2714

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 6, DECEMBER 2007

Soft Error Susceptibility Analysis of SRAM-Based
FPGASs in High-Performance Information Systems

Hossein Asadi, Student Member, IEEE, Mehdi B. Tahoori, Member, IEEE, Brian Mullins, Student Member, IEEE,
David Kaeli, Member, IEEE, and Kevin Granlund

Abstract—Soft errors due to cosmic particles are a growing reli-
ability threat for VLSI systems. The vulnerability of FPGA-based
designs to soft errors is higher than ASIC implementations since
the majority of chip real estate is dedicated to memory bits, config-
uration bits, and user bits. Moreover, single event upsets (SEUs) in
the configuration bits of SRAM-based FPGAs result in permanent
errors in the mapped design.

In this paper we analyze the soft error vulnerability of FPGAs
used in information systems. Since the reliability requirements of
these high performance information subsystems are very stringent,
the reliability of the FPGA chips used in the design of such systems
plays a critical role in overall system reliability. We present an an-
alytical approach (versus fault injection) for soft error rate estima-
tion in FPGA-based designs. We also validate the projections pro-
duced by our analytical model using field error rates obtained from
failure data obtained from a large FPGA-based design used in the
Logical Unit Module board of a commercial information system.
This comparison confirms that the projections obtained from our
analytical tool are accurate (there is an 81% overlap in FIT rate
range obtained with our analytical modeling framework and the
field failure data studied).

Index Terms—Error analysis, field programmable gate arrays
(FPGA), information systems, logic circuit fault tolerance, relia-
bility estimation, reliability modeling, SRAM chips (SRAM-based
FPGAs).

1. INTRODUCTION

OFT errors are intermittent malfunctions of hardware that
Sare not reproducible [29]. These errors, also called tran-
sient errors, occur more often than permanent errors [17]. Single
Event Upsets (SEUs) that cause soft errors are generated by
cosmic particles, energetic neutrons, and alpha particles hitting
the surface of silicon devices.

Device scaling significantly affects the susceptibility of inte-
grated circuits to soft errors [34]. As the feature size shrinks,
the amount of charge per device decreases thereby enabling a
particle strike to be much more likely to cause an error. As a
result, particles of lower energy, which are far more plentiful,
can generate sufficient charge to cause a soft error. Hence, in
the absence of error correction schemes, the system error rate

Manuscript received March 15, 2007; revised June 13, 2007.

H. Asadi and K. Granlund are with the Reliabilitiy Engineering Department,
EMC Corporation, Hopkinton, MA 01748 USA (e-mail: Asadi_Hossein@emc.
com).

M. B. Tahoori and D. Kaeli are with the Electrical and Computer Engineering
Department, Northeastern University, Boston, MA 02115 USA.

B. Mullins is with the RSA Division, EMC Corporation, Hopkinton, MA
01748 USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNS.2007.910426

will grow in direct proportion to the number of bits on the chip.
Thus, while Moore’s Law gives an exponential increase in the
transistor count, this growth comes at the cost of an exponential
increase in the error rates for unprotected chips [6], [27].

Field Programmable Gate Arrays (FPGAs) are utilized in
many applications such as networking, information systems,
and embedded applications due to their high performance,
low Non Recurring Engineering (NRE) cost, and fast time to
market. In SRAM-based FPGAs, the configuration of the design
mapped into the FPGA chip is stored in SRAM cells, called
configuration bits. FPGAs are far more vulnerable to SEUs
compared to Application-Specific Integrated Circuit (ASIC)
implementations [13]. This is mainly due to the fact that the
majority of FPGA chip real estate is dedicated to memory cells
that maintain the state of the configuration and the circuit, as
well as block memory arrays. Memory elements are by far
the most vulnerable components to soft errors (compared to
combinational logic) [24].

Memory elements in an FPGA device can be divided into two
categories: 1) configuration and 2) user bits. Configuration bits
are used to specify the particular circuit mapped into the FPGA,
whereas the user bits, such as flip-flops (FFs) or on-chip memory
arrays, hold the current state of the circuit. After loading a de-
sign into an FPGA, the contents of the configuration bits are
supposed to remain unchanged, while the contents of user bits
can be changed on any clock cycle. The majority (more than
99%) of memory bits in an FPGA are configuration bits and
therefore, the probability of soft errors in configuration bits is
much greater than that in user bits. Moreover, a particle hit on a
configuration bit causes a permanent error.

One of the key design points in high-end information systems
is availability. From the users’ stand point, they want to be sure
that data is never lost (reliability). Also, the application which
heavily depends upon that data is required to remain available
to access (availability). Therefore, a considerable amount of re-
dundancy, error checking (parity), and error correction has been
integrated in the design of these systems [15]. Using hardware
and/or software redundancy techniques, soft errors are managed
by the system to prevent any corruption of the data.

FPGAs are commonly used in the design of state-of-the-art
information systems. FPGAs are also frequently used in the im-
plementation of the adapters that interface to either hosts or disk
arrays. Hence, the soft error reliability of these FPGAs is crit-
ical in the overall dependability of information systems.

To achieve a reasonable balance between reliability and per-
formance, the effect of soft errors at the system level and the
contribution of each component to the overall soft error rate

0018-9499/$25.00 © 2007 IEEE

Authorized licensed use limited to: Northeastern University. Downloaded on April 21, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

ASADI et al.: SOFT ERROR SUSCEPTIBILITY ANALYSIS OF SRAM-BASED FPGAs

of the system needs to be precisely analyzed. Tools are needed
to be able to identify the most vulnerable components in the
system. Using such analysis and given a redundancy budget, the
most vulnerable components can be protected in the most effec-
tive manner (using hardware or software redundancy).

In this paper, we focus on soft error rate estimation of FPGAs
used in information systems designs. We present an accurate
analytical Soft Error Rate (SER) estimation methodology for
designs mapped into SRAM-based FPGAs. Unlike previous
work which are based on fault injection and random vector
simulations [2], [8], [11], [13], [23], [32], the presented ap-
proach is analytical and does not rely upon vector simulations.
There have been some analytical methods [33], [35] to estimate
the dependability of designs implemented on SRAM-based
FPGAs. These methods do not take into account the exact error
propagation probability (EPP) of the SEUs from the error sites
to system outputs. Using our approach, we first compute the
netlist error rate based on the particular FPGA resources used
for the given mapped design (obtained from detailed placement
and routing information). Then, error propagation probabilities
are computed using a gate-level netlist. Based on the netlist
error rate and the error propagation probabilities, the failure
rate of a particular mapped design is estimated. The proposed
SER methodology is independent of the underlying FPGA
physical architecture and can be easily applied to various
FPGA architectures.

This work complements our previous work [S] by modeling
the effect of both short and open errors in the routing config-
uration bits. In our previous study, only the effect of open er-
rors in routing configuration bits was considered. In this paper,
we have also extended our previous analytical SER estimation
framework presented in [5] by computing SER of configuration
bits in multiple clock cycles after a particle strike. In our pre-
vious work, error propagation in configuration bits were com-
puted from the error site to flip-flops and primary outputs. How-
ever, in general, not every erroneous flip-flop causes a system
failure since the error may be masked and not propagated to a
primary output. In this work, we extend our formulation to com-
pute exact SER of configuration bits from the error site to pri-
mary outputs in multiple clock cycles after a particle strike.

We have also validated our methodology with field data re-
sults. We present failure rate data as obtained from live informa-
tion systems in the field for a particular FPGA-based controller.
We need to stress that this is not experimental data in the sense
that we are not creating any artificial environment for our val-
idation study. The data are raw error logs taken. We compare
two different SEU rates: one rate that is derived from a compre-
hensive field failure data analysis and another obtained from our
analytical tool. To our best knowledge, this is the first attempt to
validate a system-level soft error modeling tool using real and
comprehensive field failure data. Preliminary results of this case
study were presented in [28].

The rest of the paper is organized as follows. Section II ex-
plains the previous SER estimation techniques. Section III de-
scribes the error models of SRAM-based FPGAs. In Section IV,
the failure rate estimation technique for FPGA designs is pre-
sented. In Section V, a case study that applies SER estimation
to an FPGA-based controller resident in a information system is

2715

described. A validation study is also presented, comparing field
failure data with results from our analytical tool. Finally, Sec-
tion VI concludes the paper.

