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Abstract

FPGA-based designs are more susceptible to single-event up-

sets (SEUs) compared to ASIC designs, since SEUs in configura-

tion bits of FPGAs result in permanent errors in the mapped de-

sign. Moreover, the number of sensitive configuration bits is two

orders of magnitude more than user bits in typical FPGA-based

circuits. In this paper, we present a high-reliable low-cost miti-

gation technique which can significantly improve the availability

of designs mapped into FPGAs. Experimental results show that,

using this technique, the availability of an FPGA mapped design

can be increases to more than 99%.

1 Introduction

Soft errors, also called transient errors, are intermittent mal-

functions of the hardware that are not reproducible [17]. These

errors, which can occur more often than hard (permanent) er-

rors [13], arise from Single Event Upsets (SEU). These SEUs are

caused by energetic neutrons and alpha particles hitting the surface

of silicon devices.

Device scaling significantly affects the susceptibility of inte-

grated circuits to soft errors [19]. As the feature size shrinks, the

amount of charge per device decreases enabling a particle strike

to be much more likely to cause an error. As a result, particles

of lower energy, which are far more plentiful, can generate suffi-

cient charge to cause a soft error. Hence, in the absence of error

correction schemes, the error rate of vulnerable parts will grow in

direct proportion to the number of bits on the chip. Thus, while

Moore’s Law gives an exponential increase in the transistor count,

this growth comes at the cost of exponential increases in error rates

for unprotected chips [16].

Field Programmable Gate Arrays (FPGAs) are widely uti-

lized in many application domains such as industrial, spacecraft,

storage systems, cryptography, and embedded applications due

to their high performance, no Non-Refundable-Engineering cost

and fast Time-To-Market. However, the importance of depend-

ability issues limit their widespread use in mission- critical ap-

plications [14]. FPGAs are vulnerable to Single Event Upsets

(SEUs) [8]. An SEU with sufficient energy changes the logic

state of the memory element, producing a soft error. One pos-

sible solution to this problem is to use radiation-hardened FPGA

devices. These devices, however, are much more expensive than

Commercial-Off-The-Shelf (COTS) FPGAs; thus when cost is a

major issue, the COTS devices are affordable [18]. Moreover,

radiation-hardened devices are few generations behind state-of-

the-art COTS devices.

Memory elements in an FPGA device can be categorized into

configuration and user bits. Configuration bits are used for spec-

ifying the particular circuit mapped into the FPGA, whereas the

user bits, such as flip-flops (FFs) or on-chip memory bits, hold

the current state of the circuit. After loading a design into an

FPGA, the contents of configuration bits are supposed to remain

unchanged, while the contents of user bits can be changed at any

clock cycle. Majority (more than 99%) of memory bits in an

FPGA are configuration bits. Therefore, the probability of soft er-

rors in configuration bits is much more than that in user bits. More-

over, a particle hit on a configuration bit cause a permanent error

in the mapped design. Conventional fault-tolerant schemes [12]

can protect only user bits but not configuration bits. The only

applicable fault-tolerant mechanism to protect configuration bits

is Triple Modular Redundancy (TMR) scheme in all used logic

and routing resources [4] [14]. TMR-based SEU mitigation tech-

niques impose 100%-200% overhead in terms of area and power

[4, 6, 14, 15]. This extra overhead also affects the performance of

the design mapped into the FPGA.

In this paper, we present a low-cost mitigation technique which

can significantly reduce the failure rates of FPGA-based designs.

We reserve some rows of the FPGA to store checksum and use a

small auxiliary FPGA for error checking and recovery. We also

present an analytical reliability analysis of this technique. Experi-

mental results show that the availability of a system protected with

this scheme can be improved to more than 99.6%.

The rest of the paper organized as follows. Section 2 presents

the previous SEU mitigation techniques as well as error models of

SRAM-based FPGAs. Section 3 presents the proposed mitigation

technique. Experimental results are given in Section 4. Finally,

Section 5 concludes the paper.

