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Abstract: Devices are increasingly vulnerable to soft
errors as their feature sizes shrink. Previously, soft er-
ror rates were significant primarily in space and high-
atmospheric computing. Modern architectures now use
features so small at sufficiently low voltages that soft er-
rors are becoming important even at terrestrial altitudes.
Due to their large number of components, supercomputers
are particularly susceptible to soft errors.

Since many large scale parallel scientific applications
use iterative linear algebra methods, the soft error vul-
nerability of these methods constitutes a large fraction of
the applications’ overall vulnerability. Many users con-
sider these methods invulnerable to most soft errors since
they converge from an imprecise solution to a precise one.
However, we show in this paper that iterative methods
are vulnerable to soft errors, exhibiting both silent data
corruptions and poor ability to detect errors. Further,
we evaluate a variety of soft error detection and tolerance
techniques, including checkpointing, linear matrix encod-
ings, and residual tracking techniques.

1 The Soft Error Problem

Soft errors are one-time events that corrupt a computing
system’s state but not its overall functionality. They in-
clude bit-flips in memory and logic circuit output errors
and may be caused by a variety of phenomena, including
cosmic radiation, radiation from chip packaging [3], high
temperatures, and voltage fluctuations.

Modern electronics are increasingly susceptible to data
corruption from soft errors [1]. DRAM soft error rates
(SERs) have been stable over the past several technology
generations, but SRAM SERs have been growing expo-
nentially as larger and larger memory chips come into use
(1,000-10,000 FIT/Mb is typical, where a FIT is one fail-
ure per billion hours of operation) [3]. A cluster with 1000
processors, each supporting a 10Mb cache with 1600 FIT
averages 10 errors per month [3]. Soft errors also impact
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SRAM-based FPGA designs: Xilinx reports SERs ranging
from 401 FIT/Mb for 150 micron designs, to 51 FIT/Mb
for newer 90nm designs [12]. Historically, soft errors pri-
marily occur in memory. However, soft errors in micropro-
cessor logic will soon also become common [19]. In par-
ticular, latches make up a large fraction of processor area,
used in a variety of internal data structures. Since latch
design is similar to but somewhat larger than SRAM cell
design, they share many of the same vulnerability prop-
erties. Further, soft errors are a critical concern in the
operation of real systems [10]. ASCI Q experiences 26.1
CPU failures per week [15]. A similarly-sized Cray XD1
supercomputer is estimated to experience 109 errors per
week in CPUs, memory and FPGAs, if placed at the same
altitude [17].

Given the high vulnerability of the large supercomput-
ing systems, we must understand the impact of soft errors
on scientific applications. To provide initial insight, we ex-
amine the soft error vulnerability of linear methods since
many scientific applications rely on them [7]. We focus on
linear methods that many believe are relatively immune
to soft errors: iterative solutions to sparse linear systems,
which we briefly describe in Section 2. In Section 5, we
demonstrate that simple bit-flip errors frequently lead to
erroneous solutions and runtime errors such as aborting
despite the iterative approach. Detecting these errors is
more complex than simply examining residual values, as
we show in Section 6. Section 7 examines methods to min-
imize the cost of tolerating soft errors in iterative methods.
Finally, we model the cost and benefit of the combined de-
tection and tolerance mechanisms for a large scale parallel
application that repeatedly uses iterative methods in Sec-
tion 8. Overall, we find that the mechanisms support a
trade-off between overhead and reduced soft error vulner-
ability. Low cost combinations have overheads as low as
3.4% while still reducing vulnerability by a factor of 1.5;
alternatively, we can reduce vulnerability by a factor of
133 at the cost of increasing run time by 143%.



2 Iterative Linear Methods

The linear system, A x = b, underlies many scientific com-
puting applications. Methods that directly compute an
exact solution for x, such as Gaussian elimination, are
generally expensive, particularly if A is sparse. Thus,
most applications use iterative methods, such as multi-
grid. These methods start with a sample solution and
then iteratively refine it to find an approximate solution
with an estimated error below an acceptable threshold.

For example, the Conjugate Gradient (CG) method ex-
presses x as a linear function of n vectors p1, p2, ... pn,
with each pair of vectors conjugate in A (pi A pj = 0).
Although the pi’s can be computed directly, in practice a
small subset of the pi’s is needed is to achieve accuracy
within machine precision. As such, CG approximates the
solution x = α1p1 + ... + αnpn with only a few vectors.

