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Abstract
The paper describes a systematic approach for automatically introducing data and code

redundancy into an existing program written using a high-level language. The
transformations aim at making the program able to detect most of the soft-errors affecting
data and code, independently of the Error Detection Mechanisms (EDMs) possibly
implemented by the hardware. Since the transformations can be automatically applied as a
pre-compilation phase, the programmer is freed from the cost and responsibility of
introducing suitable EDMs in its code. Preliminary experimental results are reported,
showing the fault coverage obtained by the method, as well as some figures concerning the
slow-down and code size increase it causes.

1. Introduction

The increasing popularity of low-cost safety-critical computer-based applications in
several areas such as automotive or medical devices asks for the availability of new
methods for designing dependable systems.

In particular, in the new areas where computer-based dependable systems are currently
being introduced the cost (and hence the design and development time) is a major concern,
and the adoption of commercial hardware is a common practice. As a result, software fault
tolerance is often adopted, since it allows the implementation of dependable systems
without incurring in the high costs coming from designing custom hardware or using
hardware redundancy. On the other side, relying on software techniques for obtaining
dependability often means accepting some overhead in terms of increased size of code and
reduced performance.

Finally, when adopting a software approach for building a dependable system the
designer needs some simple way for both writing the code and verifying whether the whole
system has the dependability properties he wishes.

The term software fault tolerance has been traditionally used for different purposes [1]:
in this paper we refer to it as a way for facing the consequences of hardware errors, in
particular those originating from transient faults caused for example by small particles
hitting the circuit [2]. We do not consider the issue of eliminating software bugs: we
assume that the code is correct, and the faulty behavior is only due to transient faults
affecting the system.

In [3] it has been shown that it is possible to achieve a high degree of safe behavior in
ordinary computers by complementing the intrinsic Error Detection Mechanisms (EDMs)
of the system (exceptions, memory protection, etc.) with a set of carefully chosen software
error detection techniques. These techniques include Algorithm Based Fault Tolerance
(ABFT) [4], Assertions [3], and Control Flow Checking [5], procedure duplication [1] and
automatic transformations.

ABFT is a very effective approach but lacks of generality. It is well suited for
applications using regular structures, and therefore its applicability is valid for a limited set
of problems [3].



The use of Assertions, i.e., logic statements inserted at different points in the program
that reflect invariant relationships between the variables of the program can lead to
different problems, since assertions are not transparent to the programmer and their
effectiveness largely depends on the nature of the application and on the programmer’s
ability.

The basic idea of Control Flow checking is to partition the application program in basic
blocks, i.e., branch-free parts of code. For each block a deterministic signature is computed
and faults can be detected by comparing the run-time signature with a pre-computed one.
In most control-flow checking techniques one of the main problems is to tune the test
granularity that should be used.

Considering the Procedure Duplication, the programmer decides to duplicate the most
critical procedures and to compare the obtained results. This approach requires that the
programmer define a set of procedures to be duplicated and introduces the proper checks
on the results. These code modifications can be executed only manually and may introduce
errors.

In this paper we propose an approach based on introducing data and code redundancy
according to a set of transformations to be performed on the high-level source code. The
transformed code is able to detect errors affecting both data and code: the former goal is
achieved by duplicating each variable and adding consistency checks after every read
operation. Other transformations focus on errors affecting the code, and correspond from
one side to duplicating the code implementing each operation, and from the other to adding
checks for verifying the consistency of the executed operations.

The main advantage of the method lies in the fact that it can be automatically applied to
a high-level source code, thus freeing the programmer from the burden of guaranteeing its
robustness against errors (e.g., by selecting what to duplicate and where to put the checks).
The method is completely independent on the underlying hardware, and it possibly
complements other already existing error detection mechanisms. Finally, the method is
able to detect a wide range of faults, and is not limited to a specific fault model (e.g., single
bit-flip, permanent stuck-at, multiple faults, etc.); rather, it addresses any kind of fault
affecting either the code or the data.

The approach can be easily complemented with some higher-level recovery mechanism
able to restart the program from a safe state and repeat the execution with correct data.

