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Smectic C elastomers are layered materials exhibiting a solid-
like elastic response along the layer normal and a rubbery
one in the plane. The set of strains KC minimizing the elas-
tic energy contains a one-parameter family of simple stretches
associated with an internal degree of freedom, coming from
the in-plane component of the director. We investigate soft
elasticity and the corresponding microstructure by determin-
ing the quasiconvex hull of the set KC, and use this to pro-
pose experimental tests that should make the predicted soft
response observable.

1 Introduction

Liquid crystal elastomers display a number of interesting mechanical and op-
tical properties, with potential applications ranging from nonlinear optics to
artificial muscles, due to the coupling between liquid crystal ordering transi-
tion and rubber elasticity [25]. Smectic C liquid crystals are characterized by
rod-like molecules (mesogens) assembled in a layered structure, and tilted at
a fixed angle with respect to the layer normal (see Figure 1). The mesogens
are attached to polymer chains, which are cross-linked to obtain a rubber-
like solid; the coupling to liquid crystal ordering leads to rubbery response in
the tangential directions, and solid-like along the layer normal. Monodomain
smectic C elastomers were recently synthesized [14] (see also discussion and
references in [25, Chapter 12]); they exhibit spontaneous shear at the smec-
tic A–smectic C phase transition [15]. Experimental interest in smectic C
elastomers is also strongly motivated by the existence of a chiral ferroelectric
phase.

A microscopic model based on statistical mechanics was recently derived
in [2]. The model treats the polymers as Gaussian coils, with the cross-linkers
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Figure 1: Sketch of the geometry of smectic C elastomers. The unit vector
n gives the mesogen orientation in the deformed configuration, F is the
deformation gradient, F−T w0 (or, equivalently, cof Fw0) gives the normal to
the smectic layers in the deformed configuration.

constrained to lie between the smectic layers. The free energy is obtained
by taking a quenched average over the distribution of the chain endpoints at
cross-linking. This leads to an elastic stored energy density expressed as a
function of the local deformation gradient, see below.

In [2] soft modes were predicted, i.e., a nontrivial set KC of energy-
minimizing deformations was identified. Soft modes have also been predicted
based on a phenomenologically derived Lagrangian elastic energy [23]. We
show here thatKC is not quasiconvex, and hence that zero-energy microstruc-
tures can be formed. In particular, we find that the set of macroscopic strains
which can be realized with zero energy is much larger than KC. We char-
acterize all such zero-energy macroscopic deformations by computing the
quasiconvex hull of KC. Our approach is based on the tools of the calculus
of variations (see, e.g., [3, 9, 17, 12]), which have been remarkably successful,
e.g., for shape-memory alloys [5] or nematic elastomers [25, Chapter 8].

The explicit computation of quasiconvex hulls in realistic three-dimensional
physical systems is far from straightforward, even more so when working with
finite deformations. Examples where this has been possible are nematic elas-
tomers [11], and (at least partially) crystalline solids undergoing a cubic-to-
tetragonal martensitic phase transition [13]. By computing the quasiconvex
hull for smectic C elastomers and by exploiting this result to discuss the
experimental accessibility of soft deformation paths we provide a further ex-
ample in which the variational approach proves successful. The application
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of these techniques to predict the result of stretching experiments on liquid
crystal elastomers has been demonstrated in [6, 7, 8].

2 Statement of the problem and main results

The statistical mechanical model [2] gives the elastic stored energy density

WC(F ) =





1

2
µ min

n∈N(F )

[
|F |2 +

(
1

α2
− 1

)
|F Tn| − 3

]

+
1

2
B

(
|U−1

0 w0|

|F−Tw0|
− 1

)2

if detF = α ,

+∞ else.

(2.1)

Here F ∈ R
3×3 is the deformation gradient relative to a reference configura-

tion chosen in order to fully exploit the cylindrical symmetry of the material
(see Appendix), U0 = Id + (α − 1)n0 ⊗ n0 is the deformation gradient at
cross-linking, w0 is a fixed unit vector chosen such that U−1

0 w0 is orthogonal
to the smectic layers at cross linking,

N (F ) =

{
n ∈ S2 : n ·

F−Tw0

|F−Tw0|
= cos θ

}
,

and n0 ∈ N (U0) is the orientation of the mesogens at cross-linking. The
quantities µ > 0, B > 0, α > 1, and θ ∈ (0, π/2) are material parameters.
This expression differs from the one given in [2] by a change of variables
in the reference configuration, see Appendix. The fact that the energy WC

is only finite on matrices with fixed determinant reflects the assumption of
incompressibility by which all deformations from the initial configuration are
volume-preserving. The choice of the value α is simply dictated by notational
convenience. The parameter α is physically related to the anisotropy of the
polymer chains and hence to the amplitude of the spontaneous deformations
(see Section 3); θ characterizes the angle formed by the director with the
layer normal (in particular, the case of smectic A elastomers is recovered for
θ = 0); and B ≫ µ are the elastic moduli normal and tangential to the layer
normal.