Under CG, the initial approximation is x0; the residual
r0 = b − A x0, which is the direction of the error in x0,
serves as the first conjugate vector, p0. Subsequent itera-
tions compute the residual rk and use it to compute the
next conjugate vector pk. However, to ensure the that pk

is conjugate to prior pi’s, pk = rk − rk−1⊤rk−1

rk−2⊤rk−2

pk−1. The

coefficients αk are computed as rk−1⊤rk−1

rk−2⊤p⊤

k

Apk. This pro-

cess is repeated until rk is below some threshold. Although
other iterative methods compute subsequent approxima-
tions differently, all follow a similar pattern.

Two main properties of iterative linear methods shape
the general perception of their soft error vulnerability.
First, they begin with an imprecise solution and iterate
to within some level of accuracy. As such, soft errors that
do not corrupt the data of the matrix A, the vector b or
control state, such as a pointer to a vector, should have
little impact. Second, their residual norm, which tracks
convergence towards a solution, can be used to detect er-
rors by testing its progress for any abnormalities.

3 Target Iterative Methods

We focus on SparseLib [6], a sparse matrix library that
includes several iterative solvers and linear operations on
a variety of sparse matrix storage formats. We examine
the soft error vulnerability of six iterative methods: Con-
jugate Gradient (CG); Conjugate Gradient Squared (CGS);
Biconjugate Gradient (BiCG); Biconjugate Gradient Sta-
bilized (BiCGSTA); Preconditioned Richardson (PR); and
Chebyshev (Cheby). We evaluate these methods with 39
matrixes, each from a different group of the University of
Florida Sparse Matrix Collection [5]. Since CG and Cheby

only work on symmetric matrixes, we use each group’s
largest symmetric matrix; some groups have no symmet-
ric matrixes, in which case we use the largest unsymmetric
matrix. The collection provides the right-hand side, b, for
many matrixes; for each matrix that does not include b,

we use a right-hand side that corresponds to a solution
vector x of all ones.

In order to establish a baseline for our soft error exper-
iments, we applied each iterative method to each matrix
to identify the smallest residual that the method achieves
in under a minute. We used residual thresholds <1 since
SparseLib’s initial guess for x produces a residual of 1. We
did not consider residuals <1e-150 since smaller residuals
lead to numerical instability in most matrix/method com-
binations. Different matrix/method combinations have
different minimum residuals: some methods only execute
for a fraction of a second on some matrixes while others
diverge for all target residuals

4 Fault Injection Methodology

We model the impact of soft errors by flipping a single ran-
domly chosen bit at a randomly chosen time in the target
iterative method’s data structures. We implement fault
injection into any object on the stack or heap through
manual instrumentation of SparseLib. We do not inject
errors during the reading of the matrix A and vector b

since scientific applications use linear solvers as part of
larger numerical algorithms that read the input data once
but execute the linear solver many times. We also do not
inject errors into system-dependent state since we focus
on the soft error vulnerability of sparse iterative methods
in general, rather than a specific implementation with a
specific compiler. In particular, this means we do not flip
bits in registers, malloc object headers, function return
pointers and application code, since these all depend on a
particular compiler or system library. Our results demon-
strate that the soft error vulnerability of the methods is
significant; injecting additional errors would only increase
that vulnerability.

We perform our experiments on 2.4Ghz dual-core
Opterons, with 2GB RAM each. We evaluate each
method’s fault vulnerability for the ten largest matrixes
for which the method satisfies the constraints discussed
in Section 3. We inject faults in the base methods (Sec-
tion 5) and in methods enhanced with soft error detection
(Section 6) and tolerance (Section 7) techniques. For each
combination of iterative method, matrix, and error detec-
tion and/or correction technique we performed 500 trials.
We analyze our data for the impact of a single bit flip on
a single run of each method and on a parallel application
that uses iterative methods internally and runs for one day
on a thousand processors using 10FIT/MB memory, con-
sistent with typical 1,000-5,000FIT/MB DRAM [18] with
90%-98% effective error correction.