2 Previous Work and Background

2.1 Mitigation Techniques

A conventional SEU mitigation technique is to use TMR

scheme. This approach imposes 2x area and power overhead [4].



While TMR schemes can mask single errors, they will fail if errors

accumulate in the circuit. To prevent accumulated errors, scrub-

bing can be used. Scrubbing includes reading back the configura-

tion bits, comparing those with the original configuration bits, and

writing the correct bits once there is an error. The combination of

TMR and scrubbing gives a high-reliable framework with the cost

of 200% area overhead.

In Xilinx Virtex devices, the configuration memory is seg-

mented into frames [20]. These FPGAs are partially reconfig-

urable and a frame is the smallest unit of reconfiguration. The

number of frames and the bits per frame is different for different

devices in the Virtex family. The number of frames is proportional

to the configurable logic block (CLB) width of the device. The

FPGA mitigation technique presented in [5] exploits this recon-

figuration feature and is based on using a cyclic redundancy code

(CRC) checker for each FPGA frame. In this method, CRC is

periodically generated for each frame (during the readback) and

compared to the expected CRC value. This method greatly re-

duces the amount of system memory required to perform SEU

detection. Two different methods have been proposed to imple-

ment CRC frame constants. For an application that never requires

any updates or changes (i.e. fixed bitstream), CRC constants are

pre-generated and stored in system ROM for a specific FPGA de-

sign. For the applications that can accept updates for the FPGAs

bit-stream, CRC constants are generated by the host system and

stored in a RAM. If the FPGA bitstream is updated, then CRC val-

ues must be refreshed. In the first approach, the reconfigurability

of the FPGA is missed. In the second approach, a host system is

required to reconfigure the FPGA. So, it cannot be used in embed-

ded applications.

2.2 FPGA Error Models

The effects of SEUs in digital circuits can be classified into

transient and permanent errors. SEUs can cause transient errors

in the combinational logic components, which can be propagated

and captured in flip-flips. Also, SEUs can directly make transient

errors on memory bits and flip-flops. These errors are called tran-

sient because they can be overwritten or corrected using error-

detection-and-correction techniques. So, transient errors impact

the user-defined logic and flip-flops of the FPGA.

Moreover, SEUs can make permanent errors in a FPGA if they

alter the contents of configuration bits. Note that these errors differ

from those errors caused by permanent failures in the hardware.

In this case, the configuration bits remain erroneous until the new

configuration is downloaded into the FPGA. So, these permanent

errors are recoverable1.

Analysis of transient errors has been well described in [1], [7],

and [11]. These methods investigate the circuit behavior by inject-

ing faults into the simulated or emulated model of the design. The

fault injection in these techniques implies the alteration of mem-

ory elements, such as data-path and control-unit registers, as well

as input, output or internal signals [18]. Consequently, the effect of

SEUs in the presence of the errors can be straightforwardly studied

using conventional simulation or emulation tools.

1In the rest of this paper, when we refer to permanent errors, we mean

recoverable permanent errors.

The study of permanent errors due to configuration alteration

requires a more complex analysis since the simple bit-flip fault

model cannot be exploited. An SEU in the device configuration

bits can modify the interconnect inside a CLB or affect the routing

signals between different CLBs. Moreover, an SEU may change

the functionality of the logic component by affecting the look- up

tables (LUT) [14] [18]. Permanent errors are classified as routing

error, LUT bit-flip, and control/clocking bit-flip.

3 Soft Error Mitigation

Availability is the probability that the system is operating prop-

erly when it is requested for use. Availability is a function of both

reliability and maintainability. Unprotected FPGA-based designs

have very poor availability since once an SEU occurs and then

manifests to system outputs, no recovery (repair) is performed.

Hence, the steady state availability becomes zero.