The preliminary experimental results we report show that the method is able to detect
an extremely high percentage of faults, at the cost of an increase in the code size of about
2, and of a slow-down factor of about 5.

Section 2 describes the proposed transformation rules (by also providing examples of
their application to C programs) and discusses the level of fault detection they guarantee.
Section 3 outlines the experiments we performed for practically assessing the feasibility
and effectiveness of the approach. Section 4 draws some conclusions.

2. Transformation Rules

In this section we will propose a set of transformation rules to be applied to the high-
level code; these transformations introduce data and code redundancy, which allow the
resulting program to detect possible errors affecting data and code. We do not make any
strict assumption neither on the cause nor on the type of the fault: without any loss of
generality, we can assume that an error corresponds to one or more bits whose value is
erroneously changed while they are stored in memory, cache, or register, or transmitted on
a bus. Our method, although devised for transient faults, is also able to detect most
permanent faults possibly existing in the system.

All the transformations we propose, being performed on the high-level code, are
independent on the host processor that executes the program, as well as on the system



organization (e.g., presence of caches, disks, memory size, etc.). Nevertheless, the
optimization flags of the compiler used to produce the executable code software have to be
disabled in order to maintain the introduced data and code redundancy through the
compilation process.

For the purpose of this paper, we will consider programs written in C, and propose rules
to transform the basic constructs of a C program: the extension to the whole language, as
well as to other high-level languages is mostly straightforward.

2.1. Errors in data

Some of the rules concern the variables defined and used by the program. We refer to
high-level code, only, and we do not care whether they are stored in the main memory, in a
cache, or in a processor register. The proposed rules complement other Error Detection
Mechanisms that can possibly exist in the system (e.g., based on parity bits or on error
correction codes stored in memory). It is important to note that the detection capabilities of
our rules are much higher, since they address any error affecting the data, without any
limitation on the number of modified bits or on the physical location of the bits themselves.

The basic rules can be formulated as follows:

• Rule #1: every variable x must be duplicated: let x1 and x2 be the names of the two
copies

• Rule #2: every write operation performed on x must be performed on x1 and x2
• Rule #3: after each read operation on x, the two copies x1 and x2 must be checked for

consistency, and an error detection procedure should be activated if an inconsistency is
detected.
The above rules mean that any variable v must be split in two copies v0 and v1 that

should always store the same value. A consistency check on v0 and v1 must be performed
each time the variable is read. The check must be performed immediately after the read
operation in order to block the fault effect propagation. Please note that variables should be
checked also when they appears in any expression used as a condition for branches or
loops, thus allowing a detection of errors that corrupt the correct execution flow of the
program. Each instruction that writes variable v must also be duplicated in order to update
the two copies of the variable.

Every fault that occurs in any variable during the program execution can be detected as
soon as the variable is the source operand of an instruction, i.e., when the variable is read,
thus resulting in minimum error latency, which is approximately equal to the distance
between the fault occurrence and the first read operation. Errors affecting variables after
their last usage are not detected.

Two simple examples are reported in Figure 1, which shows the code modification for
an assignment operation and for a sum operation involving three variables a, b and c.

Original code Modified Code
a = b; a 0 = b 0;

a1 = b 1;
if (b 0 != b 1)
   error();

a = b + c; a 0 = b 0 + c 0;
a1 = b 1 + c 1;
if ((b 0!=b 1) || (c 0!=c 1))

    error();

Fig. 1: Code modification for errors affecting data.



The parameters passed to a procedure, as well as the returned values, should be
considered as variables. Therefore, the rules defined above can be extended as follows:
• every procedure parameter is duplicated
• each time the procedure reads a parameter, it checks the two copies for consistency
• the return value is also duplicated (in C, this means that the addresses of the two copies

are passed as parameters to the called procedure).
Fig. 2 reports an example of application of Rules #1 to #3 to the parameters of a

procedure.