5 Impact of Soft Errors

We first consider the four possible outcomes of a single bit
flip on a single run of an iterative method:
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• Successful completion: the method converges to its
target tolerance, and the error in the solution x is
≤10% larger than the fault-free error;

• Silent Data Corruption (SDC): the method converges
with a final error >10% larger;

• Hang: execution time exceeds fault free execution
time by a factor of at least ten, indicating divergence
or convergence but above our threshold;

• Abort: a failed internal SparseLib test or an error
such as a segmentation fault aborts the method.

Figure 1 shows the probability of a bit-flip resulting
in an SDC, a hang or an abort in each iterative method.
All three outcomes are quite common, with SDC rates
ranging from 4% for CGS to 18% for PR. Hangs range from
2% for Cheby to 10% for CG and aborts range from 10% for
PR to 12% for CGS. Considering only runs that completed
successfully, Figure 2 shows the effect of soft errors on
the iterative method’s run time. This ranges from a 10%
slowdown for BiCGSTA to a 1% speedup for Cheby.

Our observed rates of SDCs, hangs and aborts demon-
strate that iterative methods are vulnerable to soft errors
despite converging from imprecise estimates of x to more
accurate ones. Figure 3 explains this perhaps counter-
intuitive result: the matrix A dominates method state.
Specifically, A’s value array accouts for 55% of applica-
tion state, while its row index and column pointer arrays
take up 27% and 2%, respectively. The rest of the state
is taken up by various vectors and the diagonal precon-
ditioner matrix. Bit flips in the matrix A or vector b

0%

10%

20%

30%

40%

50%

60%

Figure 3: Application State Per Data Structure

can change the linear system being solved. If a method
still converges to the target tolerance on this new linear
system, the solution x could be very different from the so-
lution to the original linear system. Further, the method
will loop forever at higher residuals if it cannot converge
within the threshold for the new system. Finally, the ap-
plication could attempt to access unallocated memory if
the bit flip corrupts A’s row or column arrays, resulting
in an abort. Thus, the above high rates of SDCs, hangs
and aborts reflect the high percentage of application state
occupied by the most vulnerable data structures.

Although we have shown iterative methods are vulnera-
ble to soft errors, we still must consider how this translates
to vulnerability of real applications in realistic soft error
environments. We must scale our observations to account
for the rarity of soft errors. Further, we must provide er-
ror estimates for applications running at realistic parallel
scales since soft errors are already becoming prevalent on
large scale parallel platforms.

We use our observations to compute the impact of soft
errors on a model application that uses iterative methods.
The model application runs on multiple processors, where
each processor repeatedly executes an iterative method in
a loop, using the result of one execution to determine the
input of the next. The application does no work outside
these calls to the iterative method. If soft error causes
an SDC for the method in one execution of the itera-
tive method, we assume the entire application produces
an SDC. If an execution of an iterative method hangs
or aborts due to a soft error, we assume the application
restarts the method, which increases the application’s run
time without affecting the output. The model application
represents a conservative upper bound on the vulnerabil-
ity of applications that use iterative linear methods.

Figure 4 shows the impact on the model application’s
run time and its predicted SDC rate, assuming the appli-
cation executes on one thousand processors for one day,
using 10FIT/MB memory. We use a one day run time that
is consistent with typical usage patterns of large scale clus-
ters where users are more constrained by resource limits
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than by scientific objectives. As a reference point, if the
above application typically uses 100MB of RAM per pro-
cessor, there is a 2.4% probability that its memory will be
corrupted by a soft error. We determine the number of
executions of the iterative method during the one day run
from the method’s average run time without any fault in-
jection. For all methods, soft errors have negligible impact
on our model application’s run time since our scenario re-
sults in a very low probability of a soft error occurring
during a one day run. The SDC rate varies between 0.02%
and 0.11%; although these rates may seem low, possible
unreported errors in their results trouble most application
scientists at even those frequencies. The silent data cor-
ruptions accumulate in the application’s state: longer run-
ning times, more processors or less reliable memory cause
the SDC rate to increase linearly. The high vulnerability
of sparse linear iterative methods and their significance to
application scientists highlights the need for techniques to
detect and to tolerate soft errors in these methods.

