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1. I n tr o d u c t io n

The search for supersym m etry (SUSY) [1, 2] is among the most im portant tasks at cur
rent and future colliders. Squarks and gluinos, the coloured supersym m etric particles, are 
expected to  be produced most copiously in hadronic collisions. Searches at the proton
antiproton collider Tevatron with a centre-of-mass energy of \ / 5  =  1.96 TeV have placed 
lower limits on squark and gluino masses in the range of 300-400 GeV [3, 4]. The proton
proton collider LHC with \ / 5  =  14 TeV design energy will extend the range of sensitivity 
to  squarks and gluinos with masses up to  about 3 TeV [5, 6 , 7].
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In the minimal supersym m etric extension of the S tandard Model (MSSM) [8, 9] with 
R -parity conservation, squarks and gluinos are pair-produced in collisions of two hadrons 
h\  and h2:

h i h 2 ^  qq ,qq ,gg +  X .  (1.1)

In Eq. (1.1) and throughout the rest of this paper we suppress the chiralities of the squarks 
q =  (qL,qn) and do not explicitly sta te  the charge-conjugated processes. We include 
squarks q of any flavour except for top squarks. The production of top squarks [10] has to 
be considered separately since the strong Yukawa coupling between top quarks, top squarks 
and Higgs fields gives rise to  potentially large mixing effects and mass splitting [11].

Accurate theoretical predictions for inclusive cross sections are crucial to  derive exclu
sion limits for squark and gluino masses [3, 4] and, in the case of discovery, can be used to 
determ ine sparticle masses [12] and properties [13]. The cross sections for the squark and 
gluino pair-production processes (1.1) are known at next-to-leading order (NLO) in SUSY- 
QCD [14, 15, 16]. Electroweak corrections to  the O(a^)  tree-level production [17, 18, 19, 20] 
and the electroweak Born production channels of O ( a a s) and O ( a 2) [21, 22] are signifi
cant for the pair production of SU(2)-doublet squarks qL and at large invariant masses in 
general, bu t they are m oderate for to ta l cross sections summed over all squark species.

The NLO SUSY-QCD corrections to  squark and gluino hadroproduction reduce the 
renorm alization- and factorization-scale dependence of the predictions. In general these 
corrections also significantly increase the cross section w ith respect to  the Born predic
tions [23, 24, 25] if the renorm alization and factorization scales are chosen close to  the 
average mass of the pair-produced sparticles. A significant part of these large corrections 
can be a ttribu ted  to  the threshold region where the partonic centre-of-mass energy is close 
to  the kinematic threshold for producing massive particles. In this region the NLO cor
rections are dom inated by the contributions due to  soft gluon emission off the coloured 
particles in the initial and final state  and by the Coulomb corrections due to  the exchange 
of gluons between the massive sparticles in the final state. The soft-gluon corrections can be 
taken into account to  all orders in pertu rbation  theory by means of threshold resum mation.

Previous work has addressed the soft-gluon resum m ation for squark-antisquark and 
gluino-gluino production at next-to-leading-logarithmic (NLL) accuracy [26, 27]. For the 
squark-antisquark production process the dom inant contribution to  the next-to-next-to- 
leading order (NNLO) correction coming from the resummed cross section at next-to- 
next-to-leading-logarithm ic (NNLL) level has been studied in [28]. Moreover, a formalism 
allowing for the resum m ation of soft and Coulomb gluons in the production of coloured 
sparticles has been presented in [29, 30], and bound sta te  effects have been studied for 
gluino-pair production in Ref. [31]. Additionally, threshold resum m ation for single colour- 
octet scalar production at the LHC has been investigated in [32].

In this work, we present the analytical components needed to  perform NLL resum m a
tion for squark-squark and squark-gluino pair-production. In addition, we provide num er
ical predictions for the entire set (1.1) of pair-production processes of coloured sparticles 
at the Tevatron and the LHC.

The paper is structured as follows. In section 2 we review the formalism of soft-gluon
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resum m ation. The calculation of the one-loop soft anomalous dimension matrices for the 
qq and qg production processes is discussed in section 3. We present numerical results 
for squark and gluino production at the Tevatron and the LHC in section 4 and conclude 
in section 5. A more detailed description of certain aspects of our calculation and some 
explicit formulae th a t enter the expressions for the resummed cross sections are collected 
in the appendices.

2. S o f t -g lu o n  r e su m m a tio n

In this section we review the formalism of threshold resum m ation for the production of 
a pair of coloured massive particles. Since the corresponding theoretical expressions have 
already been discussed in detail in Ref. [27], we shall be brief.

The inclusive hadroproduction cross section ahlh2^ kl for two massive SUSY particles 
k and l, where k, l can be a squark (q), antisquark (q) or gluino (g), can be w ritten  in term s 
of its partonic version Uij^ kl as

\ m 2}) =  ^  ^ahih2^hi{p, { m 2}) =  j  d x i dx2 dp ^ P x 1x 2i,j

^ f i/hi  (x1, ß  ) f j/h2 (x2, ß  ) @ i j kl (Â { m 2} ,ß 2) , (2.1)

where {m2} denotes all masses entering the calculations, i, j  are the  initial parton flavours, 
f i/h1 and f j/h 2 the parton distribution functions, and ß  is the common factorization and 
renorm alization scale. The hadronic threshold for inclusive production of two final-state 
particles w ith masses m 3 and m 4 corresponds to  a hadronic center-of-mass energy squared 
th a t is equal to  S  =  ( m 3 +  m 4)2. Thus we define the threshold variable p, measuring the 
distance from threshold in term s of energy fraction, as

_  (m 3 +  m 4)2 
P ~  S  '

The partonic equivalent of this threshold variable is defined as p =  p /(x 1 x 2), where x 1)2 

are the  momentum  fractions of the partons. This is a generalized version of the threshold 
variable used e.g. in Ref. [27]. It accounts for unequal masses of the  pair-produced particles 
in the final state, making it applicable to  the case of squark-gluino production.

In the threshold region, the most dom inant contributions to  the  higher-order QCD 
corrections due to  soft gluon emission have the general form1

a™ logmß 2 , m  < 2n w ith ß 2 = 1 — p = 1 — (m 3  +  m¿1)  ̂ ^ . 2)

where s =  x 1x 2S  is the  partonic center-of-mass energy squared. The resum m ation of the 
soft-gluon contributions is performed after taking a Mellin transform  (indicated by a tilde)

1 See section 3 for more discussion on the form of a threshold variable in the case of unequal masses.
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of the cross section,

(2.3)

=  Y 1  f  i/hi (N  +  1 ,^ 2) f  j/h2 (N  +  l , ^ 2) ° i j ^k l  (N,  {m 2} , ß 2) .

The logarithmically enhanced term s are then of the form a 2 logm N , m <  2n, w ith the 
threshold limit ß  ^  0 corresponding to  N  ^  to . The resummed cross section takes the 
schematic form [33, 34]

in which all dependence on the large logarithm  L =  log N  occurs in the exponent, and no 
term  in the perturbative series P ( a s) grows w ith increasing N . Keeping only the g1 term  
constitutes the  leading logarithmic (LL) approxim ation, including also the g2 term  is called 
the next-to-leading logarithmic (NLL) approxim ation, etc. Up to  NLL accuracy it suffices 
to  keep the  lowest-order term  in P .

