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1 Introduction

The entropy of a black hole is given by the Noether charge associated to the generator

of a Killing horizon over the black hole temperature [1, 2]. This relation is universal

and valid for any covariant theory of gravity [3] as well as for generalizations to theories

with gravitational Chern-Simons terms [4]. Recently, it has been shown that for three-

dimensional black holes [5] and cosmologies [6] the entropy takes a surprisingly simple form.

S = 2π
(

J+
0 + J−

0

)

(1.1)
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The novel and non-trivial feature is that J±

0 are zero modes of u(1) Kac-Moody algebras

that arise from imposing near horizon (soft hairy1) boundary conditions. This entropy

formula is universal in the sense that it applies to flat space and anti-de Sitter (AdS),

to Einstein gravity as well as theories with higher derivatives [11] or higher spin [12, 13].

However, so far all studies relied on locally maximally symmetric setups.

To test universality of the entropy formula (1.1) beyond maximally symmetric cases

we reconsider warped black holes [14] in topologically massive gravity (TMG) [15, 16]. We

impose novel boundary conditions for soft hairy warped black holes in line with the ones

introduced in [5]. In order to derive the near horizon symmetry algebra from these boundary

conditions we develop a general framework for deriving asymptotic symmetry algebras in

any Chern-Simons-like (CS-like) theory of gravity [17–19]. These models include TMG,

but are not restricted to this special case and hence our results are useful for a variety of

theories of massive gravity in three dimensions [20–27].

Using the general framework we are able to find the near horizon charges and their

associated symmetry algebra. We find that even in this locally non-maximally symmetric

case, the entropy of the warped black hole can be written in terms of the zero-modes of the

near horizon u(1) charges. This is further evidence for the conjecture that non-extremal

black holes in three dimensions have an entropy that is universally given by the sum of

zero modes of u(1) current algebras.

This work is organized as follows. In section 2 we summarize relevant aspects of warped

black holes in TMG. In section 3 we introduce new boundary conditions that allow soft

hair excitations on warped black hole horizons. In section 4 we present general results for

boundary charges and asymptotic symmetries in CS-like theories. In section 5 we apply

these results to deduce the warped near horizon charges and their algebra (including its

central extensions). In section 6 we derive the entropy of soft hairy warped black holes

and recover the universal result (1.1). In section 7 we conclude. In the appendices we

list our conventions (appendix A), provide explicit expressions for near horizon warped

black hole solutions with soft hair in TMG (appendix B), construct the warped black hole

generalization of the boundary conditions of [9, 10] (appendix C) and present a general

CS-like derivation of the black hole entropy (appendix D).

Before starting we mention some of our conventions here. We denote the Levi-Civita-

symbol by ǫ, with the sign convention ǫtrϕ = +1, and the corresponding tensor by ε. The

sign convention for the Ricci-tensor is fixed by Rµν = +∂λΓ
λ
µν − . . . , and we use mostly

plus signature.

Note added. While finishing our work we became aware of [28] which studies the near

horizon geometry of warped black holes in generalized minimal massive gravity. The master

thesis [29] also considers near horizon symmetries for warped black holes and has the

result (1.1) for entropy of warped black holes (albeit without soft hair).

1The notion of “soft hair” was introduced by Hawking, Perry and Strominger [7, 8] and refers to non-

trivial zero energy excitations of black holes. The near horizon description that led to the result (1.1) was

inspired by (but differs in essential details from) work by Donnay, Giribet, González and Pino [9, 10].
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2 Warped black holes in topologically massive gravity

TMG (with negative cosmological constant Λ = −1/ℓ2) is a third-derivative action [15, 16],

ITMG =
1

16πG

∫

d3x
√−g

(

R+
2

ℓ2

)

+
1

16πG
IgCS (2.1)

containing the gravitational Chern-Simons (CS) term

IgCS =
1

µ

∫
(

1

2
Γ ∧ dΓ +

1

3
Γ ∧ Γ ∧ Γ

)

(2.2)

with the Christoffel connection one-form Γ. Here G is Newton’s constant and µ the CS

coupling constant, which from now on we rescale by 3/ℓ for later convenience

µℓ = 3ν . (2.3)

Varying the action (2.1) with respect to the metric leads to third-derivative equations

of motion

Rαβ +
2

ℓ2
gαβ +

ℓ

3ν
Cαβ = 0 (2.4)

where Cαβ = εα
γδ∇γ(Rδβ − 1

4 gδβR) is the Cotton tensor [30]. We set ℓ = 1 from now on.