6 Soft Error Detection

We evaluate three types of random error detectors for it-
erative methods. Our Native Detector (ND) uses the cor-
rectness tests implemented as part of each SparseLib iter-
ative method to determine whether an error has occured.

Convergence detectors examine the sequence of resid-
ual norms. Since this sequence converges to our threshold
over time in error free executions, an error has proba-
bly occurred if later norms are increasing. However, the
methods can exhibit some increases even with correct ex-
ecution so our convergence detectors must tolerate them.
We consider the following convergence detectors:

• Multiple-based Detection (MD(m)): Signal an er-
ror if the immediately preceding residual’s norm was
a factor m smaller than the current residual’s norm;

• Averaging-based Detection (AD(a)): Signal an
error if the current residual’s norm exceeds the av-
erage norm of the last a residuals.

Algorithm-Based Fault Tolerance(ABFT) [9] en-
codes all matrixes and vectors using a linear error
correcting code. We augment each vector with an
extra entry that contains the sum of the other vector
entries. Similarly, we augment each matrix with an
extra checksum row and/or column, where each entry
in the extra row is the sum of its respective column
and vice versa. Linear operations such as matrix-matrix
multiplication, matrix-vector multiplication and matrix
factorization on encoded matrixes and vectors produce
encoded matrixes and vectors as their output. Our
ABFT detectors report an error when for some vec-
tor, row or column |currentSum − recordedSum| >

|max(currentSum, recordedSum)| ∗ tol, where
currentSum is the current sum of the vector’s en-
tries, recordedSum is the recorded sum and tol is a free
parameter. We consider the following AFBT detectors:

• ABFT NRC(tol): Standard ABFT scheme with a
checksum row and column; to prevent redundant er-
ror detections, we update the corresponding check-
sum entry to the current sum of the corrupted vector,
row or column when an error is detected;

• ABFT RC(tol): Extends ABFT NRC to update the
checksum every time a given vector or matrix row
or column is checked, which could help tolerate nu-
merical instabilities.

• ECC NRC(tol) and ECC RC(tol): Simplified variants
of the ABFT detectors in which we encode the data
structures used by SparseLib’s vectors and matrixes
with the same linear checksum code, which supports
faster checks due to better spatial locality and lack of
sparse matrix indirection logic but does not protect
against errors due to erroneous computation.

Our detectors other than ND have free parameters that
allow us to tailor detection accuracy to a specific iterative
method and matrix. For each method and matrix combi-
nation, we set the free parameter by running the iterative
method without error injection on all its other target ma-
trixes. For each of these matrixes we identify the most
relaxed value for the free parameter that does not detect
any errors (i.e., has no false positives). We then remove
the top and bottom 10% of free parameter values this
method identifies and use the average of the top, middle
and bottom thirds of the remaining values. Throughout
our remaining experiments, we identify these settings as
top, middle and bottom.

We compare each iterative method’s run time with each
of our seven detectors to the method’s fault free run time
with no error detection. Since they require little additional
computation, we evaluate the MD, AD and ND detectors each
iteration. Since they require significant additional compu-
tation, we study the impact of how frequently we use the
encoding-based detectors (ABFT RC, ABFT NRC, ECC RC and



ECC NRC). We evaluate these detectors every p iterations
for four values of p: 1, n, n2 and n3, where n3 is the total
number of iterations that the method requires to converge
for a particular matrix.

In our figures, we specify each configuration as
errDet-tolerance-testEvalPeriod, where:

• errDet is the error detector;

• tolerance is the detector’s free parameter setting:
bottom, middle or top; and

• testEvalPeriod is the number of iterations between
different evaluations of the test: 1, n, n2 or n3.

Figure 5(a) shows the overhead averaged across all
methods and matrixes (5 runs for each configuration) that
each detector incurs relative to the fault free run time. For
each detector with a free parameter, we show the overhead
for each detection tolerance setting: bottom, middle, top.
For the encoding-based methods, we show all four detec-
tion periods (1, n, n2 and n3). MD, AD and ND have minimal
overhead (0% - 1.5%) despite our evaluating them every
iteration. ND is the least expensive. MD and AD exhibit lit-
tle difference between detection tolerances. Our encoding-
based detectors impose a much higher overhead, ranging
from 60% to 80% when evaluated every iteration. As the
detection period rises, this overhead drops dramatically to
less than 15% for the two least frequent detection periods.

