the ∆E distribution is more subtle than for C
(α)
1 or Rg.

In the case of C
(α)
1 and Rg, the Sudakov veto region was effectively determined by a single

emission, and the multiple emissions effect for C
(α)
1 could be included as a higher-order

correction (see section 3.3).

For ∆E , the veto region depends crucially on two emissions, as illustrated in figure 7.

The energy drop due to grooming comes from large angle emissions that fail the soft drop

condition. But to figure out which emissions are dropped, we first have to know which

emission satisfied the soft drop condition, since that sets the groomed jet radius Rg. All

emissions lying at angles greater than Rg are removed by soft drop, but all emissions at

angles less than Rg are maintained. Thus, the energy drop depends both on the emission

that sets Rg and on the emissions that contributes to ∆E .

In practice, the easiest way to determine the ∆E distribution is by computing the

energy drop for a given value of Rg and then integrating over the Rg distribution. In

equations, the cumulative distribution of ∆E is given by

Σenergy-drop(∆E) =

∫ R0

0
dRg

dΣradius(Rg)

dRg
Σ̃(Rg,∆E) , (5.2)

where Σ̃(Rg,∆E) is the cumulative distribution of ∆E for a given groomed jet radius Rg.

The cumulative distribution Σradius(Rg) was defined in eq. (4.1), and the derivative factor

is needed to extract the differential cross section (i.e. the probability distribution) for Rg.

The details of the Σ̃(Rg,∆E) calculation are presented in appendix C. The key is that

this double cumulative distribution can be computed at logarithmic accuracy by summing

over independent contributions at all orders:

Σ̃(Rg,∆E) =

∞∑
n=1

[
n∏

m=1

∫ R0

Rg

dθm
θm

∫ 1

0
dzmpi(zm)

αs(κm)

π
Θ(θm − θm+1)Θ

(
zcut

θβm

Rβ0
−zm

)]

×Θ

(
∆E −

n∑
m=1

zm

)
exp

[
−
∫ R0

Rg

dθ

θ

∫ 1

0
dz pi(z)

αs(κ)

π
Θ

(
zcut

θβ

Rβ0
− z

)]

=

∫
dν

2πiν
eν∆Ee−R2(Rg ,ν−1) . (5.3)

Here, we are accounting for the effect of multiple emissions (i.e. the sum over m in the

observable) by performing a Laplace transform, and the explicit integral over ν represents
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the inverse Laplace transform. The radiator function appearing in the exponent is

R2

(
Rg, ν

−1
)

=

∫ R0

Rg

dθ

θ

∫ 1

0
dz pi(z)

αs(κ)

π
Θ

(
zcut

θβ

Rβ0
− z

)(
1− e−νz

)
, (5.4)

which is a function of both the Laplace transform parameter ν and the groomed jet ra-

dius Rg.

5.2 Sudakov safety for β = 0

As mentioned in section 2.2, the groomed jet energy drop ∆E is IRC safe only if β > 0. In

particular, the energy of a β = 0 (mMDT) groomed jet is not an IRC safe quantity, since

a measured value of energy does not require two well-separated hard prongs in the jet.

On the other hand, eq. (5.2) has a smooth β → 0 limit, and therefore is still calculable

(despite being IRC unsafe). Specifically, we are calculating the ∆E distribution at a fixed

groomed jet radius Rg, which forces a two-prong configuration. There is still an (IRC

unsafe) singularity at Rg → 0, but this is regulated by the Sudakov factor in the Rg
distribution. This property was referred to as “Sudakov safety” in ref. [105]. As we will

now show, the way in which IRC unsafety but Sudakov safety manifests itself for ∆E is

rather peculiar.

The behavior of ∆E for β = 0 is easiest to study by computing the cumulative dis-

tribution of the energy drop at fixed coupling. We will also take the Laplace conjugate

parameter ν → ∞ to suppress multiple emissions effects. This limit removes the inverse

Laplace transform and turns the exponential factor in eq. (5.4) into the constraint that

z > ∆E . We emphasize that the ν → ∞ limit is only taken to simplify the following dis-

cussion; the fixed-coupling energy loss distribution with the full multiple emissions effect

exhibits the same properties.

At fixed-coupling, the cumulative distribution of the groomed jet radius is

Σradius(Rg)
f.c.
= exp

[
−αs
π

∫ R0

Rg

dθ

θ

∫ 1

zcut

dz pi(z) Θ

(
z − zcut

θβ

Rβ0

)]

' exp

[
−αs
π
Ci

(
β log2 R0

Rg
− 2 log zcut log

R0

Rg
+ 2Bi log

R0

Rg

)]
, (5.5)

where we have ignored terms suppressed by positive powers of zcut and ∆E . The cumulative

distribution of the energy drop at fixed groomed jet radius is

Σ̃(Rg,∆E)
f.c.
= exp

[
−αs
π

∫ R0

Rg

dθ

θ

∫ zcut

∆E

dz pi(z) Θ

(
zcut

θβ

Rβ0
− z

)]

' Θ

(
zcut

Rβg

Rβ0
−∆E

)
exp

[
−αs
π
Ci

(
2 log

zcut

∆E
log

R0

Rg
− β log2 R0

Rg

)]

+ Θ

(
∆E − zcut

Rβg

Rβ0

)
Θ(zcut −∆E) exp

[
−αs
π

Ci
β

log2 zcut

∆E

]
. (5.6)
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Plugging these expressions into eq. (5.2) in the ν → ∞ limit, we find the cumulative

distribution of the groomed energy drop to be

Σenergy-drop(∆E)=
log zcut−Bi
log ∆E−Bi

+
πβ

2Ciαs(log ∆E −Bi)2

(
1− e−2αs

π

Ci
β

log
zcut
∆E

(
log 1

∆E
+Bi

))
,

(5.7)

for ∆E < zcut. At this order, the cumulative distribution is constant for ∆E > zcut.