The function WC defined in (2.1) is nonnegative, its minimum is zero,
and is attained by matrices in the set

KC = SO(3) {Id + (α− 1)n⊗ n : n · w0 = β} = SO(3)
⋃

n∈NC

Un , (2.2)
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where
Un = Id + (α− 1)n⊗ n

and
NC =

{
n : n ∈ S2, n · w0 = β

}
(2.3)

(see Appendix for a proof of these simple facts). Here β ∈ (0, 1) is a param-
eter related to the cosine of the angle θ between layer normal and director
n, see (A.4).

The quasiconvex envelope of an elastic energy density W gives, for each
macroscopic deformation gradient F , the optimal energy that can be achieved
by (Lipschitz-continuous) elastic deformations with Fx as boundary values:

W qc(F ) = inf

{
1

|Ω|

∫

Ω

W (F + ∇y)dx : y ∈W 1,∞
0 (Ω,R3)

}
. (2.4)

A function W is said quasiconvex if it coincides with its quasiconvex hull,
i.e., if W = W qc. Given a compact set K ⊂ R

3×3, one defines its quasiconvex
hull as the set of points which cannot be separated from K by quasiconvex
functions, i.e.,

Kqc =

{
F ∈ R

3×3 : W (F ) ≤ inf
F ′∈K

W (F ′) for all W quasiconvex.

}
. (2.5)

Physically, the set Kqc consists of the macroscopic deformation gradients
which can be realized with zero energy. It can be shown that (2.5) is equiv-
alent to stating that Kqc is the zero level set of the quasiconvex hull of the
distance function to K, i.e., Kqc = {F : [dist(·, K)]qc(F ) = 0}. Analogously,
one can show that the quasiconvex hull Kqc

C of the set KC (defined in (2.2))
coincides with the zero level set of the quasiconvex envelope W qc

C of the func-
tion WC (defined in (2.1)). For a more detailed presentation of these concepts
see, e.g., [9, 17, 12].

The following theorem gives an explicit formula for Kqc
C .

Theorem 2.1. Let KC be as in (2.2), with β ∈ (0, 1), α > 1, and w0 a unit
vector. Then,

Kqc
C =

{
F ∈ R

3×3 : detF = α , λ1(F ) ≥ 1 , (2.6)

|Fw0|
2 ≤ 1 + (α2 − 1)β2 , | cof Fw0|

2 ≤ α2 − (α2 − 1)β2
}
.

Here and below λ1(F ) ≤ λ2(F ) ≤ λ3(F ) denote the ordered singular
values of F , i.e., the ordered eigenvalues of (F TF )1/2.

4



Remark 2.2. In the case α ∈ (0, 1) one obtains

Kqc
C =

{
F ∈ R

3×3 : detF = α , λ3(F ) ≤ 1 ,

|Fw0|
2 ≤ 1 + (α2 − 1)β2 , | cof Fw0|

2 ≤ α2 − (α2 − 1)β2
}
.

In the following we focus on the physically-relevant case α > 1.
For a comparison, recall that the zero level set of the energy for (ideally

soft) nematic elastomers reads, with the present notations,

KN = SO(3)
{
Id + (α− 1)n⊗ n : n ∈ S2

}
= SO(3)

⋃

n∈S2

Un .

Clearly, KC ⊂ KN; notice that KN is five dimensional, while KC is only
four dimensional. This corresponds to the fact that KN has full rotational
symmetry, whereas KC has only cylindrical symmetry. The quasiconvex hull
of KN is [11]

Kqc
N =

{
F ∈ R

3×3 : detF = α , λ1(F ) ≥ 1
}
.

Clearly Kqc
C ⊂ Kqc

N , notice, however, that both sets are eight dimensional.
In fact, even for the case of cubic-to-tetragonal phase transitions, where the
corresponding set of energy-minimizing states Kct is only three dimensional,
the hull Kqc

ct turns out to be eight dimensional [13]. The mechanical impli-
cation of this property is that, starting from a point in the relative interior
of Kqc, any small-enough volume-preserving deformation is soft.

We now turn to a more precise characterization of the microstructures
leading to the relaxation result above. First we show that, for all matrices
which are in the relative interior of Kqc

C , the infimum in (2.4) is attained (for
W = WC). In the proof we use the convex integration result by Müller and
Šverák [18]; for alternative approaches to the same problem, see [10, 16].

Proposition 2.3. Under the same assumptions and in the notation of The-
orem 2.1, let

F∗ ∈ (Kqc
C )int =

{
F ∈ R

3×3 : detF = α , λ1(F ) > 1 , (2.7)

|Fw0|
2 < 1 + (α2 − 1)β2 , | cof Fw0|

2 < α2 − (α2 − 1)β2
}
.

Then, for any open domain Ω ⊂ R
3, the partial differential inclusion

{
∇y ∈ KC a.e. in Ω

y(x) = F∗x on ∂Ω

has a Lipschitz solution y : Ω → R
3.
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Figure 2: Schematic representation of the deformation in (2.8).

The Lipschitz maps y constructed by convex integration have very com-
plex geometric structures. Simpler patterns emerge by studying minimizing
sequences in the form of laminates (see Figure 2). For example, a first-order
laminate is obtained by considering deformations yε whose gradients oscillate
between two values, say A and B, with volume fractions λ and 1 − λ. The
matrices A and B have to satisfy the condition A − B = a ⊗ ν, for some
vectors a ∈ R

3 and ν ∈ S2. The deformations have the form

yε(x) = Cx+ aεχ
(x · ν

ε

)
, (2.8)

where C = λA+(1−λ)B is the average of the laminate, and χ is a 1-periodic
function such that

χ(t) =

{
(1 − λ)t if 0 ≤ t ≤ λ

λ(1 − t) if λ ≤ t ≤ 1 .