While every solution to three-dimensional Einstein gravity solves the TMG equations

of motion (2.4), there are numerous other solutions, sometimes with striking asymptotic

behavior (see e.g. [31] for a classification of all local solutions with two commuting Killing

vectors and [32] for further solutions). The set of solutions we are currently interested in are

locally warped AdS solutions [33, 34] with a black hole horizon [35–38]. These black holes

are quotients of warped AdS3 [14] in the same way as BTZ black holes [39] are quotients

of AdS3 [40] and solve the TMG equations of motion (2.4) for ν > 1.

In ADM coordinates warped AdS black holes are given by the metric [14]

ds2 = −N(r̂)2 dt̂2 +
dr̂2

4R(r̂)2N(r̂)2
+R(r̂)2

(

dϕ̂+N ϕ̂(r̂) dt̂
)2

(2.5)

with radial function R(r̂), lapse N(r̂) and shift N ϕ̂(r̂) given by

R(r̂)2 =
r̂

4

(

3(ν2 − 1)r̂ + (ν2 + 3)(r̂+ + r̂−)− 4ν
√

r̂+r̂−(ν2 + 3)
)

(2.6)

N(r̂) =

√

(ν2 + 3)(r̂ − r̂+)(r̂ − r̂−)

2R(r̂)
(2.7)

N ϕ̂(r̂) =
2νr̂ −

√

r̂+r̂−(ν2 + 3)

2R(r̂)2
. (2.8)

The angular coordinate is periodic, ϕ̂ ∼ ϕ̂ + 2π, the radial coordinate is non-negative,

r̂ ≥ 0, and the time coordinate is unrestricted, t̂ ∈ R. The locus r̂ = r̂+ corresponds to

the black hole horizon, while r̂ = r̂− is the inner horizon, where r̂+ > r̂− > 0 are real

parameters labelling all warped AdS black hole solutions. For later purposes we introduce

new parameters r+ > r− > 0 defined by

r+ = r̂+ −
√

r̂+r̂− r− =
√

r̂+r̂− − r̂− . (2.9)

– 3 –
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3 Soft hairy warped black holes

In this section we establish new boundary conditions for TMG that allow for “warped black

flowers”, i.e., warped AdS black holes equipped with arbitrary near horizon soft hair, in

full analogy to the BTZ case studied originally [5]. In our whole analysis we assume ν > 1,

but occasionally consider the BTZ limit ν → 1.

In section 3.1 we recast the warped AdS black hole metric into a form suitable for a

near horizon discussion. In section 3.2 we propose new boundary conditions for warped

AdS black holes that we call “soft hairy boundary conditions”. In section 3.3 we present

these boundary conditions in a convenient CS-like formulation.

3.1 Near horizon line-element

The first step of our construction is to rewrite the warped AdS black hole metric (2.5)–(2.8)

in a near horizon expansion as Rindler spacetime plus subleading terms.

ds2 = −a2r2 dt2 + dr2 + γ2 dϕ2 + 2aωr2 dt dϕ+ . . . (3.1)

The relations between hatted and unhatted coordinates are valid for r̂ ≥ r̂+ and given by

t = t̂ (3.2)

r =
2√

ν2 + 3
arcosh

√

(r̂ − r̂−)/(r̂+ − r̂−) (3.3)

ϕ = ϕ̂+
t̂

νr̂+ − 1
2

√

r̂+r̂− (ν2 + 3)
. (3.4)

Rindler acceleration a, horizon radius γ and rotation parameter ω are determined from r±.

a =
(ν2 + 3)(r2+ − r2−)

2r+(2νr+ −
√
ν2 + 3 r−)

(3.5)

γ =
r+(2νr+ −

√
ν2 + 3 r−)

2(r+ − r−)
(3.6)

ω =
3(1− ν2) r2+ + 2ν

√
ν2 + 3 r+r− − (ν2 + 3)r2−

4(r+ − r−)
. (3.7)

Note the simple relation r+ + r− = 4(νγ + ω)/(ν2 + 3).

For the special case ν = 1 the solutions describe BTZ black holes with outer/inner

horizons at r̂ = r̂±. The relations above then simplify considerably.

a = 1 +
r−
r+

γ = r+ ω = r− . (3.8)

Note that the value for Rindler acceleration differs from the usual BTZ expression aBTZ =

(r2+ − r2−)/r+ since the time coordinate used in (2.5) and (3.1) differs by a factor r+ − r−
from the usual BTZ time coordinate.