The all-order sum m ation of such logarithmic term s depends on the near-threshold 
factorization of the cross sections into functions th a t each capture the effects of classes of 
radiation effects: hard, collinear (including soft-collinear), and wide-angle soft radiation
[33, 34, 35, 36, 37, 38]

à i j^k l (N ,  { m 2} , ß 2) =  A i(N  +  1 ,Q2, ß 2) A j(N  +  1 ,Q 2, ^ 2)

^  H i j^k l , J i (N ,  { m 2} ,^ 2) S i j ^ k l , i J ( Q / ( N ß ) , ß 2) , (2.5)

each function separately, we recall th a t soft radiation is coherently sensitive to  the colour 
structure  of the hard process from which it is em itted [39, 35, 40, 36]. The various structures 
are labelled by the indices I , J  in a way made more precise further below.

The functions A i and A j sum the effects of the (soft-)collinear radiation from the 
incoming partons. They are process-independent and do not depend on the colour struc
tures. They contain the leading logarithmic dependence, as well as part of the subleading 
logarithmic behaviour, and are listed e.g. in Ref. [27].

The function H ij ^ kl,JI incorporates only higher-order effects of hard, off-shell partons 
and therefore does not contain log N  dependence. This hard function depends on the colour 
representations of the external particles in the partonic process. There are usually m ultiple 
tensors cI  th a t can connect these colour representations, where I  labels the possible tensors. 
For instance, in the case of squark-antisquark (with colour indices a3,a4) production by 
the annihilation of light quarks (with colour indices a 1,a 2) there are two colour tensors, 
which may be chosen as

àhih2 ^ k l ( N ) =  exp Lg1(asL) +  g ¡(a sL) +  . . .  x P (a s ) , (2.4)

IJ

where we have introduced the hard scale Q 2 =  ( m 3 +  m 4)2. Before we comment on

c1(a1,a 2, a 3,a 4) — ^aia2 &as

c2(a1, a 2; a 3, a4) =  Taia2 Tai

(s-channel singlet), 

(s-channel o c te t) . (2 .6)
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The hard function H ij ^ kl,JI is a m atrix  in this colour-tensor space, with the indices J I  
indicating the colour structure. Note th a t we paired the indices in example (2.6) according 
to  the s-channel. O ther choices are possible as well [39, 40, 37], but choosing an s-channel 
basis will be convenient at threshold.

The soft function S j ^ kl,IJ  in Eq. (2.5) is also a m atrix  in colour-tensor space, since soft 
emissions mix the connecting colour tensors. This soft function is constructed [40, 37] from 
an eikonal cross section, which in tu rn  is defined in term s of the square of expectation values 
of products of Wilson-line operators belonging to  the external particles in the process. 
These W ilson lines generate to  all orders the  soft-gluon radiation in the process and depend 
on the direction and colour representation of the corresponding external particle. To avoid 
double counting w ith the A i and A j factors in Eq. (2.5), the expectation values are divided 
by the square of expectation values of the W ilson lines themselves. In this way, collinear- 
soft radiation already included in the A i and A j factors is removed. W hat remains is a 
soft function whose perturbation  series takes the form a^  logmN , m <  n, and therefore 
contributes only at NLL accuracy.

Although the combination of the soft and collinear functions in the cross section is 
gauge invariant, the functions themselves are not autom atically separately gauge invariant. 
The collinear functions only depend on the colour representations of the incoming partons. 
Therefore the gauge dependence of the soft function cannot depend on the colour structure 
of the process either. This implies th a t we can make the soft and collinear functions 
separately gauge invariant by rescaling them  with a scalar in colour-tensor space. This 
rescaling has implicitly been performed in Eq. (2.5), where the soft function has been 

divided by \ J »S'*-111® S^ ng as indicated by the bar on S i j ^ ki,u-  The factor ¿>tmg is the 
soft function for two incoming W ilson lines of flavour i and i annihilating into a colour- 
singlet2. By taking the square root of such a soft function, we effectively isolate the gauge 
dependence of a single line. Therefore this procedure works not only for qq or gg initial 
states bu t also for initial states th a t cannot annihilate into a colour-singlet, such as qg and 
qq. To com pensate for the  division factor in the soft function, the collinear functions A¿ 

and A j have been m ultiplied by the factors \ J ¿>*-illg and S [ respectively. Analytical 
expressions for these functions given in the literature (see e.g. Ref. [27]) explicitly include 
this multiplicative factor.

Near threshold the soft function reduces considerably. For the inclusive cross section 
and our choice of colour basis, the m atrix  S j ^ kl,IJ  becomes diagonal in colour-tensor space 
in the threshold limit ß  ^  0 [27]. In this limit we have (suppressing particle flavour labels)

ß^0

with

lim S i j { Q / ( N ß ) , ß 2) =  S u  S J  AIs) ( Q / ( N ß ) , ß 2) (2.7)

A /^  ( Q / (N ß ) ,  ¡j2) = exp í  j (2 .8)
L J u q n

2 Note that if the colour representations are 3 and 3 this corresponds to the Drell-Yan process. For 
octets, it corresponds to Higgs production by gluon fusion.

- 5 -



where s J  is the lowest-order expression for the soft function, given by

S J  =  tr  ( 4  J  . (2.9)

The one-loop coefficients D i  are defined by
n -

D i  = lini — 2 R  e ( T / / ) .  (2 -10)
ß^o  as

The values of the D I coefficients for qq and qg production are calculated in section 3.4.3. 
The form of Eq. (2.8) follows from a renorm alization-group equation for S i j ( Q / ( N ß)) 
[35, 37], w ith one-loop anomalous dimensions f ij Lk l ,I J , often referred to  as the “soft” 
anomalous-dimension m atrix. If the calculations are performed in the axial-gauge with 
gauge vector n ß , the one-loop anomalous dimensions are given by

r »  = y  c *> f 1 -  ><«(2 ) -  " )  S" . (2-n )
p={i,j }

where the sum is over the two incoming particles, and |n |2 =  —n 2 — ie, see Ref. [39]. The 
dimensionless vector vp is given by the m om entum  of the incoming massless particle p 
multiplied by a/ 2 / s . The factors C 2 ,P are either C f  or Ca,  depending on whether p is 
a quark or gluon, respectively. The subtraction exhibited in Eq. (2.11) results from the

division by the factor \ J »S'*-111® Sj'-ng described before. The m atrix  T / j  is the anomalous 
dimension m atrix  of the products of Wilson-line operators connected by the various possible 
colour tensors mentioned earlier. More details on its calculation are given in section 3.4. 

In the threshold limit the resummed partonic cross section becomes

^ jiü )kl(N , {m 2} ß 2) =  ^  j kl,i( N  {m2} ß 2) ° i j ^ k l , i (N , {m 2},ß 2) (2.12)
I

x A i(N  +  1, Q 2, ß 2) A j(N  +  1, Q 2, ß 2) A (S l k l , i (Q /(N ß ) ,ß 2) ,

where kl i  are the  leading-order (LO) cross sections in Mellin-moment space. For the 
case of qq and qg production we present them  in appendix A. The functions Cij Lk l ,I  are 
of perturbative nature and contain information about hard contributions beyond leading 
order. This information is only relevant beyond NLL accuracy and therefore we keep 
Cij Lk l ,I  =  1 in our calculations.