II. PREVIOUS WORK

EPP is one of the main factors for SER estimation of the
circuit nodes [25]. Previous work on soft error rate estimation
is mainly simulation-based, radiation-based, or a combination
of both [1], [2], [7]-[9], [11]-[13], [19], [23], [32]. Most of
these methods have been based on Fault Injection (FI) strate-
gies. To compute the EPP of a node using this methodology,
a limited number of error sites are targeted for fault injection.
Several workloads are then run to measure the number of de-
tected failures by comparing the results of each run to the clean
run. The process of fault injection in these methods is done ei-
ther using simulation or radiation equipment. These steps make
FI approaches both very time-consuming and inaccurate. Fur-
thermore, these approaches cannot be used during design phases
since they need physical implementation.

There is a plethora of radiation-based methods which use ac-
celerated radiation testing to measure the sensitivity of FPGA
devices to SEUs [7]-[9], [11], [19], [36]. In these approaches, a
prototype of the system under study is exposed to a flux of radi-
ation, originated either by radioactive sources or by particle ac-
celerators. These particles interacts with both the configuration
memory and the design memory elements. The FPGA under test
is continuously stimulated by a given set of input stimuli and the
system outputs are compared with expected output values. As
a major drawback, the radiation-based methods are very expen-
sive and they are not commonly used. These methods are mainly
used for device characterization, not for SER estimation of a par-
ticular mapped design. Additionally, radiation-based methods
cannot be used during early design phases. Lastly, radiation
is capable of permanently damaging the FPGA under study,
making a hard error in the device which can invalidate results.

The methods presented in [1], [2], [12], [13], [23], and [32]
compute the SER of an implemented design based on the alter-
ation of the configuration bitstream. The device is configured
for every faulty bitstream, i.e., one configuration bit is flipped
for each workload. Then, the system is run several clock cycles
with input stimuli to compare the results with the golden-run re-
sults. These methods can be further classified into two groups:
the first group [1], [2], [32] gathers and compares the results in
a host system; the main drawback is that it takes too much time
to do experiments for all possible faults. The second group [12],
[13], [23] uses one FPGA for the faulty run, one FPGA for the
golden-run, and another FPGA for the comparison of results. In
order to implement and evaluate larger designs, a new prototype
board equipped with higher density FPGAs is required. Finally,
as FPGA-based designs have a larger number of candidate fault
locations compared to similar ASIC designs with the same den-
sity, FI techniques are more time-consuming for FPGA designs
than for ASIC designs.

A simulation-based analysis of SEU effects in SRAM-based
FPGAs is presented in [38]. In this approach, the physical layout
sensitivity to SEUs and the application mapped into the FPGA
are analyzed independently. While physical layout sensitivity

Authorized licensed use limited to: Northeastern University. Downloaded on April 21, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

2716

to SEUs is examined using beam-testing, the mapped applica-
tion is analyzed using FI techniques. The predicted results using
this approach were within a factor of two of the measured re-
sults [38].

Ceschia et al. [10] have classified the sensitivity of config-
uration memory to heavy-ion-induced SEUs using irradiation
testing. They have classified the effects of SEUs on FPGA re-
sources into four classes, 1) PIP-open, 2) PIP-short, 3) PIP-an-
tenna, and 4) Other. They have concluded that 61.5% of SEUs
affect the “other” category. Throughout the experiments, they
utilized a Xilinx Virtex XCV300 FPGA and have used various
ion species from carbon to iodine featuring different energy
levels.

Graham et al. [13] have examined the failure modes of FPGA-
based designs. They have shown that SEUs in SRAM cells can
result in five main categories of design modifications, errors in
mux select lines, programmable interconnect point states, buffer
enables, Look-Up Table (LUT) cells, and control bits. Their
analysis found that failures due to routing structures account for
78%-84.8% of the failures; the remaining percentage of failures
(15.2%-22%) were due to upsets in control bits and LUT value
changes.

Wirthlin et al. [16], [26], [39] have developed a fault injection
tool that identifies the sensitive configuration bits of the device
for any given FPGA design. This tool operates by artificially in-
jecting faults within the configuration bitstream and monitoring
the behavior of the device. By comparing the behavior of the
device under test against a golden device, they can determine
when the device behavior changes. By testing every configura-
tion bit of the device, a detailed sensitivity profile of a given
design can be created. This fault injection tool has been used to
characterize the sensitivity of many FPGA designs [16], [26].

Wirthlin et al. [16], [26], [39] have also introduced a new way
to categorize the sensitive configuration bits by separating them
into two categories: persistent and non-persistent. A non-per-
sistent configuration bit is a sensitive configuration bit that will
cause a design fault when upset through radiation. This fault
will introduce functional errors. When the non-persistent con-
figuration bit is repaired through configuration scrubbing, how-
ever, the design returns to normal operation and all previously
induced functional errors will disappear. A persistent configu-
ration bit is a sensitive configuration bit that will cause a de-
sign fault when upset. However, even after repairing persistent
configuration bits through configuration scrubbing, the FPGA
circuit does not return to normal operation. Upsets of persistent
configuration bits introduce functional errors which persist after
the bit is repaired through scrubbing. Upsets of persistent bits
put the design into an incorrect state that cannot self-correct. In
this case, a global reset is needed to return the circuit to a proper
state, or normal operation.

Sterpone et al. [33], [35] have proposed an analytical ap-
proach to estimate the dependability of Triple Modular Redun-
dancy (TMR) designs implemented on SRAM-based FPGAs.
In their proposed approach, the routing resources are investi-
gated in order to eliminate the effect of single-point of failure in
the TMR implementation. The routing structure of the FPGA is
described by a colored graph where vertices model logic blocks
and switch boxes while the edges correspond to wiring segments

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 6, DECEMBER 2007

B=1
Charged

Fig. 1. A charged particle affects one of inputs of the AND gate and makes a
bit-flip error.

FF

or PIPs. The vertices corresponding to the FPGA resources that
are used to implement the circuit are colored. In the case of
TMR, different colors are used to mark the vertices of each
circuit replica, as well as the majority voter. In the proposed
method, they also utilize the device physical layout information
and extract the number of potential SEUs that may occur in the
circuit. The presented approach, however, does not take into ac-
count the exact error propagation probability of the SEUs from
the error sites to system outputs.

III. FPGA ERROR MODELS

There are two major types of memory resources in FPGAs, 1)
user bits, and 2) configuration bits. An SEU in a user bit causes
a transient error, whereas an SEU in a configuration bit leads to
a permanent error.

A. Transient Errors

Transient errors do not alter SRAM configuration bits but
they do affect user-defined logic, flip-flops, and the combina-
tional logic of the Configurable Logic Blocks (CLBs). A charged
particle can hit the combinational logic within the CLBs and
create a transient voltage pulse [called, Single Event Transient
(SET)]. This SET can be propagated to sequential logic and gen-
erate a bit-flip error. Fig. 1 illustrates how an SET introduces
a bit-flip error in a flip-flop. It has been shown that in ASIC
designs, combinational logic is less susceptible to soft errors
than memory elements [22], [34]. This is because the combina-
tional logic provides some natural resistance to soft errors, in-
cluding logical masking, electrical masking, and latch-window
masking [34].

A charged particle may also directly affect the contents of a
flip-flop and user-defined memory elements and cause a single
event upset. The content of the flip-flop will remain erroneous
until it is rewritten with new data or it is corrected by some
appropriate error detection and correction logic.

B. Permanent Errors

An SEU that changes a configuration SRAM cell has a perma-
nent effect until the original configuration bitstream is redown-
loaded into the FPGA. This type of error is the major error type
found in FPGAs because the number of SRAM cells dominates
all of the user-defined memory elements. Typically, the number
of SRAM configuration cells are more than 98% of all memory
elements inside an FPGA [40], [41].

The configuration memory bits are categorized into sensitive
and non-sensitive bits according to their vulnerability to SEUs.
An SEU in a sensitive configuration bit affects the function-
ality of the particular circuit mapped into the FPGA; non-sensi-

Authorized licensed use limited to: Northeastern University. Downloaded on April 21, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

ASADI et al.: SOFT ERROR SUSCEPTIBILITY ANALYSIS OF SRAM-BASED FPGAs

A
N|| N2
ALl 'E E e At
:‘# L
B—M.{ :/E_C By
s1| Isz
B C
(a) (b)

Fig. 2. The impact of SEUs on routing signals.

tive bits act as “don’t care” configuration bits for that particular
mapped design. Hence, the sensitivity of each configuration bit
is application-dependent.