As ε → 0, the deformation yε approaches uniformly the affine map Cx.
Laminates of higher order are obtained by iterating this construction, see
[9, 17, 12]. The laminates relevant for Theorem 2.1 are described in the
following proposition.
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Proposition 2.4. Under the same assumptions and in the notation of The-
orem 2.1,

(i) All matrices in Kqc
C are averages of third-order laminates supported on

KC.

(ii) All matrices in Kqc
C where at least one of the three inequalities is an

equality can be obtained as averages of second-order laminates supported
on KC.

(iii) All matrices in Kqc
C where two of the three inequalities are equalities,

and only those, can be obtained as averages of first-order laminates
supported on KC.

All proofs are given in Section 4.

3 Physical and experimental implications

Spontaneous deformations consisting of reversible shears of up to ∼ 20◦ have
been measured in smectic C elastomers [15], but no further mechanical ex-
perimental data is available. In comparison, smectic A elastomers have been
studied in much greater detail: samples with the smectic layer compression
modulus (B in (2.6)) taking very large values [19, 20], or small values [21, 22]
have been fabricated and mechanically tested. We propose here experimen-
tal geometries where soft elastic response and microstructure formation are
expected for smectic C elastomers. We focus on a thin-film geometry since
monodomain samples have only been obtained as thin films.

A mechanical experiment in which a specimen experiences a sequence of
macroscopically affine deformations corresponds to a path through the space
of matrices; in practice, one always starts from the cross-linking configura-
tion, which lies on the boundary ofKqc

C . Thus, the path can either move away
from Kqc

C , or can first move into Kqc
C and eventually leave it later. In the

ideal case, moving within Kqc
C requires zero energy and therefore no stress.

In practice, due to various sources of non-ideality in the rubber (e.g., a pre-
ferred direction from the two-stage crosslinking process), the stress cannot
be exactly zero. One expects the signature of Kqc

C to be a region which can
be traversed with very small stress. For example, experiments on nematic
elastomers have shown first a small, but rapid, increase in the stress, then
a wide plateau with a much lower apparent elastic modulus, and finally a
rapid increase in the stress after the plateau [25, Chapter 7.4].

In order to discuss experimental tests it is more convenient to work in
a coordinate system in which the reference configuration is the one at cross
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Figure 3: An illustration of the proposed experimental geometry, and of the
coordinate system used. The relevant case has tension along z (i.e., γz > 1),
and compression along x (i.e., γx < 1).

linking, which amounts to inverting the coordinate change discussed in the
Appendix. Substituting Λ = FU−1

0 into expression (2.6) shows that F ∈ Kqc
C

corresponds to Λ ∈ Kqc
∗ = Kqc

C U
−1
0 . Equivalently, Kqc

∗ is the set of matrices
Λ ∈ R

3×3 satisfying the following relations:

det Λ = 1 , (3.1)

λ1(ΛU0) ≥ 1 , (3.2)

|ΛU2
0k0|

2 ≤ 1 + (r2 − 1) cos2 θ , (3.3)

|Λ−Tk0|
2 ≤ 1 . (3.4)

Here r = α2, θ is defined by

cos2 θ =
β2

α2 + (1 − α2)β2

and k0 = U−1
0 w0/|U

−1
0 w0|.

The experimental configuration considered here is a thin film in the
(e1, e3) plane, layer normal k0 = e3, and director tilted in the e1 direction,
i.e., n0 = sin θ e1 + cos θ e3 (see Fig. 3).

Shearing tests

Consider deformations of the form

ΛS(γ) =




1 0 γ
0 1 0
0 0 1


 ,
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which correspond to the geometry in which spontaneous shear was observed
[15] when cooling from the smectic A to smectic C phase, because θ evolves
from 0 to its current value. This matrix satisfies (3.4) and (3.2) with equality
for γ ≤ 0. The remaining inequality (3.3) then reduces to the following

(1 + (r− 1) cos2 θ)2 + (γ + (r− 1) cos θ(γ cos θ+ sin θ))2 ≤ 1 + (r2 − 1) cos2 θ

We conclude that ΛS(γ) ∈ Kqc
∗ provided that

γ∗ ≤ γ ≤ 0 , where γ∗ = −
(r − 1) sin 2θ

sin2 θ + r cos2 θ
.

In this case, the accompanying microstructure can also be determined ex-
plicitly. In particular, it is a simple laminate between ΛS(0) = Id and ΛS(γ∗)
with varying volume fractions, and with lamination planes parallel to the
smectic layers, i.e., in the notation of (2.8), B = Id, A = ΛS(γ∗), C = Λ(γ),
and ν = k0, and λ = γ/γ∗. Therefore the nematic director initially has the
value n0 everywhere, and with increasing γ it takes the value n1 (correspond-
ing to ΛS(γ∗)) on larger and larger portions of the sample.