To protect the configuration bits, we reserve some rows of the

FPGA to store the checksum and the status for all configuration

frames. Specifically, the last two bytes of each frame is used to

keep the CRC values of that frame. We also use the checkpointing

technique for recovery of user bits by keeping the latest correct

state of the circuit (user bits including FFs).

We use an auxiliary FPGA in order to 1) store the correct state

of the main system for checkpointing, and 2) re-calculate and com-

pare the CRC checksums for configuration bits. As will be shown

in our experiment, this auxiliary circuitry can be mapped to the

smallest FPGA device even if the main system is implemented on

the largest FPGA device.

To assure the reliability of the auxiliary FPGA, we use non-

SRAM based FPGAs (such as Actel antifuse FPGAs) since they

provide much lower susceptibility to soft errors compared to

SRAM-based FPGAs. To further reliability assurance of the CRC

checker circuit, it is implemented in the auxiliary FPGA using the

TMR technique. Since the CRC checker circuit is very small, the

TMR implementation of the CRC checker can easily fit in the aux-

iliary FPGA.

In our approach, we do not keep the original copy of config-

uration bits in the auxiliary FPGA since otherwise it requires an

excessively large memory core. For example, at least 1MB RAM

is required for storing the configuration bits of Xilinx XCV1000

FPGA. Therefore, only the contents of the flip-flops (and user

memory bits) are stored in the auxiliary FPGA which are protected

by error correction codes (ECC). As shown in [3], the number of

user bits is less than 0.5% of the number of configuration bits for

ISCAS89 benchmark circuits mapped into Xilinx Virtex FPGAs.

For example, user bits of a large FPGA (e.g., XCV1000) can fit in

a 8KB RAM available in the auxiliary FPGA.

One of the challenges in mitigation techniques is when some

configuration bits are used as user-bits. For example, an LUT can

be also configured as a 16-bit RAM. This difficulty, known as co-

herence problem, is common in all mitigation techniques whether

the mitigation technique uses checksum or the original copy of

bitstream for error detection [10]. In checksum-based mitigation

techniques, these bits should be excluded during checksum com-

putation. In our solution, we put some tag-bits in the last bytes

of each frame indicating which LUT tables in that frame are used



as user-RAMs. During checksum recomputation by the auxiliary

FPGA, those configurations bits which are used as user bits, indi-

cated by tag-bits, are excluded.

In the proposed approach, the frames are repeatedly read back

from the main FPGA by the auxiliary FPGA and CRC checksums

of the frames are re-calculated and compared to the last two bytes

of the frame (the original checksum). Using this error correction

code (ECC), any detected single bit-flip can be corrected. If any er-

ror is detected, the system must be restored to its latest correct state

which is the last checkpoint values. This mechanism is known as

rollback recovery [9]. The architecture of the proposed mitigation

technique is shown in Figure 1.

Since CRC values are kept inside the main FPGA, the main

FPGA can also be connected to the host system as well. In other

words, the main FPGA can be connected to either the host system

or the auxiliary FPGA without any changes. This feature is very

useful during the design, debug, and test of the system. Moreover,

the way CRC values stored inside the FPGAs is scalable for larger

FPGAs. In system-on chip (SoC) application in which processor

cores are integrated with FPGA cores (e.g. Xilinx Virtex II FPGAs

or eFPGAs), the role of the auxiliary FPGA can be performed by

the embedded processor.

This mitigation technique adds a constraint on the placement

algorithm since the last few bytes of all frames should be reserved

for the CRC values and tag-bits. The straightforward way is to

leave the last row of the FPGA device unused.

Note that if an error occurs in the configuration bits, the error

can be propagated to the system states (FFs or system RAMs) in a

few clock cycles. Therefore, in case of configuration bit-flip, the

system state is no longer valid and should be restored to the correct

state.