Having constructed the NLL cross-section in the Mellin-moment space, the  inverse 
Mellin transform  has to  be performed in order to  recover the hadronic cross section 
ahlh2Lkl. In order to  retain  the inform ation contained in the NLO cross sections [14, 15, 16], 
the NLO and NLL results are combined through a m atching procedure th a t avoids double 
counting of the logarithmic term s in the following way:

™’cM ) (p, {m2} ,ß 2) =  < L O 1kl(P . {m2}, ß2) (2.13)

+  ^  Í  p N f  i/hi (N  +  1,ß2) f  j /h2 (N  +  1,ß2) 
i M o  ycT

~vjSkl(N,  {m2  } ,ß 2 ) — 7 (JiLL)kl(N, {m2} ,ß 2) 1 (NLO)
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We adopt the “minimal prescription” of Ref. [41] for the contour CT of the inverse Mellin 
transform  in Eq. (2.13). In order to  use standard  param etrizations of parton distribution 
functions in x-space we employ the m ethod introduced in Ref. [42].

3. S o ft  a n o m a lo u s  d im e n s io n s  a n d  B o r n  c r o ss  s e c t io n s  for  qq a n d  qg p r o 
d u c t io n

3.1 K in em atics

To set the stage for the discussion of the  soft anomalous dimensions we first introduce the 
relevant kinem atical definitions th a t are used in the calculation. We consider the following 
generic process

i (a i ,p i)  j(a , 2 ,P2) ^  k(a3,p3) l(a4, P4) , (3.1)

where the colour indices ai and the m om enta of the particles pi are given in parentheses. In 
those cases where a final-state squark features in the process, sum m ation over both  squark 
chiralities (q L and q R) and all possible squark flavours is implied, the la tte r being restricted 
by the choice of initial-state quark flavours. For the processes investigated here, i.e. squark- 
squark (kl =  qq) and squark-gluino (kl  =  qg) production, top-squark final states are not 
possible since top quarks are excluded as initial-state partons. In view of the absence of 
top-squark final states, all squark-flavour and chirality states are considered to  be mass 
degenerate w ith mass m¿¡. The gluino mass is denoted by mg.

All analytical results presented in section 3 are derived for a general SU(NC )-theory, 
w ith N C the num ber of colours. This means th a t the colour indices ai for gluons and gluinos 
can take N^ — 1 different values, since these particles are in the  adjoint representation. For 
(s)quarks, which are in the fundam ental representation, the colour indices are N C-valued.

The particle m om enta featuring in the generic process (3.1) obey the on-shell conditions 
P2 =  P2 =  0 , P2 =  m 2 and p\  =  m4. For the kinem atical description of the reactions the 
standard  M andelstam  invariants

s =  (pi +  P2)2 , t  =  (pi — P3)2 and u =  (pi — P4)2 (3.2)

are used. In the centre-of-mass frame of the final-state particles the absolute value of the 
final-state m om enta can then be w ritten  as

\ p 3 \ c m  =  \ r n \ c m  =  ^ n ß y / s ,  (3.3)

with ß  = y / l  — (m 3 +  ni i )2/ s  defined in Eq. (2.2) and

K =  (3.4)

The presence of the factor k is special to  the case of unequal masses. As Eq. (3.3) 
shows, it occurs quite naturally  in m atrix-element expressions for the processes we consider 
in this study. We could have defined the variable ß  =  nß  and taken moments with respect 
to  this variable. Instead we have opted to  use the variable ß  in our calculations in order to
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facilitate convolutions underlying the resum m ation. Because log ß'  =  log ß + log  k, choosing 
ß ' would have resulted in different subleading logarithmic term s. To NLL accuracy these 
differences in the expressions for the resummed partonic cross sections are cancelled by 
different term s arising from the convolutions.

In order to  present the results for the leading-order partonic cross sections it is helpful 
to  introduce two more shorthand notations:

m + =  m~ +  m~ and m -  =  m~ — m ~ . (3.5)

3.2 C o lo u r  b a se s  in  th e  s -c h a n n e l

As discussed in section 2, colour correlations need to  be taken into account once NLL 
soft-gluon resum m ation is performed for processes involving pair-production of coloured 
particles. To this end an appropriate colour basis has to  be chosen. We have opted to  use 
an s-channel colour basis, which traces the colour flow through the s-channel and has the 
v irtue of rendering the anomalous dimension m atrices diagonal at threshold [40, 26, 27, 29].

Since we are dealing w ith two coloured particles in both  initial and final state, the s- 
channel basis is obtained by performing an s-channel colour decomposition of the reducible 
two-particle product representations into irreducible ones. For squark-squark and squark- 
gluino production this am ounts to  the following decompositions in SU(3):

qq ^  qq : 3 © 3 =  3 ® 6 ,

qg ^  qg : 3 © 8 =  3 © 6 © 15 , (3.6)

where the product representations apply to  both  the initial and final state. In a general 
SU(NC)-theory the dimensions of the various representations are of course different, but 
the num ber of base tensors for these two processes remains the same.

An economic way to  construct the s-channel colour bases for squark-squark and squark- 
gluino production is to  s ta rt w ith an arb itrary  complete colour basis of the considered 
process in term s of which the s-channel base tensors cI (a 1 ,a 2; a 3,a 4) can be expressed. 
Then the s-channel basis can be obtained by simply requiring th a t a particular base tensor 
is orthogonal to  all o ther base tensors and projects on itself when contracted in s-channel:

^  cI (a 1 , a 2; b, b') cI>(b,b' ; a 3,a 4) =  Z8II> cI (a1,a 2; a 3,a 4) ,  (3.7)
b,b'

where Z  is an arb itrary  normalization constant. A similar procedure was found by the 
authors of Ref. [29] on the basis of an analysis in term s of Clebsch-Gordon coefficients. 
This projective construction of the s-channel base tensors constitutes a direct way of ob
taining explicit im plem entations of the irreducible representations on the right-hand side 
of Eq. (3.6). The minimal requirem ent for the projective m ethod to  work is th a t the par
ticles in the initial state  m ust be in the same representations as those in the final state, as 
follows directly from the fact th a t the labels of the initial sta te  are contracted with those 
of the final state  in Eq. (3.7). This is indeed the case for both  the squark-squark and 
squark-gluino production processes. An example of the calculation of the s-channel colour 
basis for the qq ^  qq process is given in appendix B.
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In order to  present the s-channel base tensors in the subsequent text, we will need 
the following SU(NC )-objects: the  singlet colour structures Sab, where a and b belong 
to  particles in either the adjoint or the fundam ental representation, the generators of the 
fundam ental representation TCb, the structure  constants f abc and the symmetric forms dabc.

3.3 L eading-order p arton ic  cross sectio n s

Having defined all necessary ingredients, we can now present the results for the colour- 
decomposed qq and qg partonic cross sections at LO. These partonic cross sections are 
averaged over initial-state spin and colour. The colour-decomposed LO cross sections for 
the qq ^  qij, gg ^  qij, qq ^  gg and gg ^  gg processes, together w ith their Mellin-moment 
transform s, can be found in Ref. [27].