Notice that the matrices



1 0 0
0 1 0
γ 0 1


 ,




1 0 0
0 1 0
0 γ 1


 ,




1 0 0
γ 1 0
0 0 1


 ,




1 0 0
0 1 γ
0 0 1


 ,




1 γ 0
0 1 0
0 0 1




do not give rise to soft deformations for γ 6= 0. The first two matrices do not
satisfy (3.4), the third and fourth do not satisfy (3.3), and the fifth does not
satisfy (3.2).

Simple shear testing of the sample may prove impractical to carry out
experimentally as the sample may buckle for large imposed shears. Attribut-
ing any observed plateau in the stress-strain curve to soft deformation path
may then be difficult. We now consider an experimental geometry in which
the sample is under tension.

Tensile tests

Consider applying a biaxial extension to the film, with the direction of the
largest stretch at an angle φ to the layer normal. This could be done, for
example, by cutting out a small rectangular piece of elastomer from an exist-
ing film at the required angle to the layer normal and then applying biaxial
stretches parallel to the sample edges (x and z axes, see Fig. 3). We denote
the rotated axes by (ex, ey, ez), to distinguish them from the original axes
(e1, e2, e3). In practice we expect that the results here should also apply to
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uniaxial extension along the ez axis (and not only to the prescribed biaxial
extension), as the other two directions should adjust so that the deformation
remains in Kqc

∗ . The deformation gradient for extension along ez is of the
form

ΛT (γx, γy, γz) =




γx cos2 φ+ γz sin2 φ 0 (γx − γz) cosφ sinφ
0 γy 0

(γx − γz) cosφ sinφ 0 γz cos2 φ+ γx sin2 φ




where γx, γy and γz are the principal stretches. We now calculate the range of
values of φ for which paths of this form lie within Kqc

∗ . Due to the symmetry
of ΛT , it is only necessary to consider 0 ≤ φ ≤ π/2.

Clearly by using (3.1) we obtain γy = 1/(γxγz), hence we drop it from
the notation. The remaining inequalities defining Kqc

C show that ΛT ∈ Kqc
∗

if the following conditions hold:

sin2 φ

γ2
x

+
cos2 φ

γ2
z

≤ 1 , (3.5)

0 ≤ 1 + γ2
zγ

2
xr − γ2

x(cos2(φ+ θ) + r sin2(φ+ θ))

−γ2
z (sin

2(φ+ θ) + r cos2(φ+ θ)) , (3.6)

γxγz ≤ 1 , (3.7)

1 + (r2 − 1) cos2 θ ≥ γ2
z

(
r + 1

2
cosφ+

r − 1

2
cos(φ+ 2θ)

)2

+γ2
x

(
r + 1

2
sinφ+

r − 1

2
sin(φ+ 2θ)

)2

. (3.8)

Here (3.5) arises from the condition (3.4), (3.6) and (3.7) arise from (3.2), and
(3.8) arises from (3.3). An illustration of the set of pairs (γx, γz) satisfying
these four inequalities is given in Fig. 4. All four conditions are equalities for
ΛT (1, 1) = Id, corresponding to the fact that this matrix is on the boundary
of Kqc

∗ .
We now check if, for suitable choices of the angle φ, there are curves in

the (γx, γz) plane which stay within Kqc
∗ . To do this, we compute the slopes

of the four curves given above, and compare their values at the point (1, 1).
It turns out that there is a nonempty set which satisfies all four conditions
only if

π

4
− θ +

1

2
arctan

tan θ

r
≤ φ ≤

π

4
.

Therefore soft elasticity is expected only for samples with orientation in this
particular range.

10



(a) (b)

Figure 4: Illustration of the stretches γx, γz for which the deformation
ΛT is soft (i.e., in K

qc
∗ ), for r = 2 and θ = 22.5◦. (a) stretching direction

φ = 36◦, (b) stretching direction φ = 39◦.

We are now interested in the amount of soft deformation that can be sus-
tained by the sample. Precisely, for any value of φ we compute the maximal
soft stretch in the z direction,

γmax
z = max {γz : ΛT (γx, γz) ∈ Kqc

∗ for some γx} .

Computing γmax
z involves solving several algebraic equations, corresponding

to the various pairs of inequalities in (3.5)-(3.8). The results are reported in
Figure 5 for some realistic values of the parameters.

4 Proofs of the results in Section 2

We start by recalling a result on the relaxation of the two-well problem [4, 24].
Its proof is given at the end of this section for the convenience of the reader.

Lemma 4.1. For any pair n1, n2 ∈ S2, the hull of the two wells

K12 = SO(3)Un1 ∪ SO(3)Un2

is given by

Kqc
12 =

{
F ∈ R

3×3 : detF = α, αFv = cof Fv,

|Ff1| ≤ |Un1f1|, |Ff2| ≤ |Un1f2|} . (4.1)

11



Figure 5: An illustration of the expected amplitude of the soft plateau γmax
z

as a function of orientation angle φ (in degrees). Full (black) curve, r = 2
and θ = 22.5◦; dotted (blue) curve, r = 2.5 and θ = 22.5◦; short-dashed (red)
curve, r = 2 and θ = 30◦; long-dashed (green) curve, r = 2 and θ = 15◦.