Permanent errors are classified into routing errors, LUT bit-
flips, and control/clocking bit-flips. We briefly review these er-
rors here. These errors are well described in [5]. Programmable
Interconnect Points (PIPs), multiplexers, and buffers constitute
the programmable routing network of a segmented-routing
FPGA (e.g., Xilinx Virtex FPGAs). Routing resources can be
inter-CLBs or intra-CLB. An inter-CLB routing signal connects
two or more CLBs. Those that are used inside a CLB are called
intra-CLB signals. Switch matrices and line segments are used
to route inter-CLB, while multiplexers and buffers are mostly
used for intra-CLB routing. When an SEU changes the config-
uration routing bit it causes an open switch, a shorted switch,
or a bridging error (wired-or, wired-and), as shown in Fig. 2.

Another type of permanent error is a bit-flip within an LUT
configuration bit. A look-up table implements a logic function
by storing all values in the truth table. A bit-flip within an LUT
can change the LUT original functionality.

There are also some control bits inside CLBs and input-output
blocks (IOBs) that are used to determine miscellaneous func-
tionality. One example is the control bits that determine whether
the LUT functions as a look up table, a dual-ported RAM, or a
programmable shift register. A bit-flip on the control/clocking
bits can drastically affect the functionality of the mapped design.

IV. FAILURE RATE ESTIMATION OF FPGA DESIGNS

There are some differences between computing the failure

probability for an ASIC design and an FPGA-based design:

* In ASIC designs, only the propagation of an erroneous value
from the error site to primary outputs (POs) or flip-flops
(FFs) needs to be considered. However, in FPGA designs,
the activation probability as well as the propagation proba-
bility are required for failure rate estimation. This is be-
cause in FPGAs a failure only occurs if an erroneous node
(e.g., an LUT cell) is first activated by inputs and then the
error is propagated to the POs or FFs (permanent errors).

* In FPGAs, the errors occurring in the configuration bits
remain unchanged during the next clock cycle after the
bit-flip. Thus, the same failure probability is valid for two
clock cycles. In ASIC designs, however, if an erroneous
value due to an SEU is masked and the error is not prop-
agated to the outputs (POs or FFs), the effect of that SEU
will be completely transparent to the system.

» The error sites in ASICs are mainly logic gates rather than
routing signals. In FPGAs, routing signals (controlled by

2717

SRAM cells) constitute more than 70% of the total sensi-
tive SRAM bits. [13].

* In FPGAs, if an SEU flips the contents of a configuration
bit, an erroneous value can be propagated from the error
site to the system outputs without any attenuation (no elec-
trical masking). However, electrical masking is one of the
key factors that causes the combinational logic in ASIC
designs to be less susceptible to soft errors (compared to
memory elements) [34]. Electrical masking occurs when
the pulse resulting from a particle strike is attenuated by
subsequent logic gates due to the electrical properties of
the gates. This attenuation reaches a point where the SEU
does not affect system outputs.

To compute the failure rate of a design mapped into an FPGA,
we follow these steps. First, we compute the netlist failure prob-
ability. In this step, the gate-level netlist of the mapped design is
used. Second, we compute the error rate of all nodes of the circuit.
This step is performed based on the detailed FPGA placement
and routing information of the mapped design (i.e., the detailed
information regarding the used and unused FPGA resources).
Finally, the system failure rate is computed based on these two
steps. The details of these steps are subsequently provided. Note
that in this paper, we focus on the FPGA SER due to errors in
configuration bits. As mentioned in Section I, the majority (more
than 99%) of memory bits in an SRAM-based FPGA are config-
uration bits and therefore, the probability of soft errors in config-
uration bits is much greater than that in user bits. A methodology
to compute FPGA SER due to user-bits has been presented in [5].

A. Error Propagation Probabilities (P P;)

While particle flux is uniformly spread across the entire
system, the probability of an erroneous value being observed at
the system outputs depends heavily on which node the particle
strikes and the values of other nodes in the circuit at that time
(i.e., the system state).

In our proposed approach for error propagation probability
computation, we use the signal probabilities of all nodes in the
combinational part and the topological structure of the circuit
[3], [4]. The signal probability (SP) of a signal line is the prob-
ability of a logic value 1 (versus 0) on that line [31]. In our ap-
proach, the structural paths from each error site to all reachable
outputs and flip-flops are extracted. These paths are then tra-
versed to trace and compute the error propagation probabilities
to reachable outputs or flip-flops. Using this approach, the fol-
lowing probabilities are computed:

» P Pg;: Error propagation probability from error site G; to

any primary output.

» P Pp;: Error propagation probability from flip-flop F'F; to

any primary output.
* PPg;_oj: Error propagation probability from error site
G; to primary output O;.

* PPg;_rrj: Error propagation probability from error site
G; to flip-flop F'F}.

* PPpp;—rrj: Error propagation probability from flip-flop
FF; to flip-flop F'F;.

* PPpp;—oj: Error propagation probability from flip-flop
FF; to primary output O;.

We use these probabilities in the following subsections. More
details of this approach can be found in [3], [4].

Authorized licensed use limited to: Northeastern University. Downloaded on April 21, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

2718

B. Netlist Impact Probability (NIP)

The netlist impact probability (NIP) is the probability that
the error site is activated by the inputs and then propagated to
the outputs. NIP depends on the error model and the circuit
topology. In general, IV I P; is the product of the activation prob-
ability of node 7 (AP;) and the propagation probability of that
node (PP;). We use signal probabilities for computing AP;.
Computation of P P; has been presented in Section IV-A.

In the case of open and stuck-at errors, NIP; can be com-
puted according to (1). The first part of this equation accounts
for the erroneous value being 0 and the second part accounts for
the erroneous value being 1. Each part expresses that the erro-
neous value should be first activated (signal probability, S F;, is
used for the activation probability) and then propagates it to the
outputs (PP;). Note that PP;(0) = PP;(1).

PP,
SP;

: Propagation probability
: Signal probability

For wired-AND bridging errors (between nets ¢ and 7), NI P;
can be computed according to (2). The first term of the equation
expresses the probability of node i being 1 and node j being 0.
The second term calculates the probability of node ¢ being 0 and
node j being 1.

+[(1 - Spl) X SPJ X PPJ(O)] 2)
We use the same approach to compute NI P; for wired-OR
bridging errors between nets ¢ and j, as shown in (3).

+[(1 - SPl) X SP] X PPl(l)] 3)
For a bit-flip in one of the LUT cells (cell z), NIP; is com-
puted according to (4). To compute the failure probability due
to the LUT SRAMs, we use the propagation probability of the
LUT output. NIP; is computed as the product of the propaga-
tion probability of the LUT output and the activation probability
of the SRAM cell from LUT inputs (which is computed during
SP estimation).
NIP, = AP; X PP,(LUTpyut)- 4)
Therefore, based on PPGi, PPF,;, PPGi—>Oj7 PPGi—>FFj7
PPFFi—»FFj, and PPFFi—>Oj’ we will compute NIPGi,
NIPr;, NIPgi.o0j, NIPgi~rrj, NIPrri.rr;, and
NIPrpi_.o0j, respectively.

C. Node Error Rate (NER;)

PP; and NIP; depend only upon the gate-level netlist of
the mapped design. In contrast, the node error rate depends on
the detailed FPGA placement and routing information of the
design. For each gate-level circuit node 7, N E'R; is defined as

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 6, DECEMBER 2007

B

n2
&

LUT A @ @ @ LUTB
[g T
ni
"B @ LUT C
=
n2

Fig. 3. Nodes n; and no with different error rates.

LUT A LUT B

3 3 F
)8 e ja

Fig. 4. Nets implemented with different numbers of switches.

the permanent-error rate of node <. NV E'R; is calculated based on
the raw error rate of the device, the error model, and the number
of SRAM configuration bits used for implementing node ¢ in
the FPGA. The error rate of a node is directly proportional to
the number of SRAM configuration cells controlling that node.
Thus, nodes with more configuration bits have higher error rates.

For example, consider two nodes, 71 and no, which consist of
3 and 2 PIPs, respectively (Fig. 3). The permanent-error prob-
ability of ny is less than n; because n; has more candidate lo-
cations for permanent errors than ny. NER; is computed as
shown in (5). In this equation, nsrams is the total number of
possible susceptible SRAM cells which can occur on node <.
For example, nsrams would be equal to the value 1 for each
LUT cell since it consists of only one SRAM; for multiplexers,
nsrams would be equal to the number of select bits. Lastly,
for a routing node, nsrams would be directly proportional to
the number of ON/OFF switches connected to that node. To
illustrate this, the permanent-error rate of node AB, shown in
Fig. 4, is equal to six times the raw error rate of an SRAM-cell.
In our method, we compute NER; and NIP; for both short
and open errors. In this example, NER;(short) = 3 x fpb
and NER;(open) = 3 x fpb, where fpb (FIT rate per Bit) is
the raw FIT rate of an SRAM cell. Accordingly, we compute
NIP;(short) and NIP;(open) separately.