3.3 .1  Squark-squark p rod u ction

We consider the process

qf i ( a i ,p i)  qf2(a2,P2) ^  q(a3,P3) q (a4,P4) ,  (3.8)

where the flavours of the initial-state quarks are indicated by f 1, f 2 and all external particles 
are in the fundam ental representation of SU(NC ). The m ethod described in section 3.2 to 
obtain a suitable s-channel colour basis yields the following two colour tensors:

c1 =  Saia4 Sa2 as Saias Sa2 a4 and c2 =  Saia4 Sa2as +  Saias Sa2 a4 • (3.9)

The dimensions of the representations spanned by these two base tensors are given by 
dim(_ñ^9) =  \ N c {Nc — 1) and dim (i?29) =  \ N C{NC +  1). In the SU(3) case this basis 
coincides up to  norm alization factors with the base tensors given in Ref. [29] for the 3 
and 6 representations. The decomposition of the LO partonic squark-pair cross section in 
term s of the  base tensors (3.9) is given by

a (0)
qq >qq> i

na2  ( N C  —  1 ) ( N c  +  1 )

a (0)
qq >qqr,2

n a2 (N C — 1)(NC — 1)
4N 3 s

2 m - +  s

— 2mg

Li S1 Sf if2

---- 9 ^  1 ^ fl f2 -2 m - +  s

2 m - +  s 2 m - +  smg
L 1 -------- 3----------ß

s

2 m -  +  s
L1

m -  +  sm~

2 m - +  smgb
m -  +  sm~ ß

with

L 1 =  log
s +  2 m - — sß  
s +  2 m - +  sß

The quantities ß  and m -  are defined in Eqs. (2.2) and (3.5), using m 3 =  m 4 =  mg. The 
occurrence of the  Kronecker-delta Sfi f 2 reflects the fact th a t for equal-flavoured initial-state 
quarks extra diagram s contribute. In appendix A we present results for the Mellin-moment 
transform s of these colour-decomposed LO cross sections.

s
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3.3 .2  Squark-glu ino p rod u ction

At the partonic level the qg production process is given by

qfi(a1,p1) g(a2,P2) ^  )(a3,P3) g (a4,P4) • (3.10)

The initial and final sta te  of this process involves both  a particle in the fundam ental rep
resentation (q or ))  and a particle in the adjoint representation (g or g ). For the s-channel 
colour decomposition the following three base tensors are used:

cq9 =  / T  a4 T  a2\
1 V ' asai ’

N  — 2 N  — 2qg _  t l ç _ _ L  Ä X — Ori T c -Ì- ° c (rr a/iT a2\
'2  2a4 a l a3 ^ u ca4a2J-a3ai _/y _   ̂ /«3«l >

4 S = ^“2 a4 & a ia3 +  2dmia2T Ca3ai -  2 {TaiT a2)a3ai . (3.11)

The dimensions of the representations spanned by these three base tensors are given by 
dim(_R^a) =  N c , dim (i?2ö) =  ^ c ( ^ c + l ) ( ^ c —2) and dim (i?3ô) =  ^ N C(N C — 1)(NC +  2). 
In the SU(3) case this basis coincides up to  normalization factors with the base tensors 
given in Ref. [29] for the 3, 6 and 15 representations. The decomposition of the LO 
partonic squark-gluino cross section in term s of the base tensors (3.11) is given by

(0)a qg^qg,

aqg^qg,

a (0) -- qg^qg,

with

The quantities ß ,  k and m ± are defined in Eqs. (2.2), (3.4) and (3.5), using m 3 =  mg 
and m 4 =  mg. In appendix A we present results for the Mellin-moment transform s of 
these colour-decomposed LO cross sections.

3.4 T h e soft an om alou s-d im en sion  m atr ices

As we reviewed in section 2 below Eq. (2.11), resum m ation to  NLL accuracy requires the 
anomalous dimensions r IJ  of the products of W ilson-line operators connected by a base 
tensor c / . To this end one m ust com pute the UV divergences from their loop corrections, 
and from these the renorm alization constants Z i j  for these operators. Here we only need

2

(NC2 — 1)s
2m ~m - 2m -  +  s2 +  2m - s  2'

—  N c  ] L 2
s 2 2s2

+ m - m 2 — s 2m 2
— -------- 1--------

s N l  s L 3
7m2 +  3s 2 3 m 2 +  s 7 m 2 — s 

'  N 2 -  —  +  -

«S k ( N c -  2)
(N c -  l )s

a 2i r ( N c  +  2) 
(N c +  l)s

2m -(m +  — s) — s2 
4s2

2m -(m +  — s) — s2 
4s2

4s 

L2 +

L2 +

2s 4 N 2 sc

m -(m +  — s) 
2s 2

m -(m +  — s) 
2s 2

m -
L s  — -----  K>ß

m -Ls — nß

Kß

, 's  +  m -  — K sß \ 
2 _  ° g * s + m 2_ + n sß  )

and L 3
s — m -  — Ksß 
s — m -  +  Ksß

1

s

2

3
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the one-loop corrections. The anomalous dimensions can be com puted from the residues 
of the UV poles in the renorm alization constants Z i j  as

d
T / j  =  - a s- — Resg^o Z u ( a s, e ) . (3-12)

d a s
The relevant UV divergences occur in loop corrections to  the base tensors c/  [40, 37] due 
to  the Wilson lines. The complete first order correction to  ci  can be w ritten  as

w%jC/ j  cj  , (3.13)
ij

where i and j  denote the eikonal lines between which the gluon is spanned, wij is the 
corresponding kinematic part of the one-loop correction, and C /j denotes how the base 
tensors get mixed due to  the  corrections. At one-loop we can calculate the anomalous 
dimensions directly from Eq. (3.13)

r / j  =  — ^  C J  Resê o  wij • (3.14)
ij

The precise form of this function depends on the colour basis chosen. The eikonal integrals 
th a t constitu te the wij can be found in Ref. [40], except for the unequal-mass case th a t 
we need for squark-gluino production. The corresponding integral w34 is discussed in 
appendix D, using the Feynm an rules in the eikonal approxim ation presented in appendix C.

In order to  present the results for the soft anomalous dimensions in a compact way, 
we introduce the following t- and u-channel quantities

A =  ^ [ T ( m 3) + T ( m 4) +  U ( m 3) +  U ( m 4)] ,

Q =  ^  [T (m 3) + T ( m 4) -  [ /(m 3) -  [ /(m 4)] , (3.15)

in term s of the t- and u-channel logarithm s3

, /  m 2 — A  1 — in  , , /  m 2 — u \  1 — in  
T{m)  = log — -------------—  and U(m)  =  log — ------------- — . (3.16)

sm 2 2 sm 2 2

The one-loop soft anomalous-dimension m atrices for the qq ^  )<?, gg ^  )q , qq ^  gg 
and gg ^  gg processes have been calculated in Ref. [27], where the corresponding values 
of the D j ^ k i j  coefficients can be found as well.4

3.4 .1  Soft an om alou s d im en sion s for squark-pair p ro d u ctio n  at on e-loop

In the basis (3.9) the one-loop soft anomalous-dimension m atrix  is given by

^  C2(Rqi )  A ------ r̂z (Lß +  1) — ( NC + 1 ) Q  ^
N C

N 1
— ( Nc — 1) & C 2 ( R f )  A H ^ —  (Lß +  1)

, (3.17)

3Note that in the case of equal masses m3 = m4 the quantities A, O,T(m) and U(m) reduce to the 
corresponding quantities A, O, T and U defined in Ref. [27].