CRC

Checker

RAM

CRC Values & Tag-Bits

Auxiliary

FPGA

Main FPGA

CRC

Checker

RAM

CRC Values & Tag-Bits

Auxiliary

FPGA

Main FPGA

Figure 1. The architecture of the proposed mitigation

technique.

The following steps are performed to recover an error in the

configuration bits.

1. The state of the system is read back, ECC is computed for

the system state, and system state along with ECC is stored

in the auxiliary memory. This step is called checkpointing.

The checkpointing time (tc) depends on the FPGA device

and mapped circuit sizes. The time interval between two

checkpoints, checkpointing period, (tcp) can be determined

based on the raw error rate of the SRAM cell, the reliabil-

ity requirements of the system, and the specification of the

mapped application. Note that checkpointing does not inter-

vene the operation of the main system.

2. The configuration frames are read back by the auxiliary

FPGA, frame CRC checksums are computed and compared

to the original CRC checksums in each frame. This pro-

cess, called error-checking, is repeated for all configuration

frames. In case of error occurrence in any configuration

frame, the next step is executed.

3. Occurrence of error in any configuration frame implies that

the state of the circuit can also be erroneous. In this situ-

ation, both configuration data and user data (system state)

must be restored to the correct values. The functionality of

the system needs to be stopped, the corrected configuration

frames (including CRC checksums) are re-downloaded into

the main FPGA, and the correct system state (stored the aux-

iliary FPGA RAM) are written into the FFs and user mem-

ory. After these tasks, the operation of the main system can

be resumed.

The configuration bits for a particular mapped design can be

categorized into sensitive and non-sensitive bits. Any bit-flips in

sensitive bits will eventually affect the user-bits (system state),

whereas bit-flips in non-sensitive bits does not affect the function-

ality of the mapped design. Frames containing sensitive configu-

ration bits are defined as sensitive frames. The simple approach

for error-checking is to uniformly check all configuration frames

in order. Assume tf is the time required to complete the error-

checking step for one frame. If tep is defined as the error-checking

period, then tep ≥ tf . Also, assume Nf is the number of all

sensitive frames of the main FPGA. The term Mean Time To De-

tect (MTTD) an error is defined as the interval between the time

a particle hit cause a bit-flip in a sensitive bit and the time that an

erroneous configuration bit is detected (by the auxiliary FPGA).

MTTD increases linearly with Nf and tep. Using uniform error-

checking approach, MTTD = 0.5 × tep × Nf .

Mean Time To Manifest errors (MTTM) is defined as the time

interval between bit-flip and the time the error appears at system

outputs. To reduce the overall failure rate of the system, MTTD

should be reduced in the same proportion to MTTM. This means

that before an erroneous configuration bit manifests to the system

outputs, it should be detected and corrected by the auxiliary cir-

cuitry. We define Error Manifestation Rate (EMR) according to

the equation 1.

EMR =

{
(

MTTD−MTTM
MTTD

)

.S, MTTD > MTTM

0, MTTD ≤ MTTM
(1)

If MTTD is less than MTTM, the error is detected and cor-

rected before it is propagated to the outputs. In this case, EMR

equals to zero. If MTTD is bigger than MTTM, the probability

that an error is manifested to the outputs equals to (MTTD −

MTTM)/MTTD. This is shown in Figure 2.

Note that S is the failure rate of an unprotected design, which

is computed using SER estimation techniques [2]. By decreasing

MTTD or increasing MTTM, EMR can be reduced. Therefore,

EMR is the failure rate of the protected design. EMR equals to S
for an unprotected design.
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Figure 2. Error manifestation rate

EMR is the failure rate due to SEUs occurring in the configura-

tion bits. In this computation, we have not included the failure rate

of user-bits (Suser). The total failure rate of a system is computed

according to the equation 2.