Here

v =
n1 ∧ n2

|n1 ∧ n2|
, f1 =

n1 + n2

|n1 + n2|
, f2 =

n1 − n2

|n1 − n2|
. (4.2)

The set Kqc
12 is polyconvex; each matrix in Kqc

12 is the average of a second-
order laminate supported on K12; the set of matrices which are averages of
first-order laminates supported on K12 is the subset of Kqc

12 where one of the
two inequalities is an equality.

Geometrically, v is the normal to the plane spanned by n1 and n2; the
vectors (v, f1, f2) form an orthonormal basis, and the fi are (up to a sign) the
only two unit vectors orthogonal to v which fulfill |Un1f | = |Un2f |. Further,
since detF = α the condition αFv = cof Fv is equivalent to F TFv = v.
This implies, in particular, that one of the singular values of F is 1.

Proof of Theorem 2.1. Let K̃ be the set in the right-hand side of (2.6), i.e.,
the set of matrices F ∈ R

3×3 such that

detF = α , (4.3)

|Fw0|
2 ≤ 1 + (α2 − 1)β2 , (4.4)

| cof Fw0|
2 ≤ α2 − (α2 − 1)β2 , (4.5)

λ1(F ) ≥ 1 . (4.6)
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The set K̃ is clearly polyconvex, as it is defined as the intersection of sublevel
sets of polyconvex functions (recall that λ1(F ) = detF/λ3(cof F ), hence (4.6)
can be equivalently replaced by λ3(cof F ) ≤ α). Therefore it suffices to show

that any matrix in K̃ is the average of a laminate supported on K. Due to
the rotational invariance, it further suffices to consider symmetric matrices
in K̃.

We decompose K̃ into three sets K̃(i), i = 1, 2, 3. In the first one all three
inequalities are equalities,

K̃(1) :=
{
F ∈ K̃ : λ1(F ) = 1 , |Fw0|

2 = 1 + (α2 − 1)β2 ,

| cof Fw0|
2 = α2 − (α2 − 1)β2

}
.

The second one contains matrices with one singular value equal to 1,

K̃(2) :=
{
F ∈ K̃ : λ1(F ) = 1

}

The third one contains matrices with all singular values strictly larger than
1,

K̃(3) :=
{
F ∈ K̃ : λ1(F ) > 1

}
.

We claim that

(i) K̃(1) = KC;

(ii) all matrices in K̃(2) are averages of second-order laminates supported
on two wells in KC;

(iii) all matrices in K̃(3) are averages of simple laminates supported in K̃(2).

Since K̃ = K̃(2)∪K̃(3), this will imply the thesis. It remains to prove the three
claims. For notational simplicity, in the following we work with w0 = e3.

Proof of Claim (iii). Let F ∈ K̃(3), and consider the rank-one line

Ft = F (Id + te1 ⊗ e2) .

To prove the claim it suffices to determine two values of t, say t+ > 0 > t−,
such that F can be written as an average of Ft+ and Ft− , with Ft± ∈ K̃(2).
To do this, we first compute

cof Ft = cof F (Id − te2 ⊗ e1) , and detFt = α .

Therefore the quantities detFt, |Fte3|, and | cof Fte3| do not depend on t.
Consider now the function

f(t) = λ1(Ft) .
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This is continuous, f(0) > 1, and limt→±∞ f(t) = 0. To see the latter, it
suffices to observe that

∞ = lim
t→±∞

|Ft|
2 = lim

t→±∞
λ2

3(Ft) + λ2
2(Ft) + λ2

1(Ft) ≤ lim
t→±∞

3α2

λ4
1(Ft)

,

since detFt = α implies λ3(Ft) = α/λ2(Ft)λ1(Ft) ≤ α/λ2
1(Ft). We conclude

that the equation f(t) = 1 has at least one positive and one negative solution
(actually they are unique, since λ1 is concave along volume-preserving rank-
one directions). The solutions are the desired t+ and t−.

Proof of Claim (ii) We can assume without loss of generality that F is
symmetric, so that λ1(F ) = 1 means that F has an eigenvalue 1. Let v be
the corresponding eigenvector. Exploiting the cylindrical symmetry we can
assume that v · e2 = 0, and obtain

Fv = v for v =




cos φ

0
sinφ



 . (4.7)

We intend to determine values of n1 and n2 ∈ NC such that we can use
Lemma 4.1, with this vector v. It is convenient to start from the two vectors
fi, as in (4.2). Indeed, f1 is a unit vector normal to both w0 and v, hence
f1 = e2; in turn, f2 is normal to both f1 and v. In components, we obtain

f1 =




0
1
0


 , and f2 =



− sin φ

0
cosφ


 .

We now claim that F ∈ K̃ implies

|Ff1|
2 ≤ 1 + (α2 − 1)

(
1 −

β2

cos2 φ

)
(4.8)

and

|Ff2|
2 ≤ 1 + (α2 − 1)

β2

cos2 φ
. (4.9)

Since 1 ≤ λ1(F ) ≤ |Ff1|, (4.8) implies that β2 ≤ cos2 φ. We can therefore
define

n1,2 =




−β tanφ

±
√

1 − β2/ cos2 φ
β


 ∈ KC .