4Note that Ref. [27] uses a subtraction term different from Eq. (2.11).
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with

Lß
1 + ß 2 

2ß
l ~ ß
1 + ß

+  in

The coefficients C2(R qIq) for I  =  1,2 are the  quadratic Casimir invariants belonging to 
the representations spanned by the base tensors cqq:

C2(Rqq ) = (N C +  1)(NC — 2)•c I v v - o  -7 and C 2(Rqq) = ^ c 1)(Arc + 2 )
NC N

(3.18)
C

3.4 .2  Soft an om alou s d im en sion s for squark-glu ino  p ro d u ctio n  at on e-loop

In the basis (3.11) the one-loop soft anomalous-dimension m atrix  is given by

/

r qg^gg
tts
2n

r 11, qg

5 «

4NC (Nc — 2)
Q

4NC (Nc + 2) _ \
(NC — 1)(N c — 1) (NC — 1)(N c + 1)

Q

r 22, qg

N c ( N c - 2 ) 

N c - 1
Q

^ ( ^ + 2 )
iVc + l

r 33,qg

Q (3.19)

with

r 11, qg
1 N 2 +  1

C2{ R f )  A +  [CF +  —  ] n  -  -  \T(rriq) -  T{m~ä)] -  N c (L„3,„4 + 1),
C f -

r 22, qg =  C 2 (R f  )A  +  [CF —

r 33, qg =  C2W ) A  +  [CF —

NC -  1
Q

C

N 2 +  1

1

NC +  1
Q

2Nc

2 N r,

[T  (m g) — T  (m g^ — (Lv3,v4 +  1)

[T  (m g) — T  (m g^ +  (Lvs,v4 +  1)

(3.20)

where
k2 +  ß 2 

2nß
Lv3,v4

K — ß  
K  +  ß

+  in (3.21)

The explicit derivation of Eq. (3.21) is presented in appendix D. The coefficients C2(Rqg) 
for I  =  1 ,2 ,3  are the  quadratic Casimir invariants belonging to  the representations 
spanned by the base tensors cq/  :

qg N 2 1
c 2t o  =  - f c -  -  ^ C2(Rqg ) =

(N c — 1)(3N c + 1 )
2N

and C2 (R3g ) =
(N c + 1 )(3 N c — 1)

2N
(3.22)

1
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3.4 .3  T h e th resh o ld  lim it

At the production threshold, where ß  ^  0 , the soft anomalous-dimension m atrices become 
diagonal by virtue of using an s-channel basis. In addition, the diagonal components 
become proportional to  the to ta l colour charge of the heavy-particle pair produced at 
threshold:

D tj^kl , I  =  — C2( R j ) ,  (3.23)

with C2(RIj ) as given in equation (3.18) for squark-pair production and in equation (3.22) 
for squark-gluino production. In the SU(3) case the D j ^ klj  coefficients for squark-pair 
production are given by

{d i i ^ I I , i } =  {—4/3, —10/3} ,

while for the squark-gluino production process they are

{D qg^gq,I} =  {—4/3, —10/3, —16/3} •

4 . N u m e r ic a l  r e su lt s

In this section we present numerical results for the NLL-resummed cross sections matched 
with the complete NLO results for squark and gluino pair-production at both  the Tevatron 
( V S  = 1.96 TeV) and the LHC ( V S  = 14 TeV). The m atching is performed according to 
Eq. (2.13). From now on we refer to  the m atched cross sections as NLL+NLO cross sections. 
We also compare the NLL+NLO predictions w ith the corresponding NLO results. The NLO 
cross sections are calculated using the publicly available P R O S P IN O  code [44], based on the 
calculations presented in Refs. [14, 15, 16]. As described in detail in Ref. [16], the QCD 
coupling a:s and the parton distribution functions at NLO are defined in the MS scheme 
with five active flavours. The masses of squarks and gluinos are renormalized in the on- 
shell scheme, and the  SUSY particles are decoupled from the running of a s and the parton 
distribution functions. As already discussed in previous sections, no top-squark final states 
are considered. We sum over squarks w ith both  chiralities (qL and qR), which are taken as 
mass degenerate, and include the charge-conjugated processes in the numerical predictions. 
For convenience we define the  average mass of the sparticle pair m =  (m3 +  m 4) /2 , which 
reduces to  the  squark and gluino mass for qq, qq and gg final states, respectively. The 
renorm alization and factorization scales ß  are taken to  be equal. In order to  evaluate 
hadronic cross sections we use the 2008 NLO M STW  parton distribution functions [43] 
w ith the corresponding a s( M |) =  0.120. The numerical results have been obtained with 
two independent com puter codes.

We first discuss the  scale dependence of the NLL+NLO m atched cross section for the 
separate processes pp ^  qq , qq , qg , gg +  X  at the Tevatron. Figure 1 shows the NLO and 
NLL+NLO cross sections for mg =  mg =  m =  500 GeV as a function of the renorm alization 
and factorization scale ß. The value of ß  is varied around the central scale ß 0 =  m from 
ß  =  ß 0/10 up to  ß  =  5 ß 0. As anticipated, we observe a reduction of the scale dependence 
when going from NLO to  NLL+NLO, in particular for gg and qg production (Figs. 1b 
and 1d, respectively). In the case of squark pair-production, on the other hand, the scale
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reduction due to  soft-gluon resum m ation is m oderate (see Figs. 1a and 1c). We note th a t 
the gluino-pair production cross section (Fig. 1b) is rather small for this particular choice 
of masses because of a suppression of the LO qq ^  gg am plitude proportional to  m~ — m~ 
near threshold (cf. Eq. (55) of Ref. [16]).

At the central scale ß  =  ß 0 =  m the  cross-section predictions are in general enhanced 
by soft-gluon resum m ation. The relative K -factor K NLL — 1 =  ^ n l l + n lo / ^ n lo  — 1 at 
the Tevatron is displayed in Fig. 2 for squark and gluino masses in the range between 
200 GeV and 600 GeV. We show results for various mass ratios r  =  m g/m g. The soft-gluon 
corrections are m oderate for qq production (Fig. 2a), bu t reach values up to  27%, 29% and 
60% for gg , qq and qg final states, respectively, in the range of r  we consider. Because of the 
increasing im portance of the threshold region, the corrections in general become larger for 
increasing sparticle masses. The strong r-dependence of K NLL for gluino-pair production 
in Fig. 2b is driven by the r-dependence of the  NLO cross sections for qq ^  gg . The 
large effect of soft-gluon resum m ation for qg and gg production can be mostly a ttribu ted  
to  the  im portance of gluon initial states for these processes. Furtherm ore, the presence 
of gluinos in the final sta te  results in enhancem ent of the NLL contributions [27], since in 
this case the Casimir invariants th a t enter Eq. (2.8) reach higher values than  for processes 
involving only squarks. The substantial value of K NLL for qq production at the Tevatron 
is a consequence of the behaviour of the corresponding NLO corrections, which strongly 
decrease w ith increasing squark mass [16].