Total failure rate Stotal = EMR + Suser (2)

Note that EMR and Suser are computed by summing EMR-

per-bit and Suser-per-bit quantities over all sensitive configura-

tion and user bits, respectively. As shown in [3], the ratio of user

bits to configuration bits is less than 0.5% for ISCAS89 bench-

mark circuits. Therefore, in SRAM-based FPGAs, the failure rate

of user-bits can be easily ignored compared to the failure rate of

configuration bits, i.e., Stotal ≈ EMR.

Finally, it is notable to mention that keeping CRC values in the

last row of each frame (random configuration values) may cause an

illegal configuration of the FPGA resources. This may cause con-

flict between routing signals and also lead to an abnormal power

consumption. Some of these conflicts can be resolved by using ap-

propriate input values driving the checksum rows (We can use the

IOs in the last rows for this purpose). For example, if two signal

lines are illegally bridged together, we can set the inputs driving

those signals such that the bridged signals always have the same

logic value. Another possible solution is to put some status bits to

relocate CRC bits, and leave the conflicting configuration bits un-

used. In Virtex family, the last row of each frame contains at least

20 bits. In this case, some of these bits can be used to determine

where the CRC bits are located in the last row of each frame and

which bits are unused.

3.1 Dependability Improvement Analysis

In this section, we compute the dependability parameters of a

design protected by this mitigation technique and compare it to

the unprotected version. These parameters include MTTF, MTTR,

reliability, and availability.

The Mean Time To Failure (MTTF) of a system is conversely

proportional to the failure rate of the system. So, MTTF =
1

EMR
. The Mean Time To Repair (MTTR) is the time required

to detect an error (MTTD) plus the time required to recover the

system to the last correct state before the error occurrence. The

recovery time equals to the reconfiguration time of the FPGA plus

the time needed to return the system back to the latest state before

error occurrence, i.e. the time between last checkpoint and error

occurrence. This time, on average, equals to half of the check-

pointing period. These are shown in Equation 3. In this equation,

tep is the error checking period, tcp is the checkpointing period,

and Nf is the number of sensitive frames.

MTTR = MTTD + trecovery

MTTR = MTTD + treconfiguration +
tcp

2
(3)

MTTD (uniform error checking) =
tep × Nf

2

The reliability of an unprotected FPGA-based design depends

only on the system failure rate, S (Equation 4).

Reliability(t) = e−S×t
(4)

The reliability of a design protected by the presented mitigation

technique can be computed according to Equation 5. We recall that

EMR is the failure rate of a protected design.

Reliability = e−EMR×t
(5)

Availability, as a function of reliability and repairability, equals

to MTTF/(MTTF + MTTR). In a sensitive frame, the sen-

sitive bits and non-sensitive bits can not be easily distinguished,

from the error checking perspective. Therefore, even if a non-

sensitive bit of a sensitive frame is corrupted, the recovery process

is performed. Note that in this case, no failure occurs. However,

the system is stalled for a few milliseconds. Therefore, the MTTF

in the equation for availability should be computed with respect

to all bits inside the sensitive frames (including both sensitive and

non-sensitive bits). In this application, MTTF means the mean

time to stop the functionality of the system, as shown in Equa-

tion 6. Note that Nf is the number of sensitive frames, and rf is

the error rate of a sensitive frame (per hour).

MTTF =
1

Nf × rf

(6)

Equation 7 is used for the availability of a protected system.

tcp is the checkpointing period (hour) and treconf. is the reconfig-

uration time (hour).

Availability =
MTTF

MTTF + MTTR

=
1

1 + Nf × rf × (MTTD + treconf. +
tcp

2
)

(7)

An unprotected system is only available before the first failure

occurrence since there is no recovery mechanism (MTTR = ∞

for an unprotected system). As will be shown in the experiments,

our mitigation technique gives very high availability with very low

area overhead.

3.2 How to reduce EMR?

A smaller EMR results in higher reliability and better availabil-

ity. We propose two methods to reduce EMR as follow.