Original code Modified code
res = search (a);
…
int search (int p)
{  int q;

 …
   q = p + 1;
   …
   return(1);
}

search(a 0, a 1, &res 0, &res 1);
…
void search  (int p 0,int p 1,int *r 0,int *r 1)
{ int q 0, q 1;
   …
  q 0 = p 0 + 1;
  q 1 = p 1 + 1;
  if (p 0 != p 1)
      error();
   …
   *r 0 = 1;
   *r 1 = 1;
   return;
}

Fig. 2: Code transformation for errors affecting procedure parameters.

2.2. Errors in the code

In this subsection we address errors affecting the code of instructions (no matter
whether these are stored in memory, in cache, in the processor Instruction Register, or
elsewhere). Several processors have built-in EDMs able to detect part of these errors, e.g.,
by activating Illegal Instruction Exception procedures. Other faults can be detected by
software checks (implementing non-systematic additional EDMs) introduced by the
programmer. We propose a set of transformation rules to make the code able to detect most
of the faults not detected by the other EDMs.

For the purpose of this paper, statements can be divided in two types:
• type S1: statements affecting data, only (e.g., assignments, arithmetic expression

computations, etc.)
• type S2: statements affecting the execution flow (e.g., tests, loops, procedure calls and

returns, etc.).
On the other side, errors affecting the code can be divided in two types, depending on

the way they transform the statement whose code is modified:
• type E1: errors changing the operation to be performed by the statement, without

changing the code execution flow (e.g., by changing an add operation into a sub)
• type E2: errors changing the execution flow (e.g., by transforming an add operation into

a jump or vice versa).
A representation of the possible transformations caused by errors is reported in Fig. 3.

2.2.1. E1 errors affecting S1 statements

As far as errors of type E1 affecting the statements of type S1 are considered, they are
automatically detected by simply applying the transformation rules introduced above for
errors affecting data. For example, if we consider a statement executing an addition



between two operands, Rule #2 and #3 also guarantee the detection of any error of type E1
which transforms the addition into another operation.

Statements
affecting Data

Statements affecting
execution flow

S1 S2

E1 E2

E2

E2

Fig. 3: Classification of the effects of the errors.

2.2.2. E2 errors affecting S1 statements

When an error of type E2 affects a statement of type S1 (e.g., the error transforms an
addition operation into a jump), the proposed solution is based on tracking the execution
flow, trying to detect differences with respect to the correct behavior. This task is
performed by first identifying all the basic blocks composing the code. A basic block is a
sequence of statements which are always indivisibly executed (i.e., they are branch-free).
The following rules are then introduced, in order to check whether all the statements in
every basic block are executed in sequence:
• Rule #4: an integer value ki is associated with every basic block i in the code
• Rule #5: a global execution check flag (ecf ) variable is defined; a statement assigning

to ecf  the value of ki is introduced at the very beginning of every basic block i; a test
on the value of ecf   is also introduced at the end of the basic block.
The aim of the above rules is to check whether any error happened, whose effect is to

modify the correct execution flow, and to introduce a jump to an incorrect target address.
An example of this situation is an error modifying the field containing the target address in
a jump instruction. As a further example, consider an error that changes an ALU
instruction (e.g., an add) into a branch one: if the instruction format includes an immediate
field, this may possibly be interpreted as a target address.

Unfortunately, the above rules have an incomplete detection capability: there are some
faults, which can not be detected by the proposed rules, e.g., any error producing a jump to
the first assembly instruction of a basic block (the one assigning to ecf  the value
corresponding to the block) and any erroneous jump into the same basic block.

Figure 4 provides an example of application of rules #4 and #5.

2.2.3. Errors affecting S2 statements

When errors affecting S2 statements are considered, the issue is how to verify that the
correct execution flow is followed.

In order to detect errors affecting a test statement, we introduce the following rule:
• Rule #6: For every test statement the test is repeated at the beginning of the target basic

block of both the true and (possible) false clause. If the two versions of the test (the
original and the newly introduced) produce different results, an error is signaled.



Figure 5 provides an example of application of the above rule. In order to simplify the
presentation of each rule, we do not consider in the examples the combined application of
different rules: as an example, in Figure 5 we did not apply Rule #1 and #2 to the variable
named condition , which should be duplicated and checked for consistency after the
test.