We now tu rn  to  the discussion of pair production of squarks and gluinos a t the LHC, 
i.e. pp ^  q q , qq , qg , gg +  X . The results for the processes pp ^  qq and pp ^  gg agree with 
those presented in Refs. [26, 27], while the predictions for pp ^  qq and pp ^  qg are new. In 
Fig. 3 the cross sections are shown for squark and gluino masses m q =  m g =  m =  1 TeV as 
a function of the common renorm alization and factorization scale ß. The scale uncertainty 
of the theoretical prediction is reduced at NLL+NLO. Similarly to  the Tevatron case, 
soft-gluon resum m ation is most significant for gluino-pair production and squark-gluino 
production. For those processes, the relative K -factor K NLL — 1 reaches 35% for gluino- 
pair production and 18% for squark-gluino production at the highest accessible sparticle 
masses around 3 TeV (see Figs. 4b and 4d). The r-dependence of K NLL for gluino-pair 
production is again driven by the r-dependence of the  NLO cross section, discussed in 
Ref. [16].

Representative values for the NLO and NLL+NLO cross sections a t the  Tevatron and 
the LHC are collected in Tables 1 and 2 for equal squark and gluino masses.

The im pact of the NLL resum m ation on the cross section for inclusive squark and 
gluino production, i.e. pp/pp ^  qq +  qq +  qg +  gg +  X , can be inferred from the inclusive 
K -factor displayed in Fig. 5. The pa tte rn  exhibited in Fig. 5 can be understood from 
the relative im portance of the qq ,q q ,q g  and gg final states and from their individual 
K -factors as shown in Figs. 2 and 4. At mg =  mg æ 400 GeV, for example, the inclusive 
cross section at the Tevatron (Fig. 5a) is built up from the individual final states in the 
ratio  qq : gg : qg : qq* æ 1 : 3.6 : 14 : 32, as can be read off from Table 1. Owing to 
the large NLL corrections for the qg final state, the resulting inclusive K -factor K NLL is 
approxim ately 1.1. At mg =  mg =  600 GeV the  correction to  the inclusive cross section at
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the Tevatron due to  NLL resum m ation can be as high as 18%. The inclusive corrections are 
smaller a t the LHC for sparticle masses below 3 TeV (see Fig. 5b). Given the sparticle mass 
ranges th a t we consider, this is consistent w ith the fact th a t the distance from threshold, 
i.e. the value of the variable 1 — p =  1 — 4m2/ S , is on average larger at the LHC than  at 
the Tevatron.

In Figs. 6a and 6b we show for the Tevatron and LHC, respectively, the resummed 
NLL+NLO to tal cross section for inclusive squark and gluino production as a function of 
the average sparticle mass m. For illustration we show these results for the choice m q =  m g . 
The error bands indicate the theoretical uncertainty of the NLL+NLO to tal cross section 
due to  the scale variation in the range m /2  <  ß  <  2m. The results presented in Fig. 6 
are the  most accurate theoretical predictions currently available for the above processes. 
The reduction of the theoretical error due to  variation of the common factorization and 
renorm alization scale ß  between ß  =  m /2  and ß  =  2m is illustrated in Fig. 7a for the 
Tevatron and in Fig. 7b for the LHC. Both at the Tevatron and at the LHC, soft-gluon 
resum m ation leads to  a significant reduction in this part of the theoretical uncertainty.

5. C o n c lu s io n s

We have performed the NLL resum m ation of soft gluon emission for squark and gluino 
hadroproduction. Explicit analytical results are presented for the anomalous dimension 
matrices and the colour-decomposed LO cross sections in x and N -space for the qq and qg 
final states. We provide NLO+NLL m atched numerical predictions for all pair-production 
processes of coloured sparticles a t the Tevatron and the LHC. The NLL corrections lead 
to  a significant reduction of the scale dependence and, in general, increase the NLO cross 
sections. The effect of soft-gluon resum m ation is most pronounced for processes with 
initial-state gluons and final-state gluinos, which involve a large colour charge. Specifi
cally, a t the Tevatron we find an increase of the cross-section prediction of up to  40% at 
sparticle masses around 500 GeV when going from NLO to  NLL+NLO, depending in de
tail on the final sta te  and the ratio  of squark to  gluino masses. For the inclusive sparticle 
cross section at the Tevatron, summed over all pair-production processes for squarks and 
gluinos, the enhancem ent can be as large as approxim ately 15% in the mass range up to 
500 GeV, probed by current experim ental searches. At the LHC, the NLL corrections are 
particularly significant for squark-gluino production and gluino-pair production, reaching 
approxim ately 20% and 30%, respectively, for sparticle masses around 3 TeV. Both at the 
Tevatron and at the LHC, the inclusion of NLL corrections leads to  a reduction of the scale 
dependence over the full mass range th a t will be probed by experiments. In addition, the 
NLL corrections lead to  a significant enhancem ent of the NLO cross-section predictions for 
heavy sparticles. The NLL+NLO m atched predictions presented in this paper should thus 
be used to  interpret current and future searches for supersym m etry at the Tevatron and 
the LHC.
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Figure  1: The scale dependence of the NLL+NLO and the NLO total cross sections for squark 
and gluino pair-production processes at the Tevatron. The squark and gluino masses have been set 
to mq =  mg =  m =  500 GeV.
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F igure  2: The relative NLL K-factor K NLL — 1 =  a NLL+NLO/ a n l o  — 1 for squark and gluino 
pair-production processes at the Tevatron as a function of the average sparticle mass m. Shown are 
results for various mass ratios r  =  mg/mg.
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Figure  3: The scale dependence of the NLL+NLO and the NLO total cross sections for squark 
and gluino pair-production processes at the LHC. The squark and gluino masses have been set to
mq =  mq =  m = 1  TeV.
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Figure  4: The relative NLL K  -factor K NLL — 1 =  a NLL+NLO /  a  NLO — 1 for squark and gluino 
pair-production processes at the LHC as a function of the average sparticle mass m. Shown are 
results for various mass ratios r  =  mg/mg.
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F igure  5: The relative NLL K-factor KNLL — 1 =  a NLL+NLO/ a NLO — 1 for the inclusive squark 
and gluino pair-production cross section, pp/pp ^  qq +  +  qq +  gg +  X , at the Tevatron (a) and 
the LHC (b) as a function of the average sparticle mass m. Shown are results for various mass 
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F igure  6 : The NLL+NLO cross section for inclusive squark and gluino pair-production, pp/pp ^  
qq +  qq +  qg +  gg +  X , at the Tevatron (a) and the LHC (b) as a function of the average sparticle 
mass m. Shown are results for the mass ratio r  =  mg/mg =  1. The error band corresponds to a 
variation of the common renormalization and factorization scale in the range m/2 < ß < 2m.
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Figure  7: Scale dependence of the NLL+NLO and NLO cross sections for inclusive squark and 
gluino pair-production, pp/pp ^  qq +  qq +  qq +  gg +  X , at the Tevatron (a) and the LHC (b) as 
a function of the average sparticle mass m. Shown are results for the mass ratio r  =  mg/mg =  1. 
The upper two curves correspond to the common renormalization and factorization scale set to 
ß =  m /2, the lower two curves to ß =  2m.
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pp —> qq at V S  = 1.96 TeV (r=1.0)
rriq [GeV] 200 300 400 500 600
o n l o  [pb] 1.28 x 101 7.35 x 10- 1 4.70 x IO-2 2.59 x IO-3 9.79 x 10-5

o n l l + n l o  [pb] 1.30 x 101 7.55 x 10- 1 4.91 x 10-2 2.77 x 10-3 1.09 x IO- 4