The expression in eq. (5.7) has some fascinating properties. First, by expanding order-

by-order in αs, we find

Σenergy-drop(∆E) = 1− αs
π

Ci
β

log2 zcut

∆E
+O

((
αs
β

)2
)
. (5.8)

Thus, the expansion in powers of the strong coupling is actually an expansion in αs/β,

which diverges order-by-order in perturbation theory for β → 0. Thus, as advertised, the

energy drop distribution is not IRC safe for β = 0. However, the β → 0 limit of eq. (5.7) can

be taken before expanding in αs. The β → 0 limit yields the simple and surprising result

Σenergy-drop(∆E)β=0 =
log zcut −Bi
log ∆E −Bi

, (5.9)

which is completely independent of αs! So while the strong coupling constant αs was

necessary to calculate ∆E , the leading behavior is independent of the value of αs.

We can attribute this behavior to the fact that ∆E is a Sudakov safe observable for

β = 0. The singular region of phase space at Rg → 0 is exponentially suppressed by

the Sudakov factor in Σradius(Rg). This exponential suppression balances the exponential

increase in the number of groomed emissions in such a way that ∆E is independent of αs.

In fact, ∆E is independent of the total color of the jet at fixed coupling, and only depends

on the flavor of the jet through the subleading terms in the splitting functions Bi. When

the running coupling is included, we will see that the dominant contribution to the ∆E

distribution is still independent of αs, with only weak dependence controlled by the QCD

β-function.

5.3 Non-global logarithms

The ungroomed jet energy E0 is clearly affected by non-global contributions, since emissions

outside of the jet can radiate energy into the jet. Because the soft drop procedure removes

soft wide-angle radiation, we expect that the groomed jet energy Eg should have no non-

global contributions. In principle, we could calculate the Eg distribution directly to show

the absence of non-global logarithms. In practice, though, it is hard to interpret the

meaning of Eg without invoking some reference energy scale. Here, we are using E0 as a

reference, which is not ideal since E0 has non-global contributions. That said, we will find

that the E0 and ∆E distributions have exactly the same non-global logarithms, implying

that the Eg distribution is wholly absent of them.
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Analogous to section 3.4, we can do a simple calculation of the non-global contribution

to ∆E . At lowest order for a narrow jet of radius R0, the non-global logarithms can be

computed from

1

σ0

dσNG

d∆E
= 4CFCA

(αs
2π

)2
∫
dz1

z1

dz2

z2

∫
dθ1dθ2

4θ1θ2

θ2
1

(
θ2

1−θ2
2

)ΘNGΘ

(
zcut

θβ2

Rβ0
−z2

)
δ(∆E−z2)

=
2

3
π2CFCA

(αs
2π

)2 log 1
∆E

∆E
+O

(
R2

0,
∆

2/β
E

z
2/β
cut

)
. (5.10)

This shows that non-global logarithms are not power-suppressed for the energy loss distri-

bution regardless of β. Moreover, the coefficient of the non-global logarithms are the same

for the ungroomed distribution (β → ∞) as for the groomed distribution (finite β). This

implies that the groomed jet energy Eg cannot contain any non-global logarithms.

Of course, to really verify this behavior, one would want to calculate the groomed jet

energy distribution in a process with an additional scale. For example, one could study

the associated production of a photon and a jet (i.e. pp → γ + j) and use the photon

momentum as a reference scale. In this example, we would expect (pTg − pTγ)/pTγ should

be free of non-global logarithms.

5.4 Comparison to Monte Carlo

We conclude this section by comparing the fractional energy loss distribution between

Pythia 8 to our MLL calculation, using the same jet samples as section 3.5. The compar-

ison is shown in figure 8, with the Monte Carlo simulation on the left plot and our analytic

calculation on the right. On the analytic plots, the solid (dashed) curves represent the

result with (without) the inclusion of the multiple emission contributions to ∆E .

For β > 0, there is good agreement between Pythia and our MLL analytics. For the

IRC unsafe (but Sudakov safe) limit β = 0, the agreement is fair in the region ∆E < zcut.

Note that β = 0 has a large contribution from multiple emissions, but the structure of the

inverse Laplace transform enforces that the MLL result cannot extend beyond ∆E = zcut.

In contrast, the Pythia distribution extends well beyond zcut. This effect from multiple

hard emissions contributing to ∆E > zcut is not captured by our resummation.