Column-based Placement: The first approach is to modify the

placement algorithm based on column filling. In this approach, it

is tried to fill each column as much as possible before using the

next column. The reason is if there is only one used CLB in a



column i, all frames of column i should be read back during the

error-checking step since all frames associate with this column are

considered as sensitive frames. Therefore, to reduce the number

of all sensitive frames (Nf ), it is better to perform the placement

column by column rather than row by row (or any other placement

strategy). As an example, consider a 32 × 48 FPGA device (32

rows and 48 columns). A conventional placement algorithm may

place 200 used CLBs in 20 columns. However, using a column-

based placement algorithm, these 200 used CLBs can be placed in

only 7 columns. In this case, the MTTD is reduced to 1/3.

Selective Readback Frequency: By more frequently reading

back the frames with smaller MTTMs, EMR can be reduced. For

example, assume that MTTMs of the frames f1 and f2 are 100

and 10 cycles, respectively. If an error occurs in f2, less time is

available to detect (and recover) the error compared to an error

occurring in frame f1. Hence, the error-checking should be done

more frequently on f2 than f1. We can compute the MTTM of

different parts of the FPGA using the technique presented in [2]

and assign higher priorities to the frames with smaller MTTMs.

Another approach to reduce EMR is to increase MTTM by re-

ducing the clock frequency, or decrease MTTD by reducing error

checking intervals. This technique is applicable only to the appli-

cations in which it is possible to reduce the clock frequency. For

example, consider an application with an average MTTM of 20

cycles. If the clock frequency is reduced from 40Mhz to 20Mhz,

the MTTM is doubled and hence the EMR is reduced to one-half.

Note that the MTTD is not affected by the reduction of the clock

frequency of the main FPGA, since MTTD is determined by read

back frequency which is performed by the auxiliary FPGA.

4 Experimental Results

Table 1 shows the number of sensitive bits of ISCAS89 bench-

mark circuits mapped into Virtex XCV300, as well as the mean

time to manifest errors from the error site to the system outputs.