NER; = fpb x nsrams. 5)

fpb : Raw FIT rate of an SRAM
cell
nsrams : Number of possible

susceptible SRAMs

Authorized licensed use limited to: Northeastern University. Downloaded on April 21, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

ASADI et al.: SOFT ERROR SUSCEPTIBILITY ANALYSIS OF SRAM-BASED FPGAs

The raw error rate of an SRAM cell (fpb) depends on the
device characteristics and the flux encountered by the device.
The raw error rate can be expressed in terms of either MTBF
(Mean Time Between Failures) or FIT (Failure in Time). FIT is
inversely proportional to MTBF and is equal to one failure in a
billion hours (10°). Designers usually work with FIT units be-
cause they are additive, unlike MTBF. The FIT rates for FPGA
SRAMs differ from commercial SRAMs [20]. Current predic-
tions show that typical FIT rates for latches and commercial
SRAM cells (measured at sea level) vary between 0.001-0.01
FIT/bit [14], [18], [30]. The FIT rates for the device consid-
ered in this study have been reported to be from 50 FIT/Mbit
(0.00005 FIT/bit) up to 1000 FIT/Mbit (0.001 FIT/bit) for 0.15
pm, 0.13 pm, and 90 nm technologies [20], [21]. The FIT/bit
rate increases with elevation. At 10 km, the FIT/bit is approxi-
mately 100 x higher than at sea-level [42].

D. Failure Rate Computation

After the computation of N E R; and N I P;, the system failure
probability due to node ¢ can be computed as follows:

System failure rate SFR; = NER; x NIP;. (6)

Having the system failure rates computed for all nodes
(SFR;), we compute the system failure rate for the entire
circuit in the clock cycle after the particle hit, according to (7).

SFRepip =Y SFR; =Y NER; x NIP,. (1)

i=1 i=1

The above expressions compute the system failure probability
only for the first clock cycle after the particle hit. In general, the
particle can impact system correctness during any c clock cycles
after a particle hit.

Here, we present an analytical framework to estimate SERs
in multiple clock cycles after a particle strike. In general, not
every erroneous flip-flop causes a system failure since this error
may be masked or may not be propagated to a primary output.
In other words, system failures occur only when an erroneous
value is propagated to a primary output.

An erroneous value in an internal node or a flip-flop can
be propagated to a primary output either directly or indirectly
through other flip-flops. To formalize this analysis, we define
SGF, SGO, SFO, and SFF as follows. SGF'is an m X n matrix,
where SG'F;; is the probability of an error in flip-flop F'F; given
an internal node (gate) G; is erroneous. In other words, SG F;;
equals to N1 Pg;_, prj, which is the netlist impact probability
from G; to F'F;. m is the number of internal nodes (gates) and n
is the number of flip-flops. SGO is an m—element column vector,
where SGO; is the probability of an error in the primary out-
puts given gate G; is erroneous. SGO; equals to NI Pg,;. SFO
is an n—element column vector, where S F'O; is the probability
of an error in the primary outputs given that flip-flop F'F; is
erroneous. SF'O; equals to NIPpp;. And finally, SFF is an
n X m matrix, where SF'F;; is the probability of an error in
flip-flop F'F; given flip-flop F'F; is erroneous. SFF;; equals

2719

to NI Ppp;_.pFj, which is the netlist impact probability from
FF; to FFJ

SFF
NIPrpirr1 NIPrri—rr2 NIPrpi_FFn
_ NIPrps—rr1 NIPppa_rro2 NIPrppa_rrn
NI Pppypp1i NIPppa—pro NIPppo—pr
SGF
NIPgi—rr1 NIPgiFrr2 NIPgi—.Frn
B NIPgo.rr1 NIPgo.rr2 NIPgo.rrn
\NIPem—rri NIPam—rrz ... NIPomorpr
SFO
NIPp
NIPrp>
NIPg,
SGO
NTPg,
NIPg»
NIPg,

Theorem 1: The probability of a system failure c clock cy-
cles after the SEU event in G; (i.e., given G, is erroneous),
P¢(SF|G;), is calculated as follows:

P(SF at cycle c|G; erroneous) :
Pe(SF|G;) =SGO(7), if c=1
P°(SF|G;) = P*"Y(SF|G;)
+it" element of (SGF x SFF2xSFO), if ¢>1. (8)
Proof: Assume that the contents of GG; is erroneous. The
probability of a system failure during the first clock cycle
equals to P1(SF|G;) = SGO(i), based on the definition of
P¢(SF|G;) (the basis of induction).

An error can be propagated to an output in two clock cycles
after the SEU event if the error is propagated from G; to flip-flop
F'F in the first clock cycle, and then propagated from F'F} to
an output in the second clock cycle. The error can be also di-
rectly propagated from G to an output during the second cycle.
Therefore, the failure probability during the second clock cycle
is equal to SGO(i) + it" element of (SGF x SFO). If we
rewrite (8) for ¢ = 2, we will have:

Pe(SF|Gi)(c=2)
= P'(SF|G;) + i element of (SGF x SFF° x SFO)
=SGO(i) +i'" element of (SGF x SFO).

Therefore, Theorem 1 holds for ¢ = 2.

Now, we consider the failure probability during the third
cycle. Here, there are three different scenarios that can happen:
1) An SEU can be propagated from the error site (G;) to an
output during the third cycle with probability of SGO(i), 2) An
SEU can be propagated from G to flip-flop F'F}; in the second

Authorized licensed use limited to: Northeastern University. Downloaded on April 21, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

2720

clock cycle, and then propagated from F'F; to an output in the
third clock cycle with the probability of SGF (i) x SFO(j),
3) Finally, an SEU can be propagated from G to flip-flop I'F;
in the first clock cycle, then propagated from flip-flop F'F; to
flip-flop F'F}, at the second cycle, and lastly propagated from
FF}, to an output in the third clock cycle with the probability
of ith element of (SGF x SFF x SFO). Thus, the failure
probability during the third clock cycle equals to

SGO(i) + i*" element of (SGF x SFO)
+i™" element of (SGF x SFF x SFO).

If we rewrite (8) for ¢ = 3, we will have:

P¢(SF|G;)(c = 3)
= P?(SF|G;) +i'" element of (SGF x SFF' x SFO)
=SGO(i) +i'" element of (SGF x SFO)
+ it element of (SGF x SFF x SFO).

Therefore, Theorem 1 holds for ¢ = 3.
In the general case (clock cycle ¢), the P¢(SF|G;) can be
written down as follows:

P¢(SF|G;)=8GO()
+i'" element of (SGF xSFF°xSFO)
+i'" element of (SGF xSFF'xSFO)
+i'" element of (SGF x SFF?x SFO)
+...
+i'" element of (SGF x SFF°~3x SFO)
+i'" element of (SGF x SFF°~2x SFO)
=P9SF|G;)=P° }(SF|G;)
+it" element of (SGFx SFF°2x SFO).

After computing system failure probabilities for any partic-
ular clock cycle c after the SEU event, the failure probability
for this period (i.e., from the clock cycle at which the bit-flip
occurs to ¢ clock cycles after that) is computed as follows:

P{(SF|G))
=P'(SF|G;)
+ (1 - P'(SF|G;)) x P*(SF|G))
+ (1 = PY(SF|G;)) x (1 — P2(SF|G;)) x P3(SF|G;)

— Z <Pk(SF|G7;) 1:[(1 — PZ(SFIGi))> :

k=1 =1

€))

After computing P{(SF|G;) for all nodes, the system failure
rate can be computed as follows:

SFRepip = Y NER; x P{(SF|G;).

i=1

(10)

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 6, DECEMBER 2007

Note that the complexity of the simulation-based FI method
increases exponentially with ¢, making simulation-based anal-
ysis intractable for large sequential circuits. However, our ap-
proach requires only a matrix multiplication to compute the
system failure rate in the subsequent clock cycles, and hence,
its time complexity is linear with c.

Matrices SFF and SGF and vectors SFO and SGO are com-
puted using the propagation probability computation approach
presented in Section IV-A. Each column of SFF and SGF (as
well as the corresponding entry in SFO and SGO) is computed
by a traversal of the circuit from the corresponding flip-flop or
gate to system outputs and flip-flops.