We can study the β = 0 limit in Pythia to see whether the analytic predictions of

section 5.2 are born out in Monte Carlo. In figure 9a, we show the ∆E distribution for

β = 0 by artificially turning off the running coupling and setting the αs value by hand.

As discussed in eq. (5.9), the fixed-coupling analytic resummation does not depend on αs.

Indeed, we see that the Monte Carlo results are fairly independent of the αs value, and the

behavior is well described by the analytic calculation. The same physical effect is seen in

figure 9b, where the running coupling is restored but the distribution is shown for different

choices of the minimum transverse momentum of the jet, which in turn probes different

values of αs. We note that the curves differ very little from each other, suggesting that

leading αs-independence of the β = 0 result is robust.
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Figure 8: The distribution of groomed energy loss ∆E in Pythia 8 (left) compared to our

MLL calculation (right). In the MLL result, solid (dashed) corresponds to the distribution

with (without) multiple emissions. The original jet radius is set to R0 = 1.0 and the jets

have an ungroomed energy of 3 TeV. The soft drop parameter zcut = 0.1 is fixed while β is

varied.
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Figure 9: The dependence of the β = 0 energy drop distribution on αs. On the left,

we show Pythia results with fixed coupling compared to the fixed-coupling analytical

prediction of eq. (5.9). On the right, we show the ∆E distribution with running coupling

at different values of the jet’s transverse momentum. Both plots support the interpretation

that the ∆E distribution at β = 0 is largely independent of αs.
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Figure 10: Effect of non-perturbative corrections on C
(α=2)
1 (top), Rg (middle), and ∆E

(bottom). The plots on the left show the ratio between hadron level and parton level

predictions obtained with Pythia 8 (without UE). The plots on the right instead show

the ratio of hadron-level results with and without UE.
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6 Non-perturbative contributions

In all of the above analytic calculations, we only considered the distributions generated

by perturbative partons. In this section, we will do a brief Monte Carlo study to try to

estimate the impact that non-perturbative effects from hadronization and UE can have on

these distributions.

In figure 10, we show the effect of hadronization (left) and UE (right) for various

observables considered in this paper. In the case of hadronization, we plot the ratio between

the hadronic and partonic distributions obtained from Pythia 8. In the case of UE, we

plot the ratio between the distributions with and without UE. Apart from including non-

perturbative effects, the details of the analysis are the same as for the previous Monte

Carlo studies.

We start by considering C
(α)
1 for α = 2, i.e. similar to jet mass. The plot in figure 10a

shows that soft drop declustering pushes the onset of hadronization corrections to smaller

values of the observable compared to the ungroomed case (shown in black). As shown in

figure 10b, soft drop has the remarkable ability to reduce the UE contribution to almost

zero.

For the groomed jet radius distribution, the behavior of hadronization corrections in

figure 10c is qualitatively similar to those seen for C
(α)
1 , with hadronization having a smaller

effect for smaller values (and negative values) of β. The UE event contribution to Rg in

figure 10d is also fairly small.

Finally, we show the effect of hadronization and UE corrections on the jet energy drop

in figures 10e and 10f, respectively. Unlike for the previous distributions, the hadronization

corrections are largest for β = 0, which is likely related to the issue of IRC unsafety. For all

values of β, the UE corrections are fairly large for ∆E . That said, because ∆E is defined

in terms of both the groomed energy Eg and the ungroomed energy E0, it is hard to know

whether these effects are caused mainly by Eg or E0. We suspect that Eg is rather robust

to UE effects, and the dominant change is really from distortions of the reference E0 value.

7 Boosted W tagging with soft drop

Thus far, we have studied the analytic properties of soft drop declustering and argued that

it can be a successful grooming technique for β > 0. For β < 0, soft drop acts like a tagger

which identifies jets with hard two-prong structures. Here, we investigate the performance

of soft drop in tagging mode by doing a brief study of boosted W tagging.

To have a source of fat W and QCD jets, we generated WW and dijet samples with

Pythia 8 for 14 TeV proton-proton collisions, including all non-perturbative effects from

tune 4C. As in the previous Monte Carlo studies in this paper, we start from anti-kt jets

with R0 = 1, this time keeping only jets with pT ≥ pT min and rapidity |y| < 4. These

samples of W (signal) and QCD (background) jets are then groomed/tagged using soft drop

with various values of β and zcut, and we define the efficiency/mistag rates from the fraction

of selected jets after soft drop with groomed masses in the W window [70 GeV, 90 GeV].
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Figure 11: Performance of soft drop as a boosted W tagger. Top left: signal efficiency

versus background mistag for jets with pT > 500 GeV. Each curve is obtained by fixing the

value of β, sweeping the value of zcut, and counting jets with groomed mass in the range

[70 GeV, 90 GeV]. Top right: Values of zcut for as a function of the efficiency, for given β.

Bottom: mass distribution of signal (left) and background (right) jets before and after soft

drop. For each curve, the value of β is shown in the legend, while the value of zcut is the

one that gives a 35% signal efficiency.
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Figure 12: Ratio of signal-to-background efficiency as a function of the minimum jet pT
for fixed signal efficiency of 35%.