Figure 5(b) shows the average number of errors de-
tected for each detector, as a fraction of the total number
of iterations. All such detections are false positives. As
expected, tighter detection tolerances result in more false
positives: bottom has more false positives than middle,
which has more than top. MD(bottom) shows many more
false positives than other convergence-based tests, which
is consistent with smaller values of m mistaking ordinary
fluctuations in the residual’s norm for errors. The ABFT

tests have more false positives than the ECC tests, which
indicates that numerical instabilities can mislead these de-
tectors. The encoding-based tests that reset the encoding
after each test ( RC) have more false positives than those
that do not ( NRC); apparently frequent updates of the
checksum actually exacerbate numerical instabilities.

We examine the overhead of ABFT and ECC further in
Figures 6 and 7, which show the impact on the cost of
matrix-vector multiplication with ABFT and ECC enabled.
Matrix-vector multiplication is the most expensive opera-
tion that the iterative methods perform. We consider the
regular (M ∗v) and transpose (v∗M) and average the cost
over all matrixes, with 50 runs for each combination. Fig-
ure 6 shows the overhead of using the four ABFT and ECC

variants with both matrix-vector multiplications. ABFT

incurs between 6% and 18% overhead, while ECC imposes
less than 1% overhead. The performance impact on trans-
pose multiplication is two to three times that on regular

multiplication. Figure 7 shows a scatter-plot for ABFT RC

(one point per matrix), with the run time overhead on the
x-axis and on the y-axis the relative increase in the num-
ber of matrix non-zeros due to the encoding. Both regular
and transpose multiplication show strong correlations be-
tween the overhead and the number of extra non-zeros.

7 Soft Error Tolerance

Our soft error tolerance techniques combine checkpoint-
based recovery mechanisms with our detectors. Period-
ically checkpointing the entire application state is suffi-
cient but can be expensive for applications with significant
state. Thus, we evaluate two checkpointing options:

• ChkptAllVars: checkpoint all variables periodically;

• ChkptWOnce: checkpoint only the write-once variables
(e.g., A and b) before the main iteration;

We also combine these options with the perfect detector
PD, which signals an error one iteration after we inject a
bit-flip and, thus, is an upper bound on the protection any
detector can provide. We record checkpoints in RAM be-
cause the iterative methods have low run times that make
disk-based checkpointing impractical. For ChkptAllVars

we checkpointed the application once every p iterations,
using the same four values of p as in Section 6. With the
encoding-based detectors, we omit checkpointing periods
shorter than the error-detection period. In this section
and the following, we append the checkpointing period to
our naming scheme described in Section 6.

Figure 8 shows the difference between the overhead of
using ChkptWOnce with each error detector and the detec-
tor’s overhead from Figure 5(a), without any error injec-
tion. The overhead of ChkptWOnce varies with the detec-
tor used. Although each scheme has the same one time
checkpoint cost, different schemes have different error de-
tection rates. Since each error detection causes the ap-
plication to roll back its write-once data, more frequent
error detection incurs higher overhead. Thus, error detec-
tors with lower false positive rates incur a smaller overall
overhead. The checkpoint cost itself is quite small, as in-
dicated by the overhead under 1% for detectors with the
lowest false positive rates. PD’s overhead is zero since it
incurs no false positives.

Figure 9 shows the overhead with ChkptAllVars, com-
puted as with ChkptWOnce, grouping results by detector
and tolerance setting. Each bar color corresponds to a
checkpointing period. The overheads with ChkptAllVars

follow the same pattern as with ChkptWOnce. More fre-
quent checkpointing and high false positive rates incur
overhead as high as 300%. Alternatively, infrequent
checkpointing can drop the overhead to 10%-40%. Sim-
ple detectors have the lowest overheads with infrequent
checkpointing, generally between 5% and 30%. AD shows
a somewhat different pattern with overheads increasing
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Figure 5: Error Detection - (a) Overhead and (b) False Positives
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Figure 7: Matrix-Vector Multiplication Overhead vs. Non-Zeros
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Figure 8: Overhead of ChkptWOnce



with larger checkpointing periods since the false positive
rate of AD increases with an increasing checkpointing pe-
riod, which leads to more rollbacks.