– 4 –
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3.2 Soft hairy boundary conditions in metric formulation

Concurrent with [5] we impose the following boundary conditions near the warped AdS

black hole horizon r = 0 (gauge fixed to Gaussian normal coordinates).

gtt = −a2(t, ϕ) r2 + Ξtt(t, ϕ) r
4 +O(r6) (3.9a)

gtϕ = a(t, ϕ)ω(t, ϕ) r2 + Ξtϕ(t, ϕ)r
4 +O(r6) (3.9b)

gϕϕ = γ2(t, ϕ) + Ξϕϕ(t, ϕ) r
2 +O(r4) (3.9c)

grr = 1 gtr = gϕr = 0 (3.9d)

with the functions

Ξtt(t, ϕ) = a2(t, ϕ)

(

2

3
ν2 − 1

)

(3.10)

Ξtϕ(t, ϕ) = a(t, ϕ)

(

3

4
ν(1− ν2)γ(t, ϕ) +

(

1− 2

3
ν2
)

ω(t, ϕ)

)

(3.11)

Ξϕϕ(t, ϕ) = ν2γ(t, ϕ)2 − ω(t, ϕ)2 (3.12)

chosen such that at r = 0 the Ricci scalar and the square of the Ricci tensor are constants

specific to warped AdS3, R = −6 and RµνR
µν = 6(3− 2ν2 + ν4) with warping parameter

ν > 1. The leading order fluctuations of the metric are restricted by

δa(t, ϕ) = 0 δγ(t, ϕ) and δω(t, ϕ) arbitrary . (3.13)

Note in particular that the function a(t, ϕ) (whose zero mode corresponds to Rindler

acceleration) is not allowed to vary. Additional on-shell conditions are given by2

∂tγ(t, ϕ) = 0 ∂tω(t, ϕ) = −∂ϕa(t, ϕ) . (3.14)

The boundary conditions (3.9)–(3.13) together with the on-shell conditions (3.14) specify

our theory and allow not only for all the warped AdS black hole solutions (3.1)–(3.7), but

additionally permit excitations on the horizon by allowing non-trivial functional depen-

dence of γ and ω on the coordinates. We shall recall in section 5 in which sense they can

be interpreted as zero energy excitations, i.e., as soft hair.

For simplicity we assume constant Rindler acceleration from now on, a = const. The

on-shell conditions (3.14) then imply conservation equations that can be interpreted as

“near horizon holographic Ward identities”, analogous to the conservation equations of

the (anti-)holomorphic flux components of the stress-energy tensor in AdS3/CFT2. With

this restriction, the class of metrics solving the TMG equations of motion (2.4) for ν > 1

allowed by our boundary conditions (3.9)–(3.13) is given by

ds2 = −a2r2 dt2 + dr2 + γ2(ϕ) dϕ2 + 2aω(ϕ)r2 dt dϕ+ r2
(

ν2γ(ϕ)2 − ω(ϕ)2
)

dϕ2

+r4
(

a2

3
(2ν2 − 3) dt2 − a

6

(

9ν(ν2 − 1)γ(ϕ)− 4(3− 2ν2)ω(ϕ)
)

dt dϕ

+
1

6
(νγ + ω)

(

ν(5ν2 − 3) γ − 2(3− 2ν2)ω
)

dϕ2

)

+O(r6) . (3.15)

2Finiteness and constancy of the Ricci scalar at r = 0 imply the differential equation (∂ta)(∂tγ) = a∂2
t γ,

which is solved by γ(t, ϕ) = c0(ϕ)+
∫ t

a(t′, ϕ)c1(ϕ) dt
′. However, if c1 6= 0 the function γ diverges linearly

in time for constant Rindler acceleration, which we consider as unphysical. Therefore, we set c1 = 0.

– 5 –
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The exact solution reproducing (3.15) near the horizon is given by the line-element

ds2 = −
(

a2ρ2 − 3

4
(ν2 − 1) a2ρ4

)

dt2 +
dρ2

1 + 1
4 (ν

2 + 3) ρ2

+

(

γ(ϕ)2 + (ν2γ(ϕ)2 − ω(ϕ)2) ρ2 +
3

4
(ν2 − 1) (νγ(ϕ) + ω(ϕ))2 ρ4

)

dϕ2

+2

(

aω(ϕ) ρ2 − a(νγ(ϕ) + ω(ϕ))
3

4
(ν2 − 1) ρ4

)

dt dϕ . (3.16)

By analogy to the BTZ case [5, 6] we call metrics of the form (3.16) “soft hairy warped

black holes” or “warped black flowers”. The relation between the two radial coordinates

is ρ = 2 sinh
(

1
2

√
ν2 + 3 r

)

/
√
ν2 + 3, so that for small radii ρ = r + 1

24 (ν
2 + 3) r3 +O(r5).