The results of this study are presented in figures 11 and 12. In figure 11a, we fix

pT min = 500 GeV and study the efficiency/mistag rates for fixed β, sweeping zcut. The

values of zcut found as a function of the efficiency are shown in figure 11b. As initially

expected, negative values of β (i.e. tagging mode) tend to have a higher performance than

positive values (i.e. grooming mode). Note also that the zcut values for β < 0 fall in

the more reasonable range of zcut . 1, whereas zcut & 1 is needed to obtain comparable

performance for β > 0.

In figures 11c and 11d, we show the mass distributions of signal and background jets

with pT > 500 GeV after soft-drop, for different values of β and choosing the value of

zcut that correspond to 35% signal efficiency. Regarding the signal, all values of β yield

a nice narrow mass distributions around mW . Without soft drop, the background in this

pT window happens to (accidentally) have a mass peak around mW , but as desired, the

soft-dropped background mass distributions are pushed away from the signal region.

Finally, in figure 12, we study the ratio of signal-to-background efficiency as a function

of pT min (at fixed 35% signal efficiency). Negative values of β continue to have a higher

performance, especially at large pT , essentially because of a stronger Sudakov suppression

of the background at fixed signal efficiency. The overall performance is comparable to other

W tagging methods, with percent-level mistag rates at 35% efficiency.

The original mass-drop prescription from ref. [6] also involves a filtering step. There,

the filtering radius was taken as min(Rg/2, 0.3) with Rg defined as in section 4, and the

three hardest subjets were kept. However, applying filtering on soft-dropped jets is not

necessarily beneficial. For example, at large pT and for β < 0, the action of the soft drop

is such that the background peaks at a value of the mass larger than the W mass. In this

case, filtering would slightly shift this peak to smaller masses, increasing the background

rates. On the other hand, we should add that in a situation with pileup, filtering or some

similar form of grooming might also be needed in order to improve the resolution on the
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signal peak. We leave a detailed study of the interplay between pileup mitigation and

boosted object tagging to future work.

8 Conclusions

In this paper, we introduced the soft drop declustering procedure. Soft drop generalizes

the mMDT procedure by incorporating an angular exponent β, and simplifies mMDT by

removing the mass drop condition. True to its name, the soft drop procedure drops wide-

angle soft radiation from a jet, though for β ≤ 0 it can also drop collinear radiation. To

demonstrate the analytic behavior of soft drop declustering, we calculated three distribu-

tions to MLL accuracy (while also including multiple emissions): the energy correlation

functions C
(α)
1 , the groomed jet radius Rg, and the jet energy drop ∆E . Two particularly

interesting analytic features are the smooth turn off of non-global logarithms for C
(α)
1 in

the β → 0 limit and the approximate αs-independence of the jet energy drop distribution

for β = 0.

Beyond our analytic calculations, we studied the performance of soft drop in two other

contexts. We used a Monte Carlo study to estimate the impact of non-perturbative effects,

and found that soft drop reduces the impact of hadronization and UE corrections on C
(α)
1

compared to ungroomed case. We also used a Monte Carlo study to demonstrate that soft

drop with β < 0 can act as an effective tagger for boosted W bosons.

One area for future study is the behavior of soft drop as a pileup mitigation tool. We

have seen that soft drop yields small values of Rg and hence small jet areas, so one might

expect that soft drop would have similar pileup performance to trimming [53, 69, 76, 89].

Like trimming, soft drop declustering with β > 0 is an all-purpose grooming procedure,

in the sense that the grooming procedure does not veto jets (unlike a tagger), and the

groomed version of an (otherwise) IRC safe observable is still IRC safe.10 Both trimming

and soft drop have two parameters. In the case of trimming, they are the energy fraction

threshold fcut and the subjet radius Rsub. In the case of soft drop, they are the soft drop

threshold zcut and the angular exponent β. The fcut and zcut parameters play a similar role,

since they control how aggressive the grooming procedure is and also define the transition

points in, e.g., the C
(α)
1 distribution.

However, there is a qualitative difference between Rsub and β which is likely to be

phenomenologically relevant. At fixed values of the jet mass, harder jets become narrower

jets. The radius parameter Rsub sets a fixed angular scale, such that narrower jets are

effectively groomed less (see the discussion in ref. [59]). In contrast, β sets a scaling relation

between energies and angles, such that the amount of grooming decreases only gradually

as the jets become more narrow. The extreme limit of β = 0 is where approximately the

same fraction of energy is groomed away regardless of the initial jet energy (see eq. (5.9)).

Thus, we expect that soft drop could potentially have better performance than trimming at

10This is in contrast to the β = 0 (mMDT) limit, which has to be run in tagging mode to obtain an IRC

safe groomed jet energy distribution. Of course, we have argued that β = 0 soft-dropped distributions are

still Sudakov safe.
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higher energies and luminosities. Of course, this assumes that detectors are able to resolve

angular scales smaller than the typical Rsub ' 0.2.