These vectors have been determined so that (4.2) is satisfied. In turn, the
expressions on the right-hand side of (4.8) and (4.9) are exactly the values
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of |Un1Fi|
2 = |Un2Fi|

2. Therefore by Lemma 4.1 (4.8) and (4.9) imply that
F is in the second lamination convex hull of SO(3){Un1, Un2} ⊂ KC.

It remains to prove the claimed (4.8)-(4.9). To do so, we write

w0 = sin φ v + cosφ f2 ,

and observe that {v}, {v}⊥ are eigenspaces of F . Therefore,

|Fw0|
2 = sin2 φ|Fv|2 + cos2 φ|Ff2|

2 ,

and using (4.7) and (4.4) we get (4.9). Analogously,

| cof Fw0|
2 = sin2 φ| cof Fv|2 + cos2 φ| cof Ff2|

2 .

Using (4.7) and (4.5) we get

| cof Ff2|
2 ≤ α2 − (α2 − 1)

β2

cos2 φ
. (4.10)

We recall that if F TFv = v, then

|Fµ| = | cof F (v ∧ µ)| for all µ ∈ R
3 , µ · v = 0 . (4.11)

To see this, it suffices to verify it for symmetric F , so that v is an eigenvector
with eigenvalue 1. Then, cof F (v ∧ µ) = Fv ∧ Fµ = v ∧ Fµ, and the two
vectors are orthogonal. Using (4.11) in (4.10), we obtain (4.8).

Proof of Claim (i) If F ∈ KC, then F = QUn for some n ∈ NC, hence

|Fw0|
2 = |Unw0|

2 = 1 + (α2 − 1)(n · w0)
2 = 1 + (α2 − 1)β2

and

| cof Fw0|
2 = |αU−1

n w0|
2 = α2 + (1 − α2)(n · w0)

2 = α2 + (1 − α2)β2 ,

therefore F ∈ K̃(1).
If F ∈ K̃(1) ⊂ K̃(2), then we can repeat the argument given in the proof of

Claim (ii), and obtain that equality holds in (4.8) and (4.9). Since (v, f1, f2)
is an orthonormal basis,

|F |2 = |Fv|2 + |Ff1|
2 + |Ff2|

2 = 2 + α2 .

Recalling that detF = α and λ1(F ) = 1, we have

λ2(F )λ3(F ) = α, λ2
2(F ) + λ2

3(F ) = 1 + α2 ,

hence λ2(F ) = 1, λ3(F ) = α. Therefore F = QUn, for some n ∈ S2. Finally,

|Fw0|
2 = |Unw0|

2 = 1 + (α2 − 1)(n · w0)
2 ,

therefore (n ·w0)
2 = β2. Replacing if necessary n with −n, we conclude that

n · w0 = β, hence n ∈ NC and F ∈ KC.
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Proof of Remark 2.2. The proof follows the same steps as the one of Theorem
2.1, replacing the condition λ1 ≥ 1 with the condition λ3 ≤ 1. In particular,
to show that β2 ≤ cos2 φ (after (4.8)), one uses (4.9) and the fact that
λ3 ≤ 1.

Proof of Proposition 2.4. Part (i) follows from the claims (ii) and (iii) in the
proof of Theorem 2.1.

We now prove part (iii). First-order laminates only involve two values of
the director n, hence by Lemma 4.1 their average satisfies λ1(F ) = 1, and
one of the two inequalities in (4.1) is an equality. Therefore also one of the
other two inequalities in (2.6) is an equality, see proof of Claim (i) above.

Conversely, assume that λ1(F ) = 1, and that one of the other inequalities
in (2.6) is an equality. Then, argueing as in the proof of Theorem 2.1, we
obtain that either (4.8) or (4.9) is an equality. Therefore, application of
Lemma 4.1 as in the proof of Claim (ii) above gives a first-order laminate
with average F .

Finally, assume that

|Fw0|
2 = 1 + (α2 − 1)β2 and | cof Fw0|

2 = α2 − (α2 − 1)β2 ,

and consider the construction used in the proof of Claim (iii). The matrices

Ft constructed there belong to K̃(1) = KC.
It remains to show part (ii) of Proposition 2.4. If λ1(F ) = 1, then F ∈

K̃(2), hence it is the average of a second-order laminate by Claim (ii). If
instead one of the other inequalities is an equality, we consider a first-order
laminate as in the proof of Claim (iii) above. For the resulting matrices two
inequalities are equalities, hence by Part (iii) (proven above) are the average
of first-order laminates. This concludes the proof.

Proof of Proposition 2.3. Proposition 2.3 is proven on the basis of the convex
integration result by Müller and Šverák [18, Theorem 1.3], by constructing
a suitable in-approximation for the set KC (see (4.14) below for a defini-
tion). This will be done by considering a family of variants of the set KC

which interpolates between SO(3) and the original set KC. To do this, it is
necessary to work with constant determinant, and it is convenient to make
the dependence on α and β explicit in the notation. We change variables
according to

F̃ = α−1/3F ,

and write

K̃α,β = SO(3)
{
α−1/3Id + (α2/3 − α−1/3)n⊗ n : n ∈ Nβ

C

}
,
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where Nβ
C is defined as in (2.3). The hull can be characterized as

K̃qc
α,β =

{
F ∈ R

3×3 : detF = 1 , ψj(F ) ≤ φj(α, β), j = 1, 2, 3
}

(4.12)

where

ψ1(F ) =
1

λ1(F )
, φ1(α, β) = α1/3 ,

ψ2(F ) = |Fw0|
2 , φ2(α, β) = α−2/3 +

(
α4/3 − α−2/3

)
β2 ,

ψ3(F ) = | cof Fw0|
2 , φ3(α, β) = α2/3 −

(
α2/3 − α−4/3

)
β2 .