At large ρ our boundary conditions can be contrasted to previous ones [41, 42], where the

leading order components in gϕϕ and gtϕ are not allowed to vary, as opposed to here. This

is similar to the corresponding comparison of near horizon and Brown-Henneaux boundary

conditions for BTZ [5, 6].

3.3 Soft hairy boundary conditions in Chern-Simons-like formulation

Following [19] we use a CS-like formulation to describe TMG and our new boundary con-

ditions. The basic variables are the triad e, dualized spin-connection ω and the Schouten

one-form f , all of which are sl(2, R)-valued one-forms. In terms of these, the bulk action

is given by

I = − 1

4πG

∫

tr

(

e ∧
(

dω +
1

2
[ω ∧, ω] +

1

6
[e ∧, e]

)

− 1

3ν
f ∧

(

de+ [ω ∧, e]
)

− 1

6ν
ω ∧

(

dω +
1

3
[ω ∧, ω]

))

. (3.17)

Our conventions for the sl(2, R) algebra and wedged commutators are collected in ap-

pendix A. The equations of motion are first order in derivatives and read

de+ [ω ∧, e] = 0 (3.18a)

dω +
1

2
[ω ∧, ω] + [e ∧, f ] = 0 (3.18b)

df + [ω ∧, f ] + 3ν [e ∧, f ]− 3ν

2
[e ∧, e] = 0 . (3.18c)

For constant Rindler acceleration our near horizon boundary conditions describing soft

hairy warped black holes can be written succinctly as

et = ar
L+ + L−

2

(

1 +O(r3)
)

(3.19a)

eϕ = γ(ϕ)

(

1 +
ν2

2
r2
)

L0 − r ω(ϕ)
L+ + L−

2
+O(r3) (3.19b)

er =
L+ − L−

2
. (3.19c)

– 6 –
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Again we have partially gauge fixed to Gaussian normal coordinates with respect to the

radial coordinate r. Additionally, we have gauge-fixed local Lorentz symmetries completely

by demanding that er is given by the combination L+ − L− and et proportional to the

combination L+ + L−. The warping parameter ν appears explicitly only in the r2-term of

the triad-component eϕ and implicitly in subleading terms. If ν = 1 the BTZ near horizon

boundary conditions in the form presented in [6] are recovered. The expressions for the spin-

connection ω and the Schouten one-form f as well as the subleading terms in the triad not

displayed above all follow from the equations of motion (3.18) and are provided explicitly

up to higher order terms in appendix B. The metric given by (B.10) coincides with (3.15).

So far we have merely translated our results into first order form, but in the calculations

in the next three sections this translation will pay off. Before we refocus on soft hairy

warped black holes in TMG we present general results for boundary charges and asymptotic

symmetries in CS-like theories in the next section.

4 Asymptotic symmetries in Chern-Simons-like theories

TMG falls into a larger class of theories characterized by a CS-like formulation [17, 18].

For future reference and convenience of application of these results to other theories of

three-dimensional massive gravity we start with the more general CS-like formulation and

restrict to TMG in later sections.

In section 4.1 we summarize the Hamiltonian analysis of CS-like theories and identify

the generator of diffeomorphisms. In section 4.2 we present general expressions for their

canonical boundary charges and prove that the diffeomorphism generators indeed generate

gauge symmetries. In section 4.3 we propose a systematic way to determine the asymptotic

symmetries generated by the boundary charges. Here we work mostly in a Hamiltonian

formulation of the theory, generalizing the work of [43] to CS-like models. Similar results

have been obtained in [27] through the covariant phase space methods of [44].

4.1 Hamiltonian analysis of CS-like theories

CS-like models can be defined in terms of a set of sl(2, R)-vector valued one-form fields

labeled by field space indices3 p, q, r, s, t, i.e., ap = anµ
p Ln dxµ. The defining feature of

these models is that they have a bulk action which is reminiscent of, but not quite equal

to, the usual CS action in three dimensions

I =
k

2π

∫

tr

(

gpq a
p ∧ daq +

1

3
fpqr a

p ∧ aq ∧ ar
)

. (4.1)

Here gpq and fpqr are a completely symmetric field space metric and structure constants,

respectively and k is the CS-like level, the overall coupling constant of the theory. For

special values of the field space metric and structure constants the theory in fact is equal

to a CS theory, but in general this is not the case. We assume that all of the fields appearing

3The field space indices label the fields by taking values equal to the symbol of the field. So in the case

of TMG we denote the triad e as ae and similarly aω = ω and af = f .