K n l l  -  1 0.016 0.026 0.045 0.071 0 . 1 1

pp —> gg a t V S  = 1.96 TeV (r=1.0)
m~g [GeV] 200 300 400 500 600
o n l o  [pb] 3.72 1.07 x 10- 1 4.61 x 10~3 1.96 x 10-4 6.01 x 10-6

o n l l + n l o  [pb] 4.24 1.24 x 10- 1 5.47 x 10~3 2.38 x 10-4 7.62 x 10-6
K n l l  -  1 0.14 0.17 0.19 0.22 0.27

P'P ^  qq at V S  = 1.96 TeV (r=1.0)
rriq  [GeV] 200 300 400 500 600

& NLO [pb] 1.81 4.78 x 10~2 1.39 x 10~3 3.38 x 10-5 5.66 x 10-7
O N LL+N L O  [pb] 1.87 5.09 x 10-2 1.54 x 10~3 3.95 x 10-5 7.06 x 10-7

K n l l  -  1 0.033 0.064 0 . 1 1 0.17 0.25

P'P ^  qq at V S  =  1.96 TeV (r=1.0)
to [GeV] 200 300 400 500 600

o n l o  [pb] 1.43 x 101 4.44 x 10- 1 1.71 x IO-2 5.98 x 10-4 1.46 x 10-5
o n l l + n l o  [pb] 1.54 x 101 5.03 x 10- 1 2.09 x IO-2 8.05 x 10-4 2.27 x 10-5

K n l l  -  1 0.075 0.13 0.22 0.35 0.55

Table 1: The NLL+NLO and NLO cross sections for the squark and gluino pair-production pro
cesses at the Tevatron. Shown are results for the mass ratio r  =  m g/m , =  1. The common 
renormalization and factorization scale has been set to m.
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pp —> qq at V S  = 14 TeV (r=1.0)
m q  [GeV] 200 500 1000 2000 3000
o n l o  [pb] 1.30 x 103 1.60 x 101 2.89 x 10- 1 1.11 x 10~3 7.13 x 10~6

o n l l + n l o  [pb] 1.31 x 103 1.61 x 101 2.93 x 10- 1 1.14 x 10~3 7.59 x 10-6
K n l l  -  1 0.010 0.012 0.017 0.034 0.064

pp —> g  g  at V S  = 14 TeV (r=1.0)
n ig  [GeV] 200 500 1000 2000 3000
o n l o  [pb] 3.74 x 103 2.85 x 101 2.92 x 10- 1 5.82 x IO" 4 2.68 x 10~6

o n l l + n l o  [pb] 3.86 x 103 3.00 x 101 3.18 x 10- 1 6.91 x 10~4 3.62 x 10-6
K n l l  -  1 0.033 0.054 0.089 0.19 0.35

pp ^  qq at \ / 5  =  14 TeV (r=1.0)
m q  [GeV] 200 500 1000 2000 3000

& NLO [pb] 5.45 x 102 1.34 x 101 5.28 x 10- 1 6.48 x 10~3 1.18 x 10~4
ON LL+N LO  [pb] 5.46 x 102 1.34 x 101 5.32 x 10- 1 6.64 x 10-3 1.25 x 10~4

K n l l  -  1 0.003 0.004 0.008 0.024 0.056

pp —> qg a t \ / 5  =  14 TeV (r=1.0)
m [GeV] 200 500 1000 2000 3000

o n l o  [pb] 4.86 x 103 6.55 x 101 1.22 5.49 x 10~3 4.96 x 10-5
^ N L L + N L O  [pb] 4.92 x 103 6.69 x 101 1.26 5.96 x 10~3 5.80 x 10-5

K n l l  -  1 0.013 0.021 0.037 0.085 0.17

Table 2: The NLL+NLO and NLO cross sections for the squark and gluino pair-production pro
cesses at the LHC. Shown are results for the mass ratio r  =  m j/m , =  1. The common renormal
ization and factorization scale has been set to m.

-  24 -



A . L e a d in g -o r d e r  N -s p a c e  c r o ss  s e c t io n s  for qq a n d  qg p r o d u c t io n

In this appendix we present the analytical results for the Mellin transform s of the LO 
cross sections for qq and qg production. The cross sections are colour-decomposed in 
SU(3) according to  the procedure described in section 3. The M ellin-transformed LO cross 
sections for the  qq and gg final states can be found in [27].

The expressions for the  colour-decomposed LO N -space cross sections for the process 
qf1 qf2 ^  qq are given by

2 r2 1
N  H---------------------
. r 2 +  1 N  +  2

, OD N 2 + 2 N  + 2
+  ¿ - D N -------------------------- (A.1)

2 B n G n  
2 N  + 3

N 2 +  2 N  +  2 
+  N ( N  + l ) ( N  + 2)

(A.2)

whereas for the process qg ^  qg they read

(o) _  o|vr 9B n +1Pn+1 (1 -  r) _  9 B N P}
n n ^ n n , 1VJ V / o ™ 2  ( m i 1 \ 3 o / ™  i 1 '

------ I
2 (r +  l ) 2

B n + 2 Pn+2 (7 r2 — 9)(1 — r) 
(r +  l ) 5

B n +i P ^ +1 (1 -  r) ^  B n +2P++2 (r 2 +  17)(1 -  r) 
9 (r +  l ) 3 9 (r +  l ) 59(r +  1)5

130 B n +1K n+1 (1 — r) _  5 6 B n K n  
9 (r +  l ) 3 9 (r +  l ) 2

(A.3)

8 m 2~ (r +  l ) 3 (r +  l ) 2 (r +  l ) 5

2 B N+i P ^ +l (1 -  r) ^  2 B n +2P ^ +2 (r 2 +  1)(1 -  r) 
(r +  l ) 3 (r +  l ) 5(r +  1)5

4 B n+1K n+1 (1 -  r) 
(r  +  l ) 3

(A.4)

(A.5)
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We have used the following abbreviations: 

B n  — ß (N  +  1 ,1 /2 ),

G n  =  2-̂ 1 ( 1) 1/2, N  +  5/2, y 2

- 1  „  I . ................  ( 1 -  r

2 2  r  — 1 '

P  ± =P N —

±

N  +  1 

1 — r

r 2 +  1

2F 1 ( 1/2, N  +  1, N  +  3/2, 

1

1 +  r

r  +  1 )  N  +  3/2
2F 1 1/2, N  +  2, N  +  5/2,

1 — r
1 +  r

1 Í (  1 — r
i i 'w =  , o 2F 1 - 1 /2 ,  N  + I, N  + 5/2, '

2N  +  3

iï/v =  dz-
yN +1

2r2

1 +  r

2(1 +  y/T^z) +  (r2 -  1 )z
2(1 — V I  — 2 ) +  (?'2 — 1)2

(A.6)

w ith 2F 1(A, ^ , v, £) the hypergeometric function, ß (u , v) the beta  function and r  =  m g/m g. 
For the numerical evaluation of H N we use the expansion

(—1)k2r 2 A  /  r 2 — 1
N = E

m 1 m

E1 +  r 2 V 1 +  r 2 J 1 +  m ß  (k +  1, m — k +  1)m=0 x 7 fc=0

ß  (k +  N  +  2 ,1 /2 ) / r 2 — 1
k + N + 2

2
1 +  r 2

ß  (k +  N  +  2 ,3 /2 )

2F 1 1 ,1 /2 , k +  N  +  7/2,
1 — r 2 2

1 +  r 2 _

B . C o n s tr u c t io n  o f  t h e  s -c h a n n e l  c o lo u r  b asis: an  e x a m p le

(A.7)

c
0,404

c

a4

0,2 0402 0,4 02 0302 03 

F igure  8 : The LO diagrams that contribute to squark-pair production.