Modified Code Original Code
/* basic block beginning */
…
/* basic block end */

/* basic block beginning #371 */
 ecf = 371;

…
if (ecf != 371)

error();
/* basic block end */

Fig. 4: Example of code transformation for E2 errors affecting S1 statements.

Original code Modified Code
if (condition)
{/* Block A */
   …
}
else
{/* Block B */
   …
}

if (condition)
{/* Block A */
   if(!condition)
      error();
   …
}
else
{/* Block B */
   if(condition)
      error();
   …
}

Fig. 5: Code transformation for a test statement.

The code modification for the other S2 statements can be obtained starting from the
solution proposed for the test statement.

Special attention has to be devoted to procedure call and return statements. In order to
detect possible errors affecting these statements, we devised the following rules:
• Rule #7: an integer value kj is associated with any procedure j in the code
• Rule #8: immediately before every return  statement of the procedure, the value kj is

assigned to ecf ; a test on the value of ecf   is also introduced after any call to the
procedure.
Fig. 6 shows the code modification for the procedure call and return statements. As for

the previous Figure, we just applied Rules #7 and #8 to the considered piece of code,
ignoring the other previously defined rules.

Rules #7 and #8 allow the detection of a number of errors, including the following ones:
• errors causing a jump into the procedure code
• errors causing a jump to the statement following the call statement
• errors affecting the target address of the call instruction
• errors affecting the register (or stack location) storing the procedure return address.



Original code Modified Code
…
ret = my_proc(a);
/* procedure call */
…
/* procedure definition */
int my_proc(int a)
{
   /* procedure body */
   …
   return(0);
}

…
/*call of procedure #790 */
ret = my_proc( a);
if( ecf != 790)

   error();
…
/* procedure definition */
int my_proc(int a)
{
   /* procedure body */
   …
   ecf = 790;
   return (0);
}

Fig. 6: Code transformation for the procedure call and return statements
(transformations for parameter passing are not shown).

3. Experimental results

In order to practically evaluate the feasibility and effectiveness of the proposed
approach, we set up some experiments, which are described in the following.

We first selected a set of simple C programs to be used as benchmarks. We then applied
the proposed approach by manually modifying their source code according to the
previously introduced rules. Finally, we performed a set of fault injection experiments able
to assess the detection capabilities of the resulting system, composed of a given hardware
running the modified software.

3.3. Benchmark programs

 The following simple programs have been adopted as benchmarks in the current
preliminary phase:
• Bubble Sort: an implementation of the bubble sort algorithm, run on a vector of 10

integer elements
• Matrix: multiplication of two matrices composed of 10x10 integer values
• Parser: a syntactical analyzer for arithmetic expressions written in ASCII format. The

program also implements a simple software Error Detection Mechanism, which
consists in verifying the correctness of each part of the expression.

Tab. 1 reports the ratio between the size of the source code for all the benchmarks after
and before the application of the proposed transformations (in terms of number of lines), as
well as the ratio between the size of the transformed and original executable code (in terms
of bytes) for a Motorola 68040 processor. The adopted compiler is the SingleStep™ 7.4 by
SDS, Inc. All compiler optimizations have been disabled when compiling the modified
code. The average increase in the size of the executable code is less than 2.

Table 1 reports also the effects of the transformations on the program execution speed.
An average slow-down of about 5 times is observed. Times have been computed on the
Motorola 68040 system described in the following sub-section.

3.4. Fault Injection environment

The environment we exploited for our Fault Injection experiments is the one described
in [6]. The environment is built around an application board hosting a 25 MHz Motorola



68040 processor, 2 MBytes of RAM memory, and some peripheral devices. Fault Injection
is performed exploiting an ad hoc hardware device which allows monitoring the program
execution and triggering a fault injection procedure when a given point is reached. For the
purpose of the experiments, the adopted fault model is the single-bit flip into memory
locations. Faults are randomly generated.