E. Accuracy of the Proposed Theorem

In the above formulation, it has been assumed that the en-
tries in matrices SFF and SGF are independent of each other.
Based on this assumption, we have used additive probabilities
in the above equations. This may introduce some inaccuracy to
the proposed theorem. As an example, assume that G; is erro-
neous and also assume that NI Pg, ,pr, X NIPpp, = 0.15
and NI Pg, .pr, X NIPpp, = 0.05. The probability of system
failure in the second cycle due to error propagation through F'Fy
and F'F} is calculated as 0.15 4+ 0.05 = 0.20. The exact prob-
ability can be any probability between 0.15 and 0.20, and de-
pends upon the structural dependency of F'F; and F'F» on G;.
Therefore, the calculated probabilities computed by (8) are not
exact. However, the experimental results (Section V-E) show
this theorem provides very close approximations (there is an
81% overlap in FIT rate range obtained with our analytical mod-
eling framework and the field failure data studied). This is due
to several reasons. First, a majority of the entries in matrices
SFF and SGF are either zero or a very close number to zero
(less than 0.05). In particular, since each node has very few
reachable flip-flops (i.e., an error can only propagate to a very
limited number of flip-flops), most entries of matrices SFF and
SGF are 0. This means that most structural paths are indepen-
dent. Second, since there can be several logic stages between
flip-flops, this reduces the dependency between entries in ma-
trices SFF and SGF.

Note that since the SSF entries are very small, matrix multi-
plication of SFF causes that the entries of SF' I to be increas-
ingly smaller than the entries of SFF?~!. Therefore, it is ex-
pected that the term 7*" element of (SGF x SFFc x SFO)
to become (or tend to) zero for very large c¢. This means that
(9) saturates for large c. In our case study, we have noted that
this equation saturates for ¢ values of 60 to 100 clock cycles. In
applications where configuration bits are periodically checked
and corrected (called, error checking and recovery), the c factor
depends on the error checking period. Frequent error checking
and recovery will reduce the FPGA SER. The soft error suscep-
tibility analysis for error checking and recovery applications has
been described in [5].

V. CASE STUDY

A. Embedded Control Unit in Information Systems

In this study we consider FPGAs that are commonly used in
the design of high performance information systems. These sys-

Authorized licensed use limited to: Northeastern University. Downloaded on April 21, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

ASADI et al.: SOFT ERROR SUSCEPTIBILITY ANALYSIS OF SRAM-BASED FPGAs

tems typically hold several hundred disks, which can be pro-
tected via Redundant Array of Inexpensive Disks (RAID) proto-
cols (e.g., RAID-1, RAID-5). The internal architecture provides
for a high degree of redundancy so that a failure in any bus com-
ponent does not disconnect any component from the system.
One of the components that connects to the buses is the Logical
Unit Module (LUM). Multiple LUMs connect the server host to
the internal buses of the disk arrays. These LUMs are used to
manage the memory caches.

Each LUM has several Embedded Control Units (ECUs);
each ECU controls multiple microprocessors, DRAMs, and 1.2
caches. All ECUs have been implemented on an SRAM-based
FPGA, and each ECU acts independently. This FPGA compo-
nent is the target of our validation study.

The ECU design has been implemented using a very popular
and very large commercial FPGA device. Table IV depicts the
FPGA utilization of this device for the ECU design. As seen in
this table, the ECU design uses 99.9% of the available slices and
73.4% of the available Look-up Tables (LUTSs).

B. Field Data Analysis

Field data analysis is traditionally used in industry to evaluate
system failure rates. In our case study, this mechanism has been
utilized to calculate the FIT rate for the Logical Unit Module
(LUM) based solely upon SEUs observed in the field. Note that
this study is based on actual field failure data from the informa-
tion system vendor, using the available repository of field data as
collected by the manufacturer. The system provided automated
reporting of errors, and field engineers also went out into the
field to verify these errors.

Specifically, SEUs that occurred on distinct FPGA compo-
nents (we will refer to these as FSEUSs) contained within the
specified LUM were investigated. It should be noted that this
field analysis was not limited in scope to one particular geo-
graphic location; data was collected from all functioning sys-
tems distributed in more than 35 countries, spanning regions
from all across the globe. Thus, the analyzed field data repre-
sents a global distribution. In total, twenty-eight months of field
data was analyzed, including more than 750,000 FPGAs. The in-
formation needed for this analysis was available using the error
reporting systems implemented in the field.

Initially, all errors in the LUM that were flagged in the field
as No Evidence of Failure (NEOF) were collected and analyzed.
NEOFs can describe a range of errors including:

 state-dependent logic or timing errors;

* software-based errors;

* signal cross-talk;

* particle-induced soft errors (SEUs).

In total, ~ 7900 NEOF events were analyzed.

The next step in this process was to analyze the error code as-
sociated with each NEOF event. The information system man-
ufacturer identified six specific error codes that have been veri-
fied in the field to be associated with FSEUs in the investigated
FPGA devices. The way that these error codes were identified
is as follows: once a trend of errors has been seen in the field,
the information system manufacturer actually goes out into the
field and scans out the FPGA to compare the bit pattern to the
original configuration pattern. When a bit difference is found,

2721

the conclusion is that this bit flip was definitively caused by an
FSEU. Note that even though an error event may possess one
of the six error codes, it still may not have been caused by an
FSEU. We will refer to errors possessing these six error codes
as Probable FSEUS.

An additional three error codes were also identified as being
potentially associated with FSEUs in the LUM, though field
studies have not confirmed this yet (we will refer to error events
possessing these three error codes as Potential FSEUs). We will
label any NEOF event as a Possible FSEU if it possesses one of
these nine error codes.

Furthermore, when an FSEU is confirmed to have occurred,
there is a unique relationship between the observed error and
the affected logic within the FPGA design. Particularly, of the
7900 NEOFs found in the field, further analysis is performed by
inspecting the associated error log and by also reading out the
faulty FPGA device. This allows us to tie specific error codes
found in the logs to specific bit flips in the programmable bits
of the FPGA. This also allowed us to analyze the partial con-
tributions to the overall SEU rate of the various sub-functions
implemented in the FPGA, and then correlate these to the con-
tributions of individual data-paths in our modeling environment.
This is defined as the FSEU’s failure signature. Over time, these
signatures are documented, detailing both the specific field er-
rors that represent possible FSEUs and their distinct failure sig-
natures.

In general, FSEUs in the LUM have been observed to man-
ifest themselves in several ways such as CRC errors, parity er-
rors, timeout errors, and data miscompares. A specific example
of an FSEU is a parity bit being set during an interrupt operation
(e.g., a situation that can only arise by the internal logic of the
FPGA being incorrect).

After all LUMs that were categorized as NEOF were col-
lected and analyzed, all potential FSEUs were identified ac-
cording to their specific field error code as described above. This
reduced the analysis space by an order of magnitude.

After completing this step, the focus of our field study was
then reduced in scope to two specific FPGAs within the LUM.
This decision was motivated by a high degree of understanding
of the effects of FSEUs on these components and the significant
role that these FPGAs play within the LUM.

The final step in identifying all FSEUs that occurred within
the two FPGAs of interest was to inspect the log file provided
with each Possible FSEU. Each error’s log file contained all of
the system information at the time when the error occurred, in
addition to information that described how the system behaved
both before, and after, the error was observed. In order for an
error to be classified as a FSEU, it was required that the error’s
log file contain the failure signature that specifically pointed to
a bit flip in the configuration bits in the FPGA (bit flips can also
occur in the non-configuration bits of the FPGA, but in these de-
signs the physical space in both FPGAs is heavily dominated by
configuration bits [5]). There are also cases where the signature
confirms that the error was not caused by a bit flip in an FPGA,
and thus is not an FSEU (i.e., a non-FSEU).

Analyzing the collected data, it was found that a significant
percentage of the total cases studied could not be classified as
either an FSEU or non-FSEU. For the majority of the indetermi-

Authorized licensed use limited to: Northeastern University. Downloaded on April 21, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

2722

TABLE 1
PROBABLE FSEU ERROR CODE STATISTICS

[Probable FSEU Error Code Stats | Percentage |

FSEU 29.35
Non-FSEU 33.20
Indeterminate 37.45

TABLE II
POTENTIAL FSEU ERROR CODE STATISTICS

| Potential FSEU Error Code Stats [Percentage |

FSEU 14.45
Non-FSEU 40.46
Indeterminate 45.09
TABLE III
FSEU DISTRIBUTION IN FPGA MODULES
[FSEU Location | Percentage |
FPGA-1 9.5%
FPGA-2 59.5%
FPGA-1 or FPGA-2 31.0%

nate cases, our analysis is incomplete due to the lack of an error
log file being available, and thus these errors could not be prop-
erly analyzed to the level of detail needed. However, by using
the trends observed in the FSEU/non-FSEU errors, we can ap-
proximate what portion of the indeterminate cases are FSEUs
and non-FSEUs. We multiply the ratio of the FSEUs/(FSEUs +
non-FSEUs) to provide us with an estimate of the number of in-
determinate cases that are FSEUSs.