By Claim (i) in the proof of Theorem 2.1, replacing inequalities with equali-

ties this reduces to K̃α,β, i.e.,

K̃α,β =
{
F ∈ R

3×3 : detF = 1 , ψj(F ) = φj(α, β) j = 1, 2, 3
}
. (4.13)

We want to construct an in-approximation, i.e., a sequence of uniformly
bounded, relatively open sets Ui ⊂ {F ∈ R

3×3 : detF = 1} such that

Ui ⊂ (Ui+1)
rc , and Ui → K̃ . (4.14)

Here Ui → K̃ means that Fi → F , Fi ∈ Ui implies F ∈ K̃; U rc denotes
the rank-one convex hull of U , see [9, 17, 12]. We claim that we can choose
αi > 1, βi ∈ (0, 1), εi > 0 such that

Ui =
{
F : detF = 1 , dist(F, K̃αi,βi

) < εi

}

satisfies (4.14). These sets are relatively open, uniformly bounded, and the

convergence to K̃ is ensured provided that

αi → α, βi → β, and εi → 0 .

We shall choose αi and βi so that

K̃αi,βi
⊂

(
K̃rc

αi+1,βi+1

)int

. (4.15)

Here Aint denotes the relative interior of the set A ⊂ {F : detF = 1}. Since
the first set in (4.15) is compact and the second relatively open, if (4.15)
holds then we can choose εi > 0 such that (4.14) holds.

It remains to choose αi and βi so that (4.15) holds. Since by Proposition

2.4 K̃rc
αi+1,βi+1

= K̃qc
αi+1,βi+1

, recalling (4.12) and (4.13), (4.15) is equivalent to
the condition

φj(αi, βi) < φj(αi+1, βi+1) j = 1, 2, 3 .
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We claim that there is a curve γ starting from the point (α, β) and such that
the three functions φj ◦ γ are strictly decreasing along γ. If this is the case,
it suffices to choose appropriately the points along γ to obtain sets fulfilling
(4.15). Precisely, assume

γ(0) = (α, β) , ∇φj ◦ γ · γ
′(t) < 0 for t ∈ [0, t0], t0 > 0 . (4.16)

(here (α, β) denote the values entering the statement, i.e., the parameters in
(2.7)). Choose t1 ∈ (0, t0) such that ψj(F∗) < φj(γ(t0)) for all j, which is
possible since by assumption φj(F∗) < φj(γ(0)) for all j. Then, the points

(αi, βi) = γ(2−it1)

satisfy all requirements.
It remains to show existence of the curve γ with the properties given in

(4.16). We prove this by showing existence of a vector field along which all
∇φj are negative. For each (α, β), the set of directions which have a negative
component along ∇φ2 is an open half-plane. The same holds for ∇φ3. Since
the two gradients do not sum to zero, the two half-planes intersect in a cone,
and there is a direction on which both φ2 and φ3 are decreasing. We claim
that in this direction also φ1 is decreasing. Indeed,

∇φ2 + α2/3∇φ3 =

(
2
3
(1 + β2)α−5/3(α2 − 1)

0

)
.

Therefore
∇φ1 =

α

2(α2 − 1)(β2 + 1)

[
∇φ2 + α2/3∇φ3

]
.

Since the fraction is positive, we conclude that if φ2 and φ3 are decreasing,
so is φ1.

Proof of Lemma 4.1. Let K̃ denote the right-hand side of (4.1). This set is

clearly polyconvex. Further, K12 ⊂ K̃. Even more, we claim that K12 equals
the set of matrices in K̃ where both inequalities are equalities. To see this,
assume

detF = α , αFv = cof Fv , |Ff1| = |Un1f1|, |Ff2| = |Un1f2| .

This implies
|F |2 = |Un1 |

2 = 2 + α2 .

Therefore the singular values of F are (1, 1, α), i.e., F = QUn, for some
n ∈ S2. Clearly v · n = 0. Further,

(n · fi)
2 = (n1 · fi)

2 = (n2 · fi)
2 i = 1, 2 .
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Therefore n ∈ {±n1,±n2} and F ∈ K12.

Let now F ∈ K̃ be such that

|Ff1| = |Un1f1|, |Ff2| < |Un1f2| .

the other case being equivalent. We consider the rank-one line

Ft = F (Id + tf1 ⊗ f2) .

We notice that detFt, Ftv, cof Ftv and Ftf1 do not depend on t. At the same
time, f(t) = |Ftf2| is continuous, and diverges as t → ±∞, hence there are
two values t− < 0 < t+ such that f(t±) = |Un1f2|. For the matrices Ft± all
inequalities are equalities, hence by the previous argument they are in K12,
and F is the average of a first-order laminate supported on them.

Finally, for a generic F ∈ K̃ we consider the rank-one line

Ft = F (Id + tf2 ⊗ f1) .

Reasoning as above, we can find two values of t such that

|Ft±f1| = |Un1f1| ,

and reduce to the previous case. The conclusion follows.