8 Application Impact of Detection and Tolerance

We now apply our soft error detection and tolerance tech-
niques to the model application scenario described in Sec-
tion 5. We also evaluate the detectors separately from
the checkpointing mechanisms. We again assume that the
fault-free model application run takes one day. However,
some of our soft error tolerance techniques can increase the
iterative method’s run time significantly. To compensate,
the model application executes each iterative method the
same number of times for all error tolerance techniques.
Thus, the application does the same work but takes longer
and is therefore more vulnerable to soft errors with the
more expensive techniques. When using a detector only,
we assume the application re-executes a given run of an
iterative method again whenever the detector signals an
error. In all cases we assume that if a given run of an
iterative method aborts or times out, the method will be
re-executed by the application.

The overhead of each detection/tolerance technique
configuration is computed by taking its average run time
without error injection and computing the probability that
it will be affected by a soft error during this time. This
probability is then multiplied by the configuration’s aver-
age overhead among the four possible cases: success, SDC,
hang and abort. In the case of hang and abort the over-
head is increased to account for the re-execution of the
iterative method. We compute the SDC rate by multiply-
ing the soft error probability by the probability that the
soft error will result in an SDC.

Figure 10(a) provides a scatter plot of the overhead
and SDC probabilities of all our techniques, capturing the
impact of the tolerance setting. Figure 10(b) focuses this
plot on the more promising techniques, showing only those
with overhead less than 100% and SDC rates below 0.06%.
We observe no obvious correlation between the tolerance
setting and the resulting SDC rate, with Figure 10(b)
showing that all threee settings appear frequently even
among the options with the lowest SDC rates and over-
heads. While further study is needed to determine if this
trend holds for a wider tolerance range, we observe that
the appropriate tolerance stringency varies widely.

Figure 11 provides scatter plots that compare the ef-
ficacy of the detectors. We show points for PD (omit-
ted from Figure 10 since it has no tolerance parameter)
and Base, which uses no error detection or tolerance
technique. We observe that we can choose some toler-
ance setting and checkpoint mechanism for every detec-
tor to reduce the SDC rate with relatively low overhead.
However, convergence-based detectors usually result in a

higher SDC rate but lower overhead than encoding-based
methods. Further, encoding-based methods must be used
carefully since we observe the lowest and the highest SDC
rates correspond to techniques that use them.

The Base configuration features a very low overhead
and a moderate SDC rate. Interestingly, its SDC rate
(identified in Figure 11 by the horizontal line) is lower
than many configurations that use complex tolerance tech-
niques since Base executes more quickly than the other
configurations and, thus, it has the lowest probability of
being affected by a soft error.

Not surprisingly, the PD configurations offer the best
trade-off between SDC rate and overhead. PD, combined
with ChkptWOnce, provides an SDC rate of .12% and 4.5%
overhead. PD performs even better when combined with
ChkptAllVars using large checkpointing periods, provid-
ing a .003% SDC rate and 4%-6% overhead. Despite per-
fect detection, PD can incur an SDC if the error occurs
during checkpointing, which produces invalid checkpoints.
As such, PD has the highest SDC rate with ChkptAllVars

when using the shortest checkpointing period.
We observe that significant reductions in SDC are pos-

sible with realistic soft error tolerance techniques. For
example, WOnce-ABFT NRC-top-n2-1 reduces the SDC
rate to 0.0001%, a factor of 51 improvement over the
0.053% Base SDC rate at a cost of 76% overhead, while
AllVars-ABFT RC-bottom-1-1 reduces the SDC rate by
a factor of 133 relative to Base at a cost of 143% over-
head. Meanwhile, AV-MD-top-n3 and AV-MD-middle-n2

impose a 3.4% and 12% overhead, respectively, while re-
ducing the SDC rate to 0.034% and 0.029%, factors of 1.5
and 1.8 improvement over Base.