Finally, in a more speculative vein, one might wonder whether the soft drop procedure

could be applied on an event-wide basis instead of jet-by-jet as considered here. In the case

of trimming, there is a suitable generalization [127] such that the trimming criteria can be

imposed without needing to first cluster an event into jets. In the case of mass drop, there

are ways to sew together different jet multiplicities to impose a kind of event-wide mass

drop condition [43]. If the soft drop condition in eq. (1.1) could be applied on an event-

wide basis, this could help address many of the numerous complications associated with

soft radiation and allow analyses to focus on the more tractable collinear physics of jets.
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A Details of energy correlation calculation

We present the details of the calculation of the soft-drop energy correlation function (C
(α)
1

with α > 0) to MLL accuracy. Thus, we consider the independent emission of n collinear

gluons within a jet. For each splitting m, the scale of the (one-loop) coupling is chosen

at the relative transverse momentum scale κm = zm θm pT jet. This is sufficient to capture

logarithmic accuracy we seek in this study (for a more detailed discussion, see the extensive

literature on event-shape and jet-mass resummation, e.g. [114–116]).

The above undestanding translates into

Σ(C
(α)
1 ) =

∞∑
n=0

1

n!

n∏
m=1

∫
dθm
θm

∫
dzm pi(zm)

αs(κm)

π

[
Θ

(
zcut

(
θm
R0

)β
− zm

)

+ Θ

(
zm − zcut

(
θm
R0

)β)
Θ

(
C

(α)
1 − zm

(
θm
R0

)α)
− 1

]
Θ (R0 − θm)

=

∞∑
n=0

(−1)n

n!

n∏
m=1

∫
dθm
θm

∫
dzm pi(zm)

αs(κm)

π

[
Θ

(
zm

(
θm
R0

)α
− C(α)

1

)

×Θ

(
zm − zcut

(
θm
R0

)β)]
Θ (R0 − θm) . (A.1)
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To MLL accuracy, the resummed result is then

Σ(C
(α)
1 ) = e−R(C

(α)
1 ) , (A.2)

where the radiator is given by the integral of the one-loop contribution over the allowed

phase-space:

R(C
(α)
1 ) =

1

α

∫ 1

C
(α)
1

dc

c

∫ 1

max

(
c, zcut

α
α+β c

β
α+β

) dz pi(z)αs (κ)

π
. (A.3)

The reduced splitting functions pi, with i = q, g are given by

pq(z) = CF
1 + (1− z)2

z
, (A.4a)

pg(z) = CA

[
2

1− z
z

+ z(1− z) +
TRnf
CA

(z2 + (1− z)2)

]
. (A.4b)

Note that for small enough values of energy fractions z and angular distances θ, the

argument of the coupling in eq. (A.3) can approach the non-perturbative region. Thus, we

introduce a prescription in order to evaluate the integrals down to these low scales. We

decide to freeze the coupling below a non-perturbative scale µNP:

αs(κ) = α1-loop
s (κ)Θ (κ− µNP) + α1-loop

s (µNP)Θ (µNP − κ) , (A.5)

where α1-loop
s (κ) is the usual one-loop expression for the strong coupling, i.e. its running is

evaluated with β0 only:

α1-loop
s (κ) =

αs(Q)

1 + 2αs(Q)β0 log κ
Q

. (A.6)

Our results are expressed in terms of αs = αs(R0 pT ) and we use αs(mZ) = 0.12, nf = 5,

and µNP = 1 GeV throughout this paper.

In the (log 1
z , log R0

θ ) plane of figure 2, the boundary between perturbative and non-

perturbative regions is given by

κ = µNP ⇒ log
1

z
= log

1

µ̃
− log

R0

θ
, (A.7)

where we have introduced µ̃ = µNP
pTR0

. Thus, according to eq. (A.5), below this straight line,

the one-loop running coupling is evaluated at the relative transverse momentum κ, while

above this line it is frozen at µNP.

The explicit form for the non-perturbative region of result depends on the relation

between the slope of lines of constant C
(α)
1 , which is controlled by α, and the slope of the

boundary between perturbative and non-perturbative regime, given by eq. (A.7). We also

assume β ≥ 0 for simplicity and discuss the case β < 0 in the end.
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For α > 1 we find

R(C
(α)
1 )

C
(α)
1 >zcut

=
Ci

2παsβ2
0

[
W(1− λ)

α− 1
−
αW(1− 1

αλ)

α− 1
− 2αsβ0Bi log(1− 1

α
λ)

]
(A.8)

z
1−α
1+β
cut µ̃

α+β
1+β <C

(α)
1 <zcut

=
Ci

2παsβ2
0

[
− W(1− λc)

1 + β
−
αW(1− 1

αλ)

α− 1
− 2αsβ0Bi log(1− 1

α
λ)

+
α+ β

(α− 1)(1 + β)
W

(
1− 1 + β

α+ β
λ− α− 1

α+ β
λc

)]
(A.9)

µ̃α<C
(α)
1 <z

1−α
1+β
cut µ̃

α+β
1+β

=
Ci

2παsβ2
0

[
− W(1− λc)

1 + β
−
αW(1− 1

αλ)

α− 1
− 2αsβ0Bi log(1− 1

α
λ)

− 1 + log (1− λµ)

(α− 1)(1 + β)
((α− 1)λc + (1 + β)λ− (α+ β)λµ))

+
α+ β

(α− 1)(1 + β)
W (1− λµ)

]
+
Ciαs(µNP)

π
F1(L) (A.10)

C
(α)
1 <µ̃α

=
Ci

2παsβ2
0

[
− W(1− λc)