– 7 –
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in the action have a kinetic term. This implies that gpq is invertible and we use its inverse

to raise field space indices, i.e. fpqr = gpsfsqr.

We consider now gauge-like transformations of the fields ap → ap + δξa
p with

δξa
p = dξp + fpqr [a

q, ξr] . (4.2)

Here ξp = ξnpLn is an sl(2,R) valued ‘field space’ vector. Not all of these transformations

correspond to gauge transformations since only for certain ξp do they leave the action

invariant. In the Hamiltonian formalism this statement means that not all corresponding

constraints are necessarily first class. We will now show which constraints correspond to

the generators of diffeomorphisms and prove that they are first class by computing their

Poisson brackets with all other constraints explicitly in the next subsection.

Analogously to the CS-formulation of Einstein gravity [45, 46] we find that diffeomor-

phisms are generated by the transformations (4.2) with ξp chosen as

ξp = aν
pζν . (4.3)

With this choice of parameters (4.2) can be written as

δζaµ
p = ζν∂µaν

p + aν
p∂µζ

ν + . . .
on−shell

= Lζaµ
p (4.4)

where the ellipsis refers to terms which vanish by use of the field equations

gpq daq +
1

2
fpqr [a

q ∧, ar] = 0 . (4.5)

In [18] the Hamiltonian form of CS-like theories was studied. There it was shown that

the Hamiltonian solely consists of primary constraints φp times Lagrange multipliers at
p,

which are the time components of the fields.

H = −
∫

d2x tr(at
p φp) ≡ −k

π

∫

d2x tr

(

at
p ǫij

(

gpq ∂iaj
q +

1

2
fpqr [ai

q, aj
r]

))

(4.6)

Here the integration is over the spatial part of the manifold, which we will denote with the

two-dimensional Latin indices i, j, and ǫij ≡ ǫtij . In our conventions the Poisson brackets

of the canonical fields are

{

ani
p(x), amj

q(y)
}

=
π

k
ǫij g

pq γnm δ(2)(x− y) . (4.7)

where γnm is the inverse of the sl(2,R) invariant Killing form γnm = antidiag(−1, 12 ,−1)nm.

The Poisson brackets of the constraint functions φp, when integrated against the pa-

rameter ξp, generate the spatial components of the transformations (4.2).

{φ[ξq], aip(y)} ≡
{

k

π

∫

d2x tr
(

ξq(x)φq(x)
)

, ai
p(y)

}

= δξai
p(y) (4.8)

The time components of the fields are either fixed by consistency of time evolution of

the constraints or left arbitrary if the associated constraint is first class and generates

– 8 –
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gauge transformations. If the field space metric and structure constants are such that all

constraints are first class, then the associated CS-like theory is actually a CS theory of the

Lie algebra spanned by the Poisson brackets of the constraints. In the most general case,

and also for TMG, this is not true and not all of the constraints are first class. The precise

conditions under which secondary and second class constraints arise in CS-like models was

studied in detail in [18]. For this work it suffices to use the intuition from gravity and

focus on constraints which generate diffeomorphisms, i.e. have gauge parameter which can

be written as (4.3). In that case, one can show that the constraint function φ[ξp] defined

above generates diffeomorphisms.

{

φ[ξq = aµ
qζµ], ai

p(y)
}

= Lζai
p(y) (4.9)

This expression is true off-shell. Taking the symmetry parameter ξr proportional to the

fields generates an extra term in the Poisson brackets proportional to the constraints φq
which exactly cancels the ellipsis in (4.4).

4.2 Boundary charges in CS-like theories

In order to make the constraint functions well-defined on manifolds with a boundary we

need to add a boundary term Q[ξp] to them (see [47])

Φ[ξp] =
k

π

∫

d2x tr
(

ξp(x)φp(x)
)

+Q[ξp] . (4.10)

This term is defined such that it cancels the boundary terms coming from the variation of

the constraints with respect to the fields,

δQ[ξp] = −k

π

∮

tr
(

gpq ξ
p δaqϕ

)

dϕ . (4.11)

Here we assumed the boundary of the spatial manifold to be a circle parametrized by

the coordinate ϕ. One can now choose boundary conditions such that this expression is

integrable, finite and conserved.