This discussion and our scatter plots show the difficulty
of identifying a “best” error tolerance technique. Not only
must we trade-off between reduced vulnerability and over-
head but a technique’s performance depends on its toler-
ance setting and test evaluation frequency. Therefore, we
compare the techniques based on Overhead + SDC ∗ c,
where c is a constant that can focus the metric to favor
solutions that are either more efficient (low values of c) or
more reliable (high values of c). We list the top 20 error
detection/tolerance configurations for several values of c in
Table 1, in which we prepend our detector naming scheme
used in our figures with WO (for ChkptWOnce), AV (for
ChkptAllVars) or ED (for no checkpointing, i.e., “Error-
Detection” only) to indicate the checkpoint option. When
performance is most important the best configurations are
Base and the variants of MD and ED. As we adjust c

to focus on low SDC rate, the encoding-based detectors
and full checkpointing become more appealing, tighter
tolerance settings generally producing the best SDC re-
sults. c = 1, 000 appears to be the point where the set of
top techniques switches from performance-oriented tech-
niques to reliability-oriented techniques. We observe that
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Figure 9: Overhead of ChkptAllVars
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Figure 10: Comparing Overhead and SDC for Tolerance Settings
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Figure 11: Comparing Overhead and SDC for Different Detectors

few ED (i.e., no checkpointing) configurations appear for
large values of c, indicating that some checkpoint mecha-
nism is essential to tolerate soft errors. Furthermore, ND

only appears among the top detectors when SDCs are not
important, implying that these simple sanity checks are
not sufficient for detecting soft errors.

9 Prior Work

Prior work on fault injection falls into two general cate-
gories: (i) low-level studies of specific hardware and (ii)
high-level studies of specific applications. Low-level stud-
ies focus on an SER evaluation of a specific piece of elec-
tronics such as a microprocessor [8][11][13], an FPGA [21]
or a fault tolerant architecture [2]. Such work typically ex-
amines the raw error rate of the examined hardware but
does not examine how these errors will affect real appli-
cations. Although such studies typically use specific ap-
plications as part of their experiments, these applications
are either low-level testers [8][11][13][21] or simple appli-
cations [8][21][2]. For example, Kudva, etal. [11] used an
IBM Power6 architectural verification program, Hiemstra
and Baril [21] used a Windows NT workload generator
and Arlat, etal. [2] used a controller application that kept
a ball moving in a circle on a tiltable plane. While this
category of work accurately estimates the soft error rates
of physical devices, it provides little insight into the soft
error properties of real applications. At best it provides
raw error rates that may be used by higher-level studies
to perform a more detailed application-level analysis.

High-level studies focus on the soft error vulnerability
of a short list of specific applications. In particular, Lu
and Reed [4] evaluated the soft error vulnerability of three

MPI applications, showing correlations between error in-
jection sites and the application’s vulnerability to such
errors. Skarin, etal. [20] took a similar approach to evalu-
ate the soft error vulnerability of a brake-by-wire system
for automobiles. Although both studies thoroughly evalu-
ate the soft error vulnerability of their target applications,
they provide little insight about the vulnerability of other
applications, which makes it difficult to generalize the re-
sults. Alternatively, Messer, etal. [14] evaluated the soft
error vulnerability of a realistic software stack. Although
they focused on a specific combination of software compo-
nents, they separated the effects of the operating system
and the software stack, which illuminates the soft error
properties of other applications running on the same OS
and the same application running on different OSs.

The primary limitation of prior work is its restricted
ability to predict the soft error properties of arbitrary
applications. In contrast, this study represents an early
step in developing this generic capability by character-
izing the soft error properties of iterative linear meth-
ods, a common component of many scientific applications.
Furthermore, this study presents and evaluates a variety
of fault detection and tolerance mechanisms, informing
future efforts to protect scientific applications from er-
rors. This includes the first experimental evaluation of
Algorithm-Based Fault Tolerance [9][16] encoding tech-
niques on sparse matrixes.

10 Summary

We experimentally measure the soft error vulnerability
of iterative methods and modeled the impact on large
scale parallel applications based on them. Contrary to



c=1 c=10 c=100

ED-ND-1 ED-ND-1 ED-ND-1
Base Base Base
ED-AD-middle-1 ED-AD-middle-1 ED-AD-middle-1
ED-MD-top-1 ED-MD-top-1 ED-MD-top-1
ED-AD-top-1 ED-AD-top-1 ED-AD-top-1
ED-MD-middle-1 ED-MD-middle-1 ED-MD-middle-1
ED-AD-bottom-1 ED-AD-bottom-1 ED-AD-bottom-1
ED-MD-bottom-1 ED-MD-bottom-1 ED-MD-bottom-1
AV-MD-top-n3 AV-MD-top-n3 AV-MD-top-n3