1 + β
− βW(1− λµ)

1 + β
− 2αsβ0Bi log(1− λµ)

− 1 + log (1− λµ)

(1 + β)
(λc + βλµ)

]
+
Ciαs(µNP)

π

[
F1(αLµ)

+

(
L

α
− Lµ

)(
2α

α+ β
Lc + 2Bi +

β

α+ β
(L+ αLµ)

)]
, (A.11)

while for α < 1 we have11

R(C
(α)
1 )

C
(α)
1 >zcut

=
Ci

2παsβ2
0

[
W(1− λ)

α− 1
−
αW(1− 1

αλ)

α− 1
− 2αsβ0Bi log(1− 1

α
λ)

]
(A.12)

µ̃α<C
(α)
1 <zcut
=

Ci
2παsβ2

0

[
− W(1− λc)

1 + β
−
αW(1− 1

αλ)

α− 1
− 2αsβ0Bi log(1− 1

α
λ)

+
α+ β

(α− 1)(1 + β)
W

(
1− 1 + β

α+ β
λ− α− 1

α+ β
λc

)]
(A.13)

z
1−α
1+β
cut µ̃

α+β
1+β <C

(α)
1 <µ̃α

=
Ci

2παsβ2
0

[
−W(1−λc)

1+β
−αW(1−λµ)

α− 1
+
λ−αλµ
α− 1

(1+log(1−λµ))

− 2αsβ0Bi log(1−λµ)+
α+β

(α−1)(1+β)
W

(
1− 1 + β

α+ β
λ− α− 1

α+ β
λc

)]
+
Ciαs(µNP)

π

(
L

α
− Lµ

)(
L− αLµ

1− α
+ 2Bi

)
(A.14)

C
(α)
1 <z

1−α
1+β
cut µ̃

α+β
1+β

=
Ci

2παsβ2
0

[
− W(1− λc)

1 + β
− βW(1− λµ)

1 + β
−
(
λc + βλµ

1 + β

)
× (1 + log(1− λµ))− 2αsβ0Bi log(1− λµ)

]
+
Ciαs(µNP)

π

[
F2(L) +

(1− α)(βLµ + Lc)(2(1 + β)Bi + βLµ + Lc)

α(1 + β)2

]
.

(A.15)

11For definiteness we consider the case zcut > µ̃α.
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In the above expressions, we have introduced W(x) = x log x and

F1(L) =
((1 + β)L− (α+ β)Lµ + (α− 1)Lc)

2

(α− 1)(1 + β)(α+ β)
, (A.16)

F2(L) =
(1 + β)L− (α+ β)Lµ + (α− 1)Lc

α(1 + β)2(α+ β)
(A.17)

× (β (α+ β)Lµ + 2Bi(1 + β)(α+ β) + Lc(2α+ αβ + β) + β (1 + β)L) .

Here, Ci is the color of the jet appropriate for quarks (Cq = CF ) or gluons (Cg = CA).

Bi describes the contribution to the cross section from collinear logarithms: Bq = −3/4

for quark jets and Bg = −11
12 +

nf
6CA

for gluon jets, where nf is the number of active quark

flavors. We have also introduced

L = log(1/C
(α)
1 ) Lc = log(1/zcut) Lµ = log(1/µ̃), (A.18)

λ = 2αsβ0L λc = 2αsβ0Lc λµ = 2αsβ0Lµ. (A.19)

Moreover, it can be easily checked that the limit α → 1 is perfectly safe because the

two non-perturbative transition points coincide and therefore one non-perturbative region

disappears.

We note that expression for the running coupling with non-perturbative freezing

eq. (A.5) has a discontinuous first derivative at κ = µNP. To our logarithmic accuracy,

this behavior is reflected into a discontinuity of the second derivative of the radiator at

C
(α)
1 = µ̃α, which in turns causes a kink in the spectrum. The difference between right-

and left- second derivatives of the radiator at C
(α)
1 = µ̃α is

c =

(
αs(µNP)

π

)2 4πβ0CFBi
α2

, (A.20)

which is a contribution beyond the accuracy of our calculation. This effect is bigger for

smaller α, and for the case α = 0.5 in figure 4f, the non-perturbative transition point

C
(α)
1 = µ̃α occurs in the vicinity of the Sudakov peak. Clearly, this is an artefact of our

choice of an abrupt freezing of the coupling in the non-perturbative region. One could

imagine to alter eq. (A.5) in such a way that it smoothly interpolates between running and

fixed coupling (as done, for example, with scale profiling [128]). Alternatively, one could

add an appropriate (subleading) term to the radiator in the region C
(α)
1 < µ̃α. However, we

have decided not to introduce an ad-hoc prescription and, in this paper, we present results

obtained from our MLL calculations (plus eventually multiple-emission effects), with the

freezing of coupling previously discussed.

As already mentioned, the results for the resummed exponent have been obtained as-

suming β > 0. It is clear from the expressions above that the β → 0 limit is perfectly

safe. Indeed for β = 0 the result considerably simplifies and one obtains the mMDT single-

logarithmic distribution. Moreover, the same results also hold for the β < 0 case, provided

that C
(α)
1 > z

α/|β|
cut , which is the minimum allowed value for the energy correlation func-

tion. For C
(α)
1 < z

α‖β|
cut , the radiator freezes at R

(
z
α/|β|
cut

)
and consequently the differential

distribution vanishes.