Including this boundary term the Poisson brackets of the constraints (for general ξp

and ηq) are [18]

{Φ[ξp], Φ[ηq]} =
k

π

∫

d2x
[

tr(fpq
r[ξp, ηq]φr) (4.12a)

+ ǫij
(

frp[tfs]qrtr(ξ
pηq)tr(ai

saj
t) + 2frp[qft]srtr(ξ

pai
s)tr(ηqaj

t)
)

]

(4.12b)

+
k

π

∮

dϕ tr
(

ξp
(

gpq∂ϕη
q + fpqr[aϕ

q, ηr]
)

)

(4.12c)

In order for a constraint to be first class, its Poisson brackets with all other constraints

should vanish weakly (on-shell). Hence the bulk part of the right hand side of the above

expression should vanish up to terms proportional to the constraints themselves. The first

term in (4.12) is already proportional to the constraints, but it is not yet improved by a

boundary term. The last term is a boundary term, which should equal the charge needed
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to improve the first term, plus a possible central extension. The term in the middle is

more troublesome and does not vanish for general ξp. Fortunately, when the parameter

ξp is chosen as in (4.3) this term vanishes. To show this rather non-trivial looking result,

one should make use of the following identity which holds on-shell and can be derived by

acting on (4.5) with an exterior derivative and using the field equations once more.

frp[tfs]qra
p ∧ tr(as ∧ at) = 0 = ǫij

(

frp[tfs]qrat
ptr(ai

saj
t) + 2frp[qft]srtr(at

pai
s)aj

t
)

(4.13)

The terms that remain after plugging the identity (4.13) into (4.12b) can be written as an

anti-symmetric combination of three two-dimensional indices

ǫijζkfrp[tfs]qrtr(η
qa[k

p)tr(ai
saj]

t) (4.14)

and hence (4.12b) vanishes.

The last thing we need to show is that the Poisson brackets of Φ[ξp = aµ
pζµ] with any

possible secondary constraints also weakly vanishes. In [18] it was shown that assuming

(some of) the one-form fields ap to be invertible can lead to secondary constraints. This

happens when the inverse of this field can be used to turn the three-form equation (4.13) into

a two-form identity. The spatial components of this two-form then constitute a secondary

constraint on the canonical variables. In general these secondary constraints, labelled by

I take the form

ΨI = hI, pq ǫ
ij tr

(

ai
paj

q
)

(4.15)

for some anti-symmetric field space matrix hI, pq. The Poisson bracket of the diffeomor-

phism generator Φ[ξp = aµ
pζµ] with these constraints is

{Φ[ξp = aµ
pζµ],ΨI} = ζµ∂µΨI . (4.16)

Now we have shown that the constraints (4.10) with gauge parameter (4.3) generate diffeo-

morphisms and have weakly vanishing Poisson brackets with themselves and all the other

constraints in the theory.4 Hence these constraints are first class in the general CS-like

model and thus generate gauge symmetries. Their boundary terms (4.11) constitute the

boundary charges.

Now we proceed to impose suitable boundary conditions. Suitable in this case means

strict enough to make the boundary charges (4.11) integrable, finite and conserved, but

loose enough to allow for a non-trivial asymptotic symmetry algebra generated by these

boundary charges.

4.3 Asymptotic symmetry algebra in CS-like theories

In order to find the asymptotic symmetry algebra in the general CS-like theories we proceed

in the following way. First we specify the boundary conditions for our fields ap. They have

to solve the constraint equations (at least asymptotically) and they should come equipped

4In principle one would have to check for further ternary constraints. However, under the assumptions

listed in [18] and in all the models of interest that we know of (including TMG) there are none.
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with the specification of what is allowed to fluctuate on the boundary and what is kept

fixed, i.e., which components of the fields carry state-dependent information.

Then we determine the transformations (4.2) with gauge parameter (4.3) that preserve

the boundary conditions, up to the transformation of state-dependent functions. In other

words, on the left hand side of (4.2) we specify which components of the fields are allowed

to fluctuate. Then we find the asymptotic gauge parameters ξp by solving for the right hand

side of (4.2), usually (but not necessarily) in some asymptotic (or near horizon) expansion

in the radial coordinate.

In this process we can be assisted by the secondary constraints that follow from (4.13).

hI,pqtr(a
p ∧ aq) = 0 (4.17)

Using this equation and (4.3) we find that

hI,pqtr(a
p ξq) = hI,pqtr(a

q ξp) (4.18)

Depending on the actual form of the secondary constraints, this could turn into a simple

equation relating different components of ξp to each other.