Source code
size increase

Executable code
size increase

Performance
slow-down

Bubble 9.77 1.85 6.77
Matrix 6.92 1.92 3.31
Parser 5.81 1.94 3.25
Average 7.50 1.90 4.44

Tab. 1: Effects of proposed transformations

3.5. Fault Injection Results

By exploiting the Fault Injection environment described in the previous sub-section we
evaluated the error detection capabilities of the code after the proposed transformations
have been performed. The performed fault injection experiments allowed us to tune the
rules by extending them to several fault types that were not originally considered in our
analysis.

On the other side, the experiments allowed us to experimentally evaluate the percentage
of faults injected in the memory area storing the code, that were not detected using our
approach due to its known limitations.

Table 1 and 2 report the results obtained by injecting 4,000 randomly generated faults
into each of the above described benchmark programs (2,000 in the memory area
containing data, and 2,000 in the memory area containing the code). Faults have been
classified as Fail Silent (i.e., they did not produce any difference in the program behavior),
HW-detected, i.e., detected by a hardware EDM (e.g., microprocessor exceptions), SW-
detected, i.e., detected by the error procedure activated according to the proposed
transformation rules, and Fail Silent Violations (i.e., they have not been detected by any
EDM, and do produce a different behavior). The results show that the size of the last
category of faults is really small, and limited to faults injected in the code area, while the
percentage of faults detected by the software EDM implemented by the proposed rules is
significant. The high number of faults belonging to the Fail Silent category is mainly
composed of faults injected in an instruction after its last execution, or in a data variable
before writing in it, or after the last read operation from it.

The obtained results show that all the faults injected in the memory containing the data
are detected by EDMs or do not cause any effect in the program behavior. Moreover, the
only faults that cause a fail silent violation belong to the small category of those affecting a
jump (whose target is into the same basic block of the source) or correspond to those faults
causing a faulty jump to the first assembly instruction of a basic block (see paragraph
2.2.2).

Total Fail
Silent

HW-
detected

SW-
detected

Fail Silent
Viol.

Bubble 2,000 943 284 772 1
Matrix 2,000 841 403 754 2
Parser 2,000 1,028 276 694 1
Average 2,000 937 321 740 1

Tab. 2: Fault injection results for faults in the code area.



Total Fail Silent HW-
detected

SW-
detected

Fail Silent
Viol.

Bubble 2,000 196 20 1,784 0
Matrix 2,000 20 1 1,979 0
Parser 2,000 261 0 1,739 0
Average 2,000 159 7 1834 0

Tab. 3: Fault injection results in the data area.

Although we do not report here any result about latency, it is worth noting that our
method guarantees that any error in data is detected as soon as the affected variable is read,
while nearly any error affecting the code is detected as soon as the affected instruction is
executed.

4. Conclusions

We proposed an approach for automatically transforming programs written in any high-
level language so that they can be able to detect most of the errors affecting data and code.
The proposed transformation rules are suitable to be automatically implemented into a
compiler as a pre-processing phase, thus becoming completely transparent to the
programmer. This means reducing the cost for developing safe programs, and increasing
the confidence in the obtained safety level. Theoretical analysis and preliminary
experimental results obtained through fault injection show that the rules are able to reach a
very high degree of coverage of the faults which can possibly happen in a microprocessor-
based system. On the other side, according to the data gathered on simple benchmarks, the
application of the method increases the code size by an average factor of 2, and slow-down
its performance by a factor of 5. However, in most safety-critical systems only a limited
portion of the code must be fault tolerant, while other parts are not crucial for the correct
behavior of the whole system; therefore, the slow-down and code size increase factors
related to the whole system are generally lower.

Our method is particularly suited for safety-critical applications implemented by low-
cost embedded systems; in these systems the only software often corresponds to a simple
application code (no Operating System is needed), while memory availability and
execution speed are not a concern. On the other side, a method for automatically
transforming the software while guaranteeing the safety of the obtained system is very
attractive, since it is compatible with the low costs and the dependability constraints.

We are currently extending our experiments to larger benchmarks, while completing the
set of rules to cover all the constructs of a high-level language. We are also working
towards the definition of a new set of rules, allowing to reduce the resulting overhead (in
terms of memory and speed) at the cost of slightly reduced fault coverage capability.
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