Table I represents all errors that were found to have a Prob-
able FSEU error code. The FSEU category represents the errors
whose log file had an FSEU failure signature; the non-FSEU cat-
egory represents the errors whose log file did not have an FSEU
failure signature. The indeterminate category represents the er-
rors whose log file was not available, and thus whose FSEU error
status could not be determined. Table II shows this same infor-
mation for all errors that contained Potential FSEU error codes.

The next step in calculating the FIT rate of the targeted FPGA
was to determine exactly where each FSEU occurred relative to
the LUM. By again referencing each FSEU’s field returned error
code, information detailing the location of each FSEU could be
extracted. Here, the FSEUs were categorized as having occurred
on FPGA-1, on FPGA-2, or on either FPGA-1 or FPGA-2. The
breakdown is shown in Table III.

Assuming that FPGA-1 is the component of interest, and also
that the distribution of FPGA-1 FSEUs within the category of
FPGA-1 or FPGA-2 ranges from 20% to 80%, the following
calculations result:

If 20% of these errors were to occur on FPGA-1, then the total
number of FSEUs on FPGA-1 was calculated by:

(0.095 4 (0.20 x 0.31)) x (The total number of FSEUs).

Similarly, if 80% of these errors were to occur on FPGA-1,
then the total number of FSEUs on FPGA-1 was calculated by:

(0.095 + (0.80 x 0.31)) x (The total number of FSEUs).

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 6, DECEMBER 2007

START

Find an error in the database flagged as
having no evidence of failure that occurred
on the specified LUM

\ 4
J N

Analyze the error’s field returned error code
in conjunction with proprietary
documentation

Label error as
non-FSEU

Is the error a

Possible FSEU? No-»

Yes
\ 4

Analyze the log file of the error

No
Does the error exhibit

behavior characteristic to an
FSEU occurrence?

Yes

v

Label error as FSEU

Determine the specific location
(component) where the FSEU occurred
within the specified LUM

Any errors left to
investigate?

No
A 4

Tally the number of FSEUs that occurred
on the component (FPGA) of interest

v

Compute the number of field hours the
component (FPGA) of interest accrued

v

Compute the FIT rate

Fig. 5. Field data analysis flow.

The final step of this project was to then calculate an overall
FIT rate for the FPGA of interest, in this case FPGA-1. By an-
alyzing the number of FSEUs that occurred on this FPGA in
combination with the total number of field hours that this com-
ponent accrued, a device field FIT rate was obtained. Fig. 5 sum-
marizes all of the steps taken in computing this value.

Authorized licensed use limited to: Northeastern University. Downloaded on April 21, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

ASADI et al.: SOFT ERROR SUSCEPTIBILITY ANALYSIS OF SRAM-BASED FPGAs 2723
START
Input device family Read the design
T
| read_block_configuration() I C Read physical device) CExtract netlist) _______________
| read_device_interconnect() :< interconnect conflguratlon adjacency list : extract_netlist_adjacency._list() |
| read_input_netlist_format() extract_forward_cone() I
Read the raw FIT rate Find forward cone for | apply_dfs() Jl
for each class of bits eachnetusing || ~ ~ ~ T T T T T 777
(Config. bits, BRAMSs, FFs) topological sort algorlthm
(Build the mapped design)
[
— v v
Extract ?II :Z;dfresc::"czs to Extract Signal Probabilities J
compute or all nodes ; o > - === 1
______________ 5 I Using MC-simulation Monte_carlo_signal_prob() |
: extract_open_config_bits() | + + % | circuit_logic_simulation() :
S | e
| extractfshortfcon.ﬂg,k:.)lts() | Find sensitive Extract Propagate error through I compute_lut_‘D_probabll|tyl() |
| extract_mux_config_bits() 4< control bits sensitive circuit and apply EPP compute_logic_D_probability() |
| extract_sensitive_cntl_bits() | (MUX, CNT,CLK) LUT bits rules for each net | propagate_D_probability() |
| extract_sensitive_lut_bits() | A 4 A 4 4 | compute NIP_prob() '
' | compute_ NER() I'l(Extractopen Extractshort \| = = — @ | ___-_ - _ Y __ ___ |
————————————— 1| _sensitive bits sensitive bits Compute NIP
I | per node

v

| compute NER for all nodes

|Compute SFR per node |

| compute_system_FIT_rate()

Compute fotal system : report_detailed_FIT_rate_info()
failure rate (SFR)

Fig. 6. SER estimation flow.

C. Tool Implementation

Fig. 6 shows the overall flow of the presented SER estima-
tion methodology. We have developed a fully automated soft-
ware tool implemented in Object Oriented Programming (OOP)
using C++ language. This tool automatically performs all the
steps shown in Fig. 6. The inputs to the program are physical
device information, interconnect and architecture information,
and the raw error rates for different types of cells. Our frame-
work produces the following outputs: a) system overall FIT rate,
b) system overall raw FIT rate, c) detailed FIT rate for each net,
logic block, look-up table, routing and clock/control resources.

There are four categories of functions in the framework listed
below:

i) Device Physical Information Modules.

ii) Design Information Modules: these modules hold design
information.

Used Resources Information: these modules extract the
used resource information.

System Failure Computation: these modules compute the
system FIT rate.

iii)

iv)

Among the four categories of modules, only the first category
is needed to be updated for each FPGA device family and archi-
tecture while the three last categories remain unchanged. This
can help to minimize code maintenance cost. These four cate-
gories of modules are shown in Fig. 6.

D. Generalization to Other FPGA Architectures

The proposed methodology can be easily extended to other
SRAM-based FPGA architectures. In fact, the main analyt-
ical modeling technique is independent of the underlying
FPGA physical architecture. This is because this SER analysis
methodology is composed of two major parts. In the first part,
we abstract the FPGA resource utilization for the mapped
design by Node Error Rate factor. This part is dependent on the
FPGA architecture. The second part, which is the major part of
this methodology, performs soft error analysis at the gate-level,
which is completely independent of the FPGA architecture.
The way that the tool is implemented is completely compatible
with this idea, and the implementation of these two parts are
completely independent. Moreover, the tool is designed in such
a way that it accepts various implementations and modifications
for the first part to incorporate different FPGA architectures.

Authorized licensed use limited to: Northeastern University. Downloaded on April 21, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

2724

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 6, DECEMBER 2007

TABLE IV
FPGA RESOURCE UTILIZATION INFORMATION FOR ECU CHIP

[Parameter | Slices | IOBs | BRAM bits [LUTs | FFs | Configuration bits |
Number Used 12286 631 290816 18033 9725 1.7M
Total 12288 728 393216 24576 | 24576 6.5M
Usage 99.9% | 86.7% 73.9% 73.4% | 40.0% 26.2%
TABLE V

EXECUTION TIME FOR ECU SER ESTIMATION

[Parameter | Read [Arrange | SP Computation | Extract error sites | SFR calculation | Total Time |
Time (second) | 108.74 3.85 437.30 50.99 11780.00 12380.88
Percentage 0.88% 0.03% 3.53% 0.41% 95.15% 100.00%
Note that the main differences in various FPGA architectures Analytical Projection

are the programmable interconnect networks. Some of the archi-
tectures are based on programmable multiplexers (such as Al- Field Data
tera FPGAs) while others are based on programmable switch ma-
trices (such as Xilinx FPGAs). The differences in the logic blocks ° 0
are typically minimal. As we described in previous subsection, to 1 2 3 4 5 6

apply this SER methodology to any FPGA architecture, only the
device physical information is needed to be updated in the tool
toreflect the corresponding FPGA architecture. This mainly cap-
tures the number of sensitive bits (configuration SRAM cells) as-
sociated with each node and net in the gate-level netlist of the de-
sign mapped into the FPGA device. Such information can be ob-
tained from the output of FPGA placement and routing phases.
The device physical information modules need to be extended
to extract sensitive bit information from the final placement and
routing results for each FPGA architecture and device family.
Once this information provided, the system failure rate is com-
puted using the netlist impact probability and the node error rates.