After having found the gauge parameters which preserve (4.2), the consistency of the

boundary conditions can be checked by inserting the result for the gauge parameter into

the variation of the charges (4.11). This should be finite on the boundary, integrable and

conserved. Once these conditions are met, the Poisson brackets (4.12) will solely receive

contributions from the boundary charges on-shell and reduce to the Dirac bracket algebra

of boundary charges

{Q[ξp], Q[ηq]}∗ = −δηQ[ξp] =
k

π

∮

dϕ tr
(

gpq ξ
p δηaϕ

q
)

(4.19)

Imposing boundary conditions on aϕ
p suffices to determine the asymptotic symmetry al-

gebra. The conditions on the radial component of the fields can be derived by solving the

constraints asymptotically. This is often simplified by choosing a suitable local Lorentz

gauge. The time components of the fields can then be found by demanding the boundary

conditions on aϕ
q to be conserved under time evolution. This condition amounts to

∂taϕ
q = −{H, aϕ

q} = {φ[ats], aϕq} = δξs=atsaϕ
q (4.20)

and implies that the time component of the fields can be taken to be equal to the trans-

formations which preserve aϕ
q. Then the transformation of the state-dependent functions

(which constitute the boundary Ward identities) will turn into bulk equations of motion.

Any free functions appearing in the gauge parameter ξp will become the theories chemical

potentials. This situation is essentially equivalent to that of actual CS theories [48].

In practice, however, one often deals with CS-like theories of gravity where one of

the one-forms is a triad. It is then natural to impose boundary conditions on the triad

components inspired by some asymptotic (or near horizon) expansion of a metric in a second

order formulation of the theory. The process of adding chemical potentials as described
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above could then be used to generalize a specific set of boundary conditions and find the

corresponding metric with arbitrary chemical potentials switched on.

Now that we have discussed in detail the procedure to obtain the asymptotic symmetry

algebra of boundary diffeomorphism charges in the general CS-like model (4.1), we proceed

to apply this to the case of near horizon warped black hole boundary conditions in TMG.

5 Warped near horizon symmetries

As next step in our analysis we apply the results of the previous section to our boundary

conditions (3.19) in TMG. We start by finding the boundary condition preserving trans-

formations in section 5.1. Then we derive the warped near horizon charges in section 5.2,

showing that they are finite, integrable and conserved in time. In section 5.3 we obtain the

near horizon symmetry algebra associated with the warped near horizon charges.

5.1 Boundary condition preserving transformations

In the case of TMG we recover from (4.1) the bulk action (3.17) by taking the CS-like level

k = 1
4G , and using the field space metric and structure constants

geω = −1 gωω =
1

3ν
gef =

1

3ν
(5.1a)

feωω = −1 feee = −1 feωf =
1

3ν
fωωω =

1

3ν
. (5.1b)

The triad, spin-connection and Schouten one-form transform as (4.2), which in this case

reads

δξe = dξe + [ω, ξe] + [e, ξω] (5.2a)

δξω = dξω + [ω, ξω] + [e, ξf ] + [f, ξe] (5.2b)

δξf = dξf + [ω, ξf ] + [f, ξω] + 3ν
(

[e, ξf ] + [f, ξe]− [e, ξe]
)

. (5.2c)

We are looking for the parameters ξp which preserve the near horizon boundary condi-

tions (3.19) in the limit as r → 0. To this end we can use the field equations to solve

asymptotically for ω and f (see appendix B). The state-dependent functions in this solu-

tion are γ(ϕ) and ω(ϕ) and hence we solve for ξp that satisfy

δξeϕ = δγ(ϕ)
(

1 +O(r2)
)

L0 − δω(ϕ)(r +O(r3))
L+ + L−

2
(5.3a)

δξωϕ = δω(ϕ)(−1 +O(r2))L0 + δγ(ϕ)(ν2r +O(r3))
L+ + L−

2
(5.3b)

δξfϕ = δγ(ϕ)

(

1

2
(4ν2 − 3) +O(r2)

)

L0

+

(

δγ(ϕ)

(

3ν(ν2 − 1)− δω(ϕ)

(

3

2
− ν2

))

r +O(r3)

)

(L+ + L−)

2
(5.3c)

while all other components of variations of the fields must vanish. We are aided in this

process by the secondary constraint of TMG, which reads (in covariant form)

tr(e ∧ f) = 0 . (5.4)
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In that case (4.18) turns into

tr(e ξf ) = tr(f ξe) , (5.5)

which we can solve for ξf by invertibility of the triad.

The other components of ξp are found by solving the conditions (5.3). It turns out that

they can be written in terms of two arbitrary functions of ϕ, which we call η(ϕ) and ε(ϕ).