– 34 –



J
H
E
P
0
5
(
2
0
1
4
)
1
4
6

Finally, the above results are also sufficient to compute the multiple-emission contribu-

tions described in section 3.3, which simply involve the derivative, as defined in eq. (3.16),

of the radiator functions derived in this appendix.

B Details of jet radius calculation

Here, we present the details of the calculation of the cumulative cross section of the jet

radius after soft drop declustering. Because we are interested in the behavior of soft drop

as a grooming procedure, we only consider β > 0. As presented in section 4, the cumulative

resummed cross section can be computed from the sum over emissions as

Σradius(Rg) =
∞∑
n=1

1

n!

n∏
m=1

[∫ R0

Rg

dθm
θm

∫ 1

0
dzm pi(zm)

αs(κm)

π
Θ

(
zcut

θβm

Rβ0
− zm

)]

× e−
∫R0
Rg

dθ
θ

∫ 1
0 dz pi(z)

αs(κ)
π

= e−R1(Rg) , (B.1)

where the exponent R1(Rg) is given by

R1(Rg) =

∫ R0

Rg

dθ

θ

∫ 1

0
dz pi(z)

αs(κ)

π
Θ

(
z − zcut

θβ

Rβ0

)
. (B.2)

The evaluation of the integrals proceed analogously to the case of the energy correlation

case described in detail in appendix A. In this case, the radiator is found to be

R1(Rg)
Rg>R

(0)
g

=
Ci

2παsβ2
0

[
−W(1− λg)−

W(1− λc)
1 + β

+
1

1 + β
W(1− λc − (1 + β)λg)

− 2αsβ0Bi log(1− λg)
]

(B.3)

µR0<Rg<R
(0)
g

=
Ci

2παsβ2
0

[
−W(1− λg)−

W(1− λc)
1 + β

+
1− λc − (1 + β)λg

1 + β
log(1− λµ)

+
λµ − λc − (1 + β)λg

1 + β
− 2αsβ0Bi log(1− λg)

]
+
Ciαs(µNP)

π

1

1 + β
[(1 + β)Lg + Lc − Lµ]2 (B.4)

Rg<µR0
=

Ci
2παsβ2

0

[
− W(1− λc)

1 + β
− λc + β

1 + β
log(1− λµ)− λc + βλµ

1 + β

− 2αsβ0Bi log(1− λµ)

]
+
Ciαs(µNP)

π

[
1

1 + β
(βLµ + Lc)

2 + (Lg − Lµ)(βLg + βLµ + 2Lc + 2Bi)

]
(B.5)

with R
(0)
g = R0(µ̃/zcut)

1/(1+β) and Lg = log(R0/Rg), λg = 2αsβ0Lg.
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C Details of energy drop calculation

Here, we present the details of the calculation of the cumulative cross section for the

fractional energy drop from soft drop declustering. Because we are interested in behavior of

soft drop as a grooming procedure, we only consider β > 0. As opposed to the calculations

previously described, for the energy drop distribution we also consider the effect of multiple

emissions. The resummed cumulative distribution is most easily written at fixed groomed

jet radius Rg. The resulting expression is then integrated over all possible values of Rg:

Σenergy-drop(∆E) =

∫ R0

0
dRg

dΣradius(Rg)

dRg

∫
dν

2πiν
eν∆Ee−R2(Rg ,ν−1) , (C.1)

and R2(Rg, ν) is the radiator function:

R2

(
Rg, ν

−1
)

=

∫ R0

Rg

dθ

θ

∫ 1

0
dz pi(z)

αs(κ)

π
Θ

(
zcut

θβ

Rβ0
− z

)(
1− e−νz

)
, (C.2)

In order to capture the single-logarithmic terms in eq. (C.2) arising from multiple

emissions we can make the following simplification [114–116]

R2

(
Rg, ν

−1
)
' R̄2

(
Rg, ν

−1
)

+ γER̄
′
2

(
Rg, ν

−1
)
, (C.3)

where

R̄2

(
Rg, ν

−1
)

= 2

∫ R0

Rg

dθ

θ

∫ 1

ν−1

dz

z

αs(κ)

π
Θ

(
zcut

θβ

Rβ0
− z

)
, (C.4)

γE is the Euler-Mascheroni constant and R̄′2
(
Rg, ν

−1
)

is the logarithmic derivative of R̄2

with respect to ν. Moreover, note that we were able to drop the finite contributions to the

splitting function pi(z) because for small values of zcut, there are no logarithms from hard

collinear emission.