E. Analytical Results

In order to validate our proposed SER estimation method-
ology, we have studied the embedded control unit (ECU) in
the information system. The ECU design has been implemented
using a very popular commercial FPGA device. Table IV shows
the FPGA utilization of this device for the ECU design. As seen
in this table, the ECU design uses 99.9% of total slices and
73.4% of total LUTs.

The error list considered in the experiments includes mux-
open, PIP open, PIP short, buffer-on, buffer-off, LUT bit-flip,
and control/clocking bit-flip, and bridging errors. The imple-
mented software tool extracts the netlist information from the
input file, including the list of used resources, sensitive bits, and
the error list. The failure rate of all circuit nodes are computed
based on the above information. The experiments have been ex-
ecuted on a Sun Blade 900 © workstation equipped with 4 GB
main memory and running Solaris 9 © operating system.

The sensitive bits are classified according to the error models
described in Section III. According to these results, the config-
uration routing bits constitute almost 85% of the total sensitive
configuration bits while LUT bits and control/clocking bits con-
stitute 11% and 4% of total configuration bits, respectively. The
results also show that the number of FFs is less than 0.6% of the
number of sensitive configuration bits.

ECU Soft Error Rate (normalized)

Fig. 7. Comparison of predictive tool results with field data.

The detailed execution time of our SER estimation method
is listed in Table V. The total run time of this SER estimation
method includes the time required to:

* read the netlist;

e arrange the netlist;

e compute signal probabilities;

* extract error sites;

e compute error propagation probability including the time

needed to compute N K RR; and NI P; for all nodes.

One of the main advantages of the proposed SER estimation
technique is that detailed FIT rate information per net, per used
resource, and per resource type can be extracted. These detailed
FIT rate reports can be very beneficial to designers for soft error
debug and diagnosability. Using these detailed FIT rates, de-
signers can identify the most vulnerable paths, modules, and
components and prioritize them according to their FIT rates.
Based on the FIT rate rankings, selective protection schemes
can be applied to more susceptible paths and components.

The system failure rate of the ECU has been computed using
both our predictive tool and the collected field data. Fig. 7 shows
the comparison of our tool results for the ECU and the ECU field
data. This figure shows normalized numbers. Based on the raw
FIT rates reported by vendors, our predictive tool reports a FIT
rate ranging from 3.8 to 5.9. Also, the field data analysis shows
that the ECU FIT rate ranges from 2.5 to 5.5.

The slight mismatch between the field data and our analytical
projection can be attributed to two reasons:

* First, it was not possible to catch all FSEUs that occurred
on the investigated device in the field. This is primarily due
to the fact that some FSEUs do not propagate to system
outputs and remain undetected. Also, our list of Possible
FSEUs does not cover all FSEUs and is continually being
updated to try and do so.

Authorized licensed use limited to: Northeastern University. Downloaded on April 21, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

ASADI et al.: SOFT ERROR SUSCEPTIBILITY ANALYSIS OF SRAM-BASED FPGAs

TABLE VI
MODULAR SUSCEPTIBILITY ANALYSIS

[Module name | FIT(%) [% used SRAM cells |

module_1 18.51 25.26
module_2 9.73 3.25
module_3 9.32 13.73
module_4 8.87 11.30
module_5 5.85 1.50
module_6 5.73 6.78
module_7 347 3.06
module_8 2.33 3.88
module_ 9 2.32 3.86
module_10 2.30 393

the rest 31.57 23.45

* Second, this discrepancy can be partially attributed to some
potential inaccuracies in the raw fit rates as published by
FPGA vendors.

Note that it is expected that the proposed analytical SER
methodology produces more accurate results for applications
in which accurate raw FIT rates are provided.

‘We have also analyzed the susceptibility of each architectural
module within the ECU. Using this analysis tool it is possible
to investigate the soft error vulnerability of each component in
the hierarchical architecture from top-level modules down to a
net or cell within a sub-module. Such information is very useful
for soft error debug, diagnosis, and re-design. The FIT contri-
bution and the percentage of used SRAM cells of each top-level
module, as an indication of the relative size of each module,
is reported in Table VI. As can be seen from this table, the
soft error contributions of different architectural modules are
not uniform. Furthermore, some smaller modules (i.e., mapped
using a small fraction of the FPGA resources) contribute to a
considerable percentage to the overall FIT rate. Such informa-
tion can be used by architects and designers to include protec-
tion (in terms of architectural or device redundancy) for those
modules.

VI. CONCLUSIONS

Dependability is one of the most critical factors for informa-
tion systems. Since FPGAs are commonly used in the imple-
mentation of these systems (particularly in the design of Logical
Unit Modules) it is important to be able to estimate the soft error
reliability of FPGA-based designs. Designs mapped into FPGAs
are more susceptible to soft errors than ASIC implementations
since the majority of an FPGA chip area is dedicated to memory
elements storing the configuration of the FPGA or circuit state.
Moreover, soft errors in configuration memory cause permanent
errors in the mapped design which cannot be corrected by tra-
ditional retry mechanisms.

In this paper, we described an efficient and accurate SER es-
timation framework for FPGA-based designs. Besides its accu-
racy and speed, detailed FIT rate information produced by our
toolset can be effectively used for soft error debugging and diag-
nosis which can help to improve system reliability with minimal
cost and performance overheads.

We have also presented a case study on an FPGA-based con-
troller (implemented on the largest FPGA device) used in the
design of a commercial information system. We have compared
FIT rate obtained from comprehensive field data analysis versus

2725

results produced from our framework. These results show that
our analytical framework can accurately predict FIT rates (there
is an 81% overlap in FIT rates obtained between the analytical
mode and the field failure data) while the runtime of our frame-
work is completely tractable (3.5 hours for a very large design
mapped into one of the largest commercial FPGA devices).

REFERENCES

[1] M. Alderighi, F. Casini, S. D. Angelo, M. Mancini, A. Marmo, S. Pa-
store, and G. R. Sechi, “A tool for injecting SEU-like faults into the
configuration control mechanism of Xilinx Virtex FPGAs,” in Proc.
18th IEEE Symp. Defect and Fault Tolerance in VLSI Systems, 2003,
pp. 71-78.

G. Asadi, G. Miremadi, H. R. Zarandi, and A. Ejlali, “Fault injection
into SRAM-based FPGAs for the analysis of SEU effects,” in Proc.
IEEE Int. Conf. Field-Programmable Technology, Tokyo, Japan, Dec.
2003, pp. 428-430.

G. Asadi and M. B. Tahoori, “An accurate SER estimation method
based on propagation probability,” in Proc. IEEE/ACM Int. Conf. De-
sign, Automation and Test in Europe, Munich, Germany, Mar. 2005,
pp- 306-307.

[4] G. Asadi and M. B. Tahoori, “An analytical approach for soft error rate
estimation in digital circuits,” in Proc. IEEE Int. Symp. Circuits and
Systems, Kobe, Japan, May 2005, vol. 3, pp. 2991-2994.

G. Asadi and M. B. Tahoori, “Soft error rate estimation and mitigation
for SRAM-based FPGAs,” in Proc. 13th ACM Int. Symp. Field-Pro-
grammable Gate Arrays, Monterey, CA, Feb. 2005, pp. 149-160.

[6] R. C. Baumann, “Radiation-induced soft errors in advanced semicon-
ductor technologies,” IEEE Trans. Device Mater. Rel., vol. 5, no. 3, pp.
305-316, Sep. 2005.

M. Bellato, M. Ceschia, M. Menichelli, A. Papi, J. Wyss, and A.
Paccagnella, “Ion beam testing of SRAM-based FPGAS,” in Proc. 6th
European Conf. Radiation and Its Effects Components and Systems,
Sep. 2001, pp. 474-480.

C. Carmichael, E. Fuller, J. Fabula, and F. Lima, “Proton testing of
SEU mitigation methods for the Virtex FPGA,” in Proc. Military and
Aerospace Applications Programmable Logic Devices, Washington,
D.C., Sep. 2001.

M. Ceschia, M. Bellato, A. Paccagnella, and A. Kaminski, “Ion beam
testing of ALTERA APEX FPGAs,” in Proc. IEEE Radiation Effects
Data Workshop, Jul. 2002, pp. 45-50.

M. Ceschia, M. Violante, M. S. Reorda, A. Paccagnella, P. Bernardi, M.
Rebaudengo, D. Bortolato, M. Bellato, P. Zambolin, and A. Candelori,
“Identification and classification of single-event upsets in the configu-
ration memory of SRAM-based FPGAs,” IEEE Trans. Nucl. Sci., vol.
50, no. 6, pp. 2088-2094, Dec. 2003.