5 Discussion and outlook

In summary, we have determined the quasiconvex hull of the zero set of the
energy density for smectic C elastomers derived in [2], and have shown that
it contains a full-dimensional set of volume-preserving zero-energy deforma-
tions. We used our result to predict microstructure formation and soft elastic
response in stretching experiments on thin sheets (see Fig. 5), and to propose
experimental geometries that should make the effect visible.

In the related case of smectic A elastomers, which corresponds to taking
β = 1, one obtains as zero set of the energy KA = SO(3)Uw0 (see [1]). There-
fore the quasiconvex hull is trivial, Kqc

A = KA. The mechanical interpretation
of this fact is that there are no zero-energy soft modes. Microstructure for-
mation and softening at intermediate stretches have, however, been observed
experimentally [20] for stretches along the layer normal, and explained the-
oretically [1] as due to buckling of the smectic layers. Similar and more
complex effects can be expected in smectic C.

The analysis in [1] can be recast in the present variational framework,
leading to a partial determination of the quasiconvex envelope of the smectic
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A energy density. This shows that there exists a large variety of physically-
relevant regimes outside of the zero-energy set, and that the knowledge of
the full quasiconvex envelope of the energy density may shed further light on
the complex physics of these interesting materials. The determination of the
envelope for the smectic A energy density is, in the general case, open, and
even more so for smectic C.
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A Appendix

In [2], the following energy density is derived from a statistical mechanical
model

W1(Λ) =






1

2
µ min

n∈N
(Λ)
1

[
Tr(ΛU2

0 ΛTU−2
n ) − 3

]

+
1

2
B

(
1

|Λ−Tk0|
− 1

)2

if det Λ = 1

∞ else,

where Λ ∈ R
3×3 is the deformation gradient with respect to the cross-linking

configuration, k0 is the unit normal to the smectic layers at cross-linking,
and the smectic director n is a unit vector is the set

N
(Λ)
1 =

{
n ∈ S2 : n ·

Λ−Tk0

|Λ−Tk0|
= cos θ

}
.

Further,
Un = Id + (α− 1)n⊗ n

is a uniaxial stretch along n, and U0 = Un0 , n0 ∈ N
(Id)
1 being the director

at cross-linking. The expressions in [2] are written in terms of r = α2 and
ℓn = U2

n .
As in the case of nematic elastomers, it is convenient to change reference

configuration, in order to fully exploit the symmetry of the problem. In
particular, we replace the variable Λ with F , defined by

F = ΛU0 = Λ(Id + (α− 1)n0 ⊗ n0) ,
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and correspondingly

WC(F ) = W1(FU
−1
0 )

=






1

2
µ min

n∈N
(F )
2

[
|F |2 +

(
1

α2
− 1

)
|F Tn| − 3

]

+
1

2
B

(
|U−1

0 w0|

|F−Tw0|
− 1

)2

if detF = α ,

∞ else .

(A.1)

Here

w0 =
U0k0

|U0k0|
,

and

N (F ) = N
(FU−1

0 )
1 =

{
n ∈ S2 : n ·

F−Tw0

|F−Tw0|
= cos θ

}
.

Notice that |U0k0| = 1/|U−1
0 w0|. Further, the director at cross-linking is the

fixed vector n0 ∈ N
(Id)
1 = N (U0).

It remains to show that the function WC defined in (A.1) is nonnegative,
its minimum is zero, and is attained by matrices in the set defined in (2.2),
namely,

KC = SO(3) {Id + (α− 1)n⊗ n : n · w0 = β} . (A.2)

To see this, we observe that the square bracket in (A.1) satisfies

|F |2 +

(
1

α2
− 1

)
|F Tn| − 3 ≥ λ2

1(F ) + λ2
2(F ) +

1

α2
λ2

3(F ) − 3 , (A.3)

where λi are the ordered singular values of F , with equality holding if |F Tn| =
λ3(F ). Since λ1λ2λ3 = detF = α, the right-hand side of (A.3) is minimized
when λ1 = λ2 = λ3/α = 1, its minimum is zero, and the minimizers are the
matrices of the form

F = QUm

where m ∈ S2, and Q ∈ SO(3). The left-hand side of (A.3), in turn, is
minimized when additionally to the said conditions, n can be chosen so that
(A.3) becomes an equality. This is equivalent to provided that n = Qm ∈
N (F ), i.e.,

Qm ·
F−Tw0

|F−Tw0|
= cos θ .

The second term in (A.1) is also nonnegative, hence WC ≥ 0. We now
check that the minimum of WC is zero, and that it is attained by the matrices
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of the form given in (A.2). To do this, it suffices to show that

KC =

{
F : F = QUm, |F−Tw0| = |U−1

0 w0|, Qm ·
F−Tw0

|F−Tw0|
= cos θ

}
,

where as above m ∈ S2, Q ∈ SO(3). Equivalently, we have to show that

KC =
{
F : F = QUm, |U−1

m w0| = |U−1
0 w0|, U

−1
m m · w0 = |U−1

0 w0| cos θ
}
,

The second condition is of the form m · w0 = β, with

β = |U−1
0 w0|α cos θ . (A.4)

In particular, it is fulfilled by m = n0. Since |U−1
m w0| depends only on the

scalar product m ·w0, it is constant on the set KC, hence equality is proven.
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