For the process qq ^  qq we explicitly show how to derive the s-channel colour basis 
given in Eq. (3.9). The same steps can be used to  obtain the basis given in Eq. (3.11) for 
the qg ^  qg process, although the calculations are more tedious in th a t case.

2

2

2

1

2
0 z

x
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As a starting  point we take the colour structures th a t occur in the LO qq ^  qq process 
displayed in Fig. 8. Using the conventions introduced in section 3.1 these are:

-^0.301 ̂ Q.4Q2 =  2  ^ a 3Q'2^Q'4Ql _  ^«301  ̂ «402 

3Ü.o ^ 0 4 a  1 =  2 ^ “ 3 « l ^ « 4 « 2  _  ~ N ~  ^ ö '3 ö ,2 ^ ü 4 Ü '2

where c is a sum m ation index in the adjoint representation. For convenience these colour 
structures have been rew ritten in term s of the t and u-channel singlet structures &a3ai &a4a2 
and &a3a2 óa4ai . I t is clear from this expression th a t two independent singlet structures 
occur. Since the two-particle reducible product representation 3®3 contains two irreducible 
representations, cf. Eq. (3.6), this basis m ust be complete. T ha t means th a t the s-channel 
base tensors are linear combinations of these singlet structures. The projective prescription 
(3.7) leads to  the following set of equations:

(AI &ba2 &b'ai +  B I &bai &b' a2 )(AI' &a3 b' &a4 b +  B I' &a3 b&a4 b' ) Z &II' (AI &a3a2 &a4 ai +  B I &a3ai &a4a2) ,

where I , I '  € {1, 2} and Z  is an a rb itrary  normalization constant. Working out the equa
tions shows th a t up to  interchanging the base tensors the unique solution is given by 
A 1 =  —A2 =  B 1 =  B 2 =  Z /2 , which is exactly the basis given in Eq. (3.9).

One can check explicitly th a t this basis is complete 
for gluon resum mation: representing the combined colour 
structure  of the external particles by one of the base ten 
sors cI  and connecting any two external particles by an 
additional gluon yields no additional colour structures. In 
Fig. 9 an example of such a gluon insertion is shown. For 
processes for which the LO colour basis is not complete, 
this procedure can also be used to  identify additional base 
tensors.

If a particle is exchanged in the s-channel, the cor
responding base tensor has a direct physical interpre
tation. An example is the Feynman diagram  for the 
qg ^  process shown in Fig. 10. Since the quark 
exchanged in the s-channel is in the fundam ental repre
sentation, the corresponding N C -dimensional base ten 
sor (cf  in E q. (3.11)) can be read off imm ediately from F igure  10: Example of a diagram 
the colour structure  of this diagram. corresponding to a base tensor.

F igure  9: An example of gluon 
insertion.

C . E ik o n a l F e y n m a n  r u le s

In this appendix the eikonal Feynm an rules will be given for a soft gluon with m omentum 
k attached to  an eikonal line w ith m om entum  p. In the eikonal approxim ation we have 
k ^  p, which leads to  simple Feynm an rules since the propagator th a t connects the m atrix
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element to  the radiated gluon becomes effectively on-shell. The generic diagram s and their 
corresponding Feynman rules are given by (cf. [40])

P

k
O  =

ß, c

9s(Tcr U -J  7p ■ k — ie

P

(C .1)

for an incoming eikonal line and

P

O b =  gs(TR )ab

ß, c

Pß
P

p ■ k +  íe O , (C.2)

for an outgoing eikonal line. Here gs is the  strong coupling constant, ß  is the  Lorentz 
index of the gluon and íe represents the  infinitesimal imaginary part of the propagator 
th a t connects the m atrix  element to  the  radiated gluon. The colour labels of the different 
particles are denoted by a, b and c. The representation of the eikonal line is denoted by 
R. We have R =  F  for the fundam ental representation, R  =  F  for the charge conjugate 
of the fundam ental representation, and R =  A for the adjoint representation. The colour 
operators occurring in Eqs. (C.1) and (C.2) are given in Table 3. Note th a t the order of 
the colour indices a, b, c in f abc is kept fixed irrespective of whether the gluon is em itted 
above or below the eikonal line.

Outgoing (s)quark /  incoming anti-(s)quark: 
Outgoing anti-(s)quark /  incoming (s)quark: 
Gluons /  gluinos:

c
ab(Tc )ab =  T  

(TC )ab =  —TCa =  —(Tacb)*
(TA )ab =  FCb =  — fabc

Table 3: Colour operators used in the eikonal Feynman rules.

b
a

D . O n e -lo o p  e ik o n a l in te g r a l for qg p r o d u c t io n

We briefly present here the calculation of the kinematic part w34 of the one-loop correction 
to  the process qg ^  qg in the eikonal approxim ation. The equal-mass case of w34 is well 
known [40], bu t for qg final states we also need the unequal-mass version.

The kinematic part of the one-loop correction generated by the exchange of a virtual 
gluon between the two final-state eikonal lines is according to  Eq. (C.2) given by

34 2

We use dimensionless vectors \ / 2 / s  w ith pi denoting the m om entum  of the massive
external particle í. We calculate the  gluon propagator in a general axial gauge with

nu nßk v +  k ßn v 2 k ßk v
A - W  =  < r --------- i n r - (D.2)
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where n ß is a general gauge vector with n 2 <  0. In the case th a t >  0 and v2 =  v2 the 
solution of the integral w34 reads

w34 — — \T1^3,^4ne +  LV3 + LV4 1] ,

w ith e =  4 — d. The gauge-independent term  L v3,v4 is given by

(D.3)

L V3 ■ V4
V3,V4

2 V ( v 3 ■ Vi)2 -  v j v j
2in  + VÍ+V3-V4- V (vs ■ n )2 - V3V4 

V%+V3 - V4  +  V ( v 3 ■ V4 ) 2 -  v l v \

+ '4 +  V3 ■ Vá -  V ( V 3  ■ V4)2 -  yfjVl 

4 + V3-V4 +  V (V3 ■ V4 ) 2 -  V \v l
(D.4)

The gauge-dependent term s LV3 and LV4 can be found in Ref. [40] and cancel against 
contributions from the self-energy diagrams when calculating the anomalous dimensions. 
The gauge-independent term  L V3,V4 can be rew ritten in a compact form using ß  and k as 
defined in Eqs. (2.2) and (3.4):

L V
K2 + ß 2 

2nß
k — ß  
n + ß

+  in (D.5)

For equal-mass final-state particles this quantity  reduces to  the well-known form (cf. [27])

Lß l  + ß 2 
2ß

I z i
1 + ß

+  in

1
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