E. Fuller, M. Caffrey, A. Salazar, C. Carmichael, and J. Fabula, “Ra-
diation characterization and SEU mitigation of the Virtex FPGA for
space-based reconfigurable computing,” presented at the IEEE Nuclear
and Space Radiation Effects Conf., Reno, NV, Jul. 2000.

M. Gokhale, P. Graham, E. Johnson, N. Rollins, and M. Wirthlin, “Dy-
namic reconfiguration for management of radiation-induced faults in
FPGAS,” in Proc. 18th Int. Parallel and Distributed Processing Symp.,
Santa Fe, NM, Apr. 2004, pp. 145-150.

P. Graham, M. Caffrey, J. Zimmerman, D. E. Johnson, P. Sundararajan,
and C. Patterson, “Consequences and categories of SRAM FPGA con-
figuration SEUs,” presented at the Military and Aerospace Applications
Programmable Logic Devices Int. Conf., Washington, DC, Sep. 2003.
S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walstra, and C. Dai, “Im-
pact of CMOS scaling and SOI on soft error rates of logic processes,” in
Proc. Symp. VLSI Technology, Jun. 2001, Digest of Technical Papers,
pp. 73-74.

[15] Hennessy and Patternson, Computer Architecture: A Quantitative Ap-
proach, 3rd ed. San Mateo, CA: Morgan Kaufmann, 2003.

E. Johnson, M. Caffrey, P. Graham, N. Rollins, and M. Wirthlin, “Ac-
celerator validation of an FPGA SEU simulator,” IEEE Trans. Nucl.
Sci., vol. 50, no. 6, pp. 2147-2157, Dec. 2003.

J. Karlsson, P. Ledan, P. Dahlgren, and R. Johansson, “Using heavy-ion
radiation to validate fault handling mechanisms,” IEEE Micro, vol. 14,
no. 1, pp. 8-23, Feb. 1994.

T. Karnik, B. Bloechel, K. Soumyanath, V. De, and S. Borkar, “Scaling
trends of cosmic rays induced soft errors in static latches beyond 0.18
1.7 in Proc. Symp. VLSI Circuits, Jun. 2001, Digest of Technical Papers,
pp. 61-62.

[2

—

[3

[t}

[5

[t}

[7

—

[8

—

[9

—

(10]

(11]

[12

[13]

[14

[16]

[17]

[18]

Authorized licensed use limited to: Northeastern University. Downloaded on April 21, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

2726

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

R. Katz, K. LaBel, J. J. Wang, B. Cronquist, R. Koga, S. Penzin,
and G. Swift, “Radiation effects on current field programmable
technologies,” IEEE Trans. Nucl. Sci., vol. 44, no. 6, pp. 1945-1956,
Dec. 1997.

A. Lesea, S. Drimer, J. J. Fabula, C. Carmichael, and P. Alfke, “The
rosetta experiment: Atmospheric soft error rate testing in differing tech-
nology FPGAs,” IEEE Trans. Device Mater. Rel., vol. 5, pp. 317-328,
Sep. 2005.

A. Lesea and J. J. Fabula, “The Rosetta experiment: Atmospheric soft
error rate testing in differing technology FPGAs — 90 nanometer up-
date,” presented at the System Effects of Logic Soft Errors II Work-
shop, Urbana-Champaign, IL, Apr. 2006.

P. Liden, P. Dahlgren, R. Johansson, and J. Karlsson, “On latching
probability of particle induced transients in combinational networks,”
in Proc. 24th Symp. Fault-Tolerant Computing, 1994, pp. 340-349.

F. Lima, C. Carmichael, J. Fabula, R. Padovani, and R. Reis, “A fault
injection analysis of Virtex FPGA TMR design methodology,” in
Proc. 6th European Conf. Radiation Effects Components and Systems,
Grenoble, France, 2001, pp. 275-282.

S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. Kim, “Robust system
design with built-in soft-error resilience,” IEEE Computer, vol. 38, pp.
43-52, Feb. 2005.

K. Mohanram and N. A. Touba, “Cost-effective approach for reducing
soft error failure rate in logic circuits,” in Proc. Int. Test Conf., Char-
lotte, NC, Oct. 2003, pp. 893-901.

K. Morgan, M. Caffrey, P. Graham, E. Johnson, B. Pratt, and M.
Wirthlin, “SEU-induced persistent error propagation in FPGAs,” IEEE
Trans. Nucl. Sci., vol. 52, no. 6, pp. 2438-2445, Dec. 2005.

S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A
systematic methodology to compute the architectural vulnerability fac-
tors for a high-performance microprocessor,” in Proc. 36th Int. Symp.
Micro-Architecture, San Diego, CA, 2003, pp. 29-40.

B. Mullins, H. Asadi, M. B. Tahoori, D. Kaeli, K. Granlund, R. Bauer,
and S. Romano, “Case study: Soft error rate analysis in storage sys-
tems,” in Proc. IEEE VLSI Test Symp., Berkeley, CA, May 2007, pp.
256-264.

H. T. Nguyen and Y. Yagil, “A systematic approach to SER estimation
and solutions,” in Proc. 41st Int. Reliability Physical Symp., Dallas,
TX, 2003, pp. 60-70.

E. Normand, “Single event upset at ground level,” IEEE Trans. Nucl.
Sci., vol. 43, no. 6, pp. 2742-2750, Dec. 1996.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 54, NO. 6, DECEMBER 2007

[31]

[32]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

K. P. Parker and E. J. McCluskey, “Probabilistic treatment of general
combinational networks,” IEEE Trans. Comput., vol. C-24, no. 6, pp.
668-670, Jun. 1975.

M. Rebaudengo, M. S. Reorda, and M. Violante, “Simulation-based
analysis of SEU effects on SRAM-based FPGAs,” in Proc. 12th
Int. Conf. Field-Programmable Logic and Applications, Montpellier,
France, Sep. 2002, pp. 607-615.

M. S. Reorda, L. Sterpone, and M. Violante, “Efficient estimation of
SEU effects in SRAM-based FPGASs,” in Proc. 11th IEEE Int. On-Line
Testing Symp., Saint Raphael, French Riviera,, France, Jul. 2005, pp.
54-59.

P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi,
“Modeling the effect of technology trends on the soft error rate of
combinational logic,” in Proc. Int. Conf. Dependable Systems and Net-
works, Washington, D.C., Jun. 2002, pp. 389-399.

L. Sterpone and M. Violante, “A new analytical approach to estimate
the effects of SEUs in TMR architectures implemented through
SRAM-based FPGAs,” IEEE Trans. Nucl. Sci., vol. 52, no. 6, pp.
2217-2223, Dec. 2005.

G. M. Swift, S. Rezgui, J. George, C. Carmichael, M. Napier, J.
Maksymowicz, J. Moore, A. Lesea, R. Koga, and T. F. Wrobel,
“Dynamic testing of Xilinx Virtex-II field programmable gate array
(FPGA) input/output blocks (IOBs),” IEEE Trans. Nucl. Sci., vol. 51,
no. 6, pp. 3469-3474, Dec. 2004.

M. B. Tahoori, S. Mitra, S. Toutounchi, and E. J. McCluskey, “Fault
grading FPGA interconnect test configurations,” in Proc. Int. Test
Conf., Baltimore, MD, Oct. 2002, pp. 608-617.

M. Violante, L. Sterpone, M. Ceschia, D. Bortolato, P. Bernardi, M. S.
Reorda, and A. Paccagnella, “Simulation-based analysis of SEU effects
in SRAM-based FPGAs,” IEEE Trans. Nucl. Sci., vol. 51, no. 6, pp.
3354-3359, Dec. 2004.

M. Wirthlin, E. Johnson, N. Rollins, M. Caffrey, and P. Graham, “The
reliability of FPGA circuit designs in the presence of radiation in-
duced configuration upsets,” in Proc. IEEE Symp. Field-Programmable
Custom Computing Machines, Napa, CA, Apr. 2003, pp. 133-142.
Virtex 2.5 V Field Programmable Gate Arrays Xilinx, San Jose, CA,
2001, Data Sheet DS003-1.

Virtex-1I 1.5 V Field-Programmable Gate Arrays Xilinx, San Jose, CA,
2001, Data Sheet DS031-1 (v1.7).

J. F. Ziegler, “Terrestrial cosmic rays,” IBM J. Res. Develop., vol. 40,
no. 1, pp. 19-39, Jan. 1996.

Authorized licensed use limited to: Northeastern University. Downloaded on April 21, 2009 at 09:19 from IEEE Xplore. Restrictions apply.