The inverse Laplace transform in eq. (C.1) can be done to single logarithmic accuracy

in ν, also, by expanding ν about a fixed value ν0. Doing this, the inverse Laplace transform

becomes∫
dν

2πiν
eν∆Ee−R2(Rg ,ν−1) =

(ν0∆E)−R̄
′
2(Rg ,ν

−1
0 )

Γ
(
1 + R̄′2

(
Rg, ν

−1
0

))e−R̄2(Rg ,ν−1
0 )−γER̄′2(Rg ,ν

−1
0 ) . (C.5)

To minimize the logarithms, we choose ν0 = ∆−1
E and so the cumulative distribution of the

groomed jet energy drop becomes

Σenergy-drop(∆E) =

∫ R0

0
dRg

dΣradius(Rg)

dRg

e−γER̄
′
2(Rg ,∆E)

Γ(1 + R̄′2(Rg,∆E))
e−R̄2(Rg ,∆E) , (C.6)

The evaluation of the integrals with running coupling proceeds in the same way as

discussed for the energy correlation and groomed-jet radius distributions. We first obtain

the energy drop cumulative distribution at fixed Rg and then numerically integrate of Rg.
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The radiator R̄2 is better described in three regions ofRg. First, forRg > R0(µ̃/zcut)
1/(1+β),

we find

R̄2(∆E)
∆E>zcut(Rg/R0)β

=
Ci

2παsβ2
0

[
W(1−λc)

1+β
−W(1−λE)+

β

1+β
W

(
1+

λc−(1+β)λE
β

)]
(C.7)

µ̃R0/Rg<∆E<zcut(Rg/R0)β

=
Ci

2παsβ2
0

[
W(1−λc)

1+β
−W(1−λE)−W(1−λc−(1+β)λg)

1+β

+W(1−λg−λE)

]
(C.8)

µ̃<∆E<µ̃R0/Rg
=

Ci
2παsβ2

0

[
W(1−λc)

1+β
−W(1−λE)−W(1−λc−(1+β)λg)

1+β

+(1−λg−λE) log(1−λµ)+(λµ−λg−λE)

]
+
Ciαs(µNP)

π
(Lg+LE−Lµ)2 (C.9)

∆E<µ̃=
Ci

2παsβ2
0

[
W(1−λc)

1+β
−W(1−λc−(1+β)λg)

1+β
−λg log(1−λµ)−λg

]
+
Ciαs(µNP)

π
Lg(Lg+2LE−2Lµ). (C.10)

Then, for (µ̃/zcut)
1/β < Rg/R0 < (µ̃/zcut)

1/(1+β), we find

R̄2(∆E)
∆E>∆

(0)
E=

Ci
2παsβ2

0

[
W(1−λc)

1+β
−W(1−λE)+

β

1+β
W

(
1+

λc−(1+β)λE
β

)]
(C.11)

zcut(Rg/R0)β<∆E<∆
(0)
E=

Ci
2παsβ2

0

[
W(1−λc)

1+β
−W(1−λE)+

β+λc−(1+β)λE
1+β

log(1−λµ)

+
λc+βλµ−(1+β)λE

1+β

]
+
Ciαs(µNP)

π

1+β

β

(
LE−

Lc+βLµ
1+β

)2

(C.12)

µ̃<∆E<zcut(Rg/R0)β

=
Ci

2παsβ2
0

[
W(1−λc)

1+β
−W(1−λE)+

β+λc−(1+β)λE
1+β

log(1−λµ)

+
λc+βλµ−(1+β)λE

1+β

]
+
Ciαs(µNP)

π

[
(LE+Lg−Lµ)2− (Lc+(1+β)Lg−Lµ)2

1+β

]
(C.13)

∆E<µ̃=
Ci

2παsβ2
0

[
W(1−λc)

1+β
− 1−λc

1+β
log(1−λµ)+

λc−λµ
1+β

+
Ciαs(µNP)

π

[
L2
g−

(Lc+(1+β)Lg−Lµ)2

1+β
+2Lg(LE−Lµ)

]
, (C.14)
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with ∆
(0)
E = (zcutµ̃

β)1/(1+β). Finally, for Rg/R0 < (µ̃/zcut)
1/β,

R̄2(∆E)
∆E>∆

(0)
E=

Ci
2παsβ2

0

[
W(1−λc)

1+β
−W(1−λE)+

β

1+β
W

(
1+

λc−(1+β)λE
β

)]
(C.15)

µ̃<∆E<∆
(0)
E=

Ci
2παsβ2

0

[
W(1−λc)

1+β
−W(1−λE)+

β+λc−(1+β)λE
1+β

log(1−λµ)

+
λc+βλµ−(1+β)λE

1+β

]
+
Ciαs(µNP)

π

1+β

β

(
LE−

Lc+βLµ
1+β

)2

(C.16)

zcut(Rg/R0)β<∆E<µ̃
=

Ci
2παsβ2

0

[
W(1−λc)

1+β
− 1−λc

1+β
log(1−λµ)+

λc−λµ
1+β

]
+
Ciαs(µNP)

π

[
(LE−Lc)2

β
− (Lµ−Lc)2

1+β

]
(C.17)

∆E<zcut(Rg/R0)β

=
Ci

2παsβ2
0

[
W(1−λc)

1+β
− 1−λc

1+β
log(1−λµ)+

λc−λµ
1+β

]
+
Ciαs(µNP)

π

[
βL2

g−
(Lµ−Lc)2

1+β
+2Lg(LE−Lc−βLg)

]
. (C.18)

In the above expressions, we have introduced LE = log(1/∆E) and λE = 2αsβ0LE .
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