The sensitive bits are classified according to the error models de-

scribed in Sec. 2.2. As shown in this table, the configuration rout-

ing bits constitute almost half of the total sensitive configuration

bits. As shown in this table, the number of FFs, on average, is

less than 0.5% of the number of configuration bits. MTTM val-

ues are reported for different types of configuration bits (routing,

LUT, and control/clocking) and user bits (FFs). As shown in this

table, the average MTTM of routing, LUT, and control/clocking

resources for the Virtex device are 3.6, 25.6, and 1.6 cycles, re-

spectively. This shows that control/clocking bits are the most sen-

sitive ones. As the results show, the average manifestation time

of an erroneous flip-flop to the primary outputs is about 10 cy-

cles. These results also show that LUTs are the least sensitive

bits to SEUs, although they are easiest to be protected (implemen-

tation of parity schemes in LUTs is very straightforward). If we

consider normalized manifestation rate for each category (routing,

LUT, control/clock, and FF) which is normalized to the number of

sensitive bits as #sensitive bits/MTTM , routing bits are the

most vulnerable ones. The error rate is mainly a function of the

number of sensitive bits and to some extend the structure of the

design. Placement and routing algorithms have a major impact on

the number of sensitive bits. As shown in Sec. 3, placement policy

# of Sensitive Bits MTTM (cycles)

Cir. R L C F R L C F

s298 982 410 1525 14 2.7 20.2 1.2 4.9

s344 1035 392 1595 15 2.5 17.5 1.4 5.6

s349 1450 520 2157 15 2.9 20.4 1.4 5.6

s382 1849 712 2768 21 3.3 22.1 1.4 7.0

s386 1689 660 2509 6 3.9 30.6 1.8 15.8

s400 1949 700 2867 21 3.1 20.8 1.4 7.2

s444 1690 692 2590 21 3.0 21.9 1.4 7.3

s510 3122 1244 4665 6 4.9 34.8 2.1 3.8

s526 2401 856 3484 21 4.0 27.7 1.5 8.1

s641 3038 1056 4469 19 2.4 16.9 1.4 12.1

s713 2793 988 4136 19 2.4 16.8 1.5 13.1

s953 7906 2644 11147 29 3.2 21.2 1.5 24.2

s1196 7980 2976 11569 18 5.2 36.6 2.2 23.8

s1238 8608 3224 12484 18 5.6 41.2 2.3 24.1

s1488 9660 3688 14050 6 4.5 29.9 1.9 3.8

s1494 9670 3628 13993 6 4.6 31.4 2.0 3.8

ave. 4114 1524 6001 16 3.6 25.6 1.6 10.6

Table 1. Number of sensitive bits and MTTMs for IS-

CAS’89 circuits mapped into Xilinx XCV300

R: Routing, L: LUT, C: Control/Clocking, F: FFs

can also have a considerable impact on the reliability improvement

of mitigation techniques.

In our experiments, we use an Actel AX125 (anti-fuse) FPGA

for the auxiliary FPGA and Xilinx XCV300 (Virtex) as the main

FPGA. We use a 16-bit CRC polynomial (CRC − 16 = X16 +
X15 + X2 + 1). This can be implemented by 16-bit shift register

and 3 XOR gate, which is mapped into 16 logic cells. To im-

prove the reliability of the auxiliary FPGA, we implement a TMR

version of the CRC checker. The TMR implementation imposes

about 200% overhead which can be easily mapped into an AX125

device. The AX125 FPGA contains 18,432 RAM bits. This RAM

can keep a copy of FFs of XCV300 device. For larger Virtex de-

vices (e.g. XCV1000), we can use AX500 which contains 73,728

RAM bits. Figure 3 shows the reliability of protected and unpro-

tected designs for two circuits (s526, s1494) in ISCAS’89 bench-

mark. These circuits, s526 and s1494, occupy 34 and 145 slices,

respectively. As an example, the reliability values of the unpro-

tected and protected implementations of s526 in 106 hours are

0.987 and 0.994, respectively.
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Figure 3. Reliability of unprotected designs vs protected

designs



Error Rate Steady-State

(errors/hour) Availability

1.0e-10 0.9996

2.0e-10 0.9992

3.0e-10 0.9989

4.0e-10 0.9985

5.0e-10 0.9981

6.0e-10 0.9977

7.0e-10 0.9973

8.0e-10 0.9969

9.0e-10 0.9966

1.0e-9 0.9962

Table 2. Availability of a protected design implemented

in Xilinx XCV300

An unprotected system will no longer be available after the first

failure in the system. Therefore, the steady-state availability of an

unprotected system is zero. Table 2 illustrates the availability of

a protected design which occupies all columns of XCV300 device

(the worst case scenario for our method). As shown in this table,

the availability of the protected design is more than 0.9962 if the

raw error rate equals to 1.0e − 9 (bit/hour). Note that the typi-

cal raw error rate at sea level ranges between 1.0e-12 and 1.0e-11

(bit/hour). However, this amount at the elevation of 10Km, is 100x

higher [21].

5 Conclusions

Designs mapped into FPGAs are more susceptible to soft errors

than ASIC implementations. More than 99% of memory bits on

an FPGA are used for storing the configuration state of the FPGA.

Therefore, FPGAs are much more vulnerable to soft errors in the

configuration bits than in user bits.

We have presented a low-cost and high reliable soft error mit-

igation technique based on checkpointing. A very small auxiliary

FPGA is utilized to store checkpoints, compare the checksums,

and reconfigure the main FPGA. Experimental as well as analyt-

ical results show that the availability of a protected design based

on this technique increases to more than 99.6%.

Since no host system or pre-store configuration is required, this

solution can be used for embedded applications. In SoC designs

in which processor cores are integrated with FPGA cores, the em-

bedded processor can play the role of the auxiliary FPGA.
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