AV-ND-n3 AV-ND-n3 AV-ND-n3

WO-AD-top-1 WO-AD-top-1 WO-AD-top-1
WO-ND-1 WO-ND-1 AV-MD-top-n2

AV-MD-top-n2 AV-MD-top-n2 WO-MD-top-1
AV-ND-n2 WO-MD-top-1 WO-AD-middle-1
WO-MD-top-1 AV-ND-n2 WO-AD-bottom-1
WO-AD-middle-1 WO-AD-middle-1 WO-ND-1
AV-AD-top-n2 AV-AD-top-n2 AV-ND-n2

WO-AD-bottom-1 WO-AD-bottom-1 AV-AD-top-n2

WO-MD-middle-1 WO-MD-middle-1 WO-MD-middle-1
AV-MD-middle-n2 AV-MD-middle-n2 AV-MD-middle-n2

c=1,000 c=10,000 c=100,000
AV-ABFT NRC-bottom-n2-n2 AV-ECC RC-bottom-1-n3 AV-ABFT RC-bottom-1-n3

AV-MD-top-n3 AV-ABFT RC-bottom-1-n3 AV-ECC RC-bottom-1-n3

AV-ECC NRC-bottom-n2-n2 AV-ECC RC-bottom-1-n2 AV-ABFT RC-bottom-1-1
AV-ABFT RC-middle-n2-n2 AV-ECC RC-bottom-1-n AV-ECC RC-bottom-1-n
AV-ECC RC-bottom-n-n AV-ECC RC-bottom-n-n AV-ECC RC-bottom-1-n2

AV-MD-middle-n2 AV-ABFT RC-bottom-1-n2 AV-ABFT RC-bottom-1-n2

WO-AD-bottom-1 AV-ABFT RC-bottom-1-n AV-ABFT RC-bottom-1-n
AV-MD-top-n2 AV-ABFT NRC-bottom-1-n2 AV-ECC RC-bottom-1-1
AV-ABFT RC-bottom-n2-n2 AV-ABFT RC-middle-1-n2 AV-ABFT NRC-bottom-1-n2

AV-ECC RC-bottom-n2-n2 AV-ABFT NRC-bottom-1-n3 AV-ABFT RC-middle-1-n2

WO-MD-top-1 AV-ECC RC-middle-1-n2 AV-ABFT NRC-bottom-1-n3

AV-ABFT RC-bottom-n3-n3 AV-ABFT RC-middle-1-n3 AV-ECC RC-bottom-n-n
WO-MD-middle-1 AV-ECC RC-middle-1-n3 AV-ABFT RC-middle-1-n3

WO-AD-top-1 AV-ABFT RC-bottom-1-1 AV-ABFT RC-middle-1-n
AV-MD-middle-n3 AV-ECC RC-bottom-n-n3 AV-ECC RC-middle-1-n2

WO-AD-middle-1 AV-ABFT RC-middle-n-n AV-ABFT NRC-bottom-1-n
AV-ABFT RC-top-n-n AV-ABFT RC-top-n-n3 AV-ECC RC-middle-1-n3

AV-ABFT NRC-bottom-n3-n3 AV-ABFT RC-middle-1-n AV-ECC RC-bottom-n-n3

AV-ECC NRC-bottom-n3-n3 AV-ABFT NRC-bottom-1-n AV-ABFT NRC-bottom-1-1
AV-ABFT NRC-middle-n2-n2 AV-ECC RC-bottom-1-1 AV-ABFT RC-middle-1-1

Table 1: Top 20 error detection/tolerance configurations for different c’s



common opinion, we demonstrate that the methods and,
thus, the applications can show high rates of hangs, aborts
and silent data corruptions. We also show that simple
soft error detectors can provide low overhead mechanisms
with few false positives. However, these techniques prob-
ably do not provide an acceptable reduction in applica-
tion soft error vulnerability. Instead, we show that the
trade-off between SDC rate and overhead almost always
favors checkpoint-based techniques. Overall we demon-
strate that consideration of the soft error vulnerability of
sparse iterative linear methods is important for successful
supercomputing.
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