ξe=−ε(ϕ)L0+η(ϕ)r
L++L−

2
+O(r2) (5.6a)

ξω = η(ϕ)L0−ν2 ε(ϕ)r
L++L−

2
+O(r2) (5.6b)

ξf =
1

2
(4ν2−3)ε(ϕ)L0−

(

3ν(ν2−1)ε(ϕ)−
(

3

2
−ν2

)

η(ϕ)

)

r
(L++L−)

2
+O(r2) (5.6c)

These transformations correspond to diffeomorphisms by the near horizon Killing vector

ζ = ζµ∂µ

ζ =
γ(ϕ)η(ϕ)− ω(ϕ)ε(ϕ)

aγ(ϕ)
∂t −

ε(ϕ)

γ(ϕ)
∂ϕ +O(r2) (5.7)

The leading order of this Killing vector is exactly the same as in [6] [eq. (84) with Ω = 0].

In accordance with the near horizon boundary conditions for non-extremal black holes

in Einstein gravity [5] we are interested here in ξp that do not depend on the functions

characterizing the specific state, γ(ϕ) and ω(ϕ). As a result the near horizon Killing

vector (5.7) does depend on these functions. In appendix C we explore the consequences

of taking the Killing vector to be state-independent. This leads to a generalization of the

work of [9] to near horizon warped black holes.

We should also note here that the form of (5.6) is exactly that of at
p for p = e, ω, f

given in appendix B, if we identify the zero-mode of η(ϕ) with the Rindler acceleration a

and set ε(ϕ) to zero. This suggests that one could allow for a second chemical potential in

the metric by allowing for non-zero ε(ϕ) in at
p. We have excluded this possibility from the

metric perspective, as this would lead to O(r0) terms in gtt and hence spoil the regularity

of the solution on the horizon.

5.2 Warped near horizon charges

Under the boundary condition preserving transformations (5.2) generated by (5.6) the state

dependent functions γ(ϕ) and ω(ϕ) transform as

δγ(ϕ) = −∂ϕε δω(ϕ) = −∂ϕη . (5.8)

The variation of the charges is readily computed through (4.11) and easily integrated to

Q[ε, η] =
1

8πG

∮

dϕ

[

η(ϕ)

(

γ(ϕ) +
ω(ϕ)

3ν

)

+ ε(ϕ)

(

ω(ϕ) +
4ν2 − 3

3ν
γ(ϕ)

)]

. (5.9)

This is one of our main results. The charges (5.9) are non-trivial, finite, integrable and

conserved in time, ∂tQ[ε, η] = 0. This proves that our starting point, the boundary

conditions (3.19), was meaningful.
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The boundary Hamiltonian, i.e., the charge associated with unit time-translations is

given by

H = Q
∣

∣

ζ=∂t
= Q[0, a] = a

k

2π

∮

dϕ

(

γ(ϕ) +
ω(ϕ)

3ν

)

. (5.10)

5.3 Warped near horizon symmetry algebra

The symmetry algebra (4.19) of the warped near horizon charges (5.9) with variations given

by (5.8) is conveniently expressed in terms of Fourier modes Jn and Kn defined by

Jn ≡ Q[ε = 0, η = einϕ] Kn ≡ Q[ε = einϕ, η = 0] . (5.11)

These modes satisfy the commutation relations

[Jn, Jm] =
k

3ν
n δn+m, 0 (5.12a)

[Jn, Km] = k n δn+m, 0 (5.12b)

[Kn, Km] =
k(4ν2 − 3)

3ν
n δn+m, 0 . (5.12c)

For finite ν ≥ 1 the algebra (5.12) can always be diagonalized

J±

n =
1

2

(

Jn ± 1√
4ν2 − 3

Kn

)

(5.13)

leading to our final result for the warped near horizon symmetry algebra, the non-vanishing

commutators of which read

[J±

n , J±

m] = ±
k±(ν)

2
n δn+m, 0 (5.14)

with the left- and right-u(1) levels

k±(ν) =
k√

4ν2 − 3

(

1±
√
4ν2 − 3

3ν

)

. (5.15)

The limiting case ν = 1 describes BTZ black holes in TMG and yields u(1) levels

k+(1) =
4
3 k, k

−

(1) =
2
3 k, so that we get

k+(1) + k−(1) = 2k k+(1) − k−(1) =
2

3
k . (5.16)

Comparing with the known results for the left and right central charges of TMG [49, 50]

c+(1) + c−(1) = 12k c+(1) − c−(1) = 4k (5.17)

shows consistency with (5.16) provided we make the usual identification between central

charges and levels, c±(1) = 6 k±(1). Thus, as expected the difference between the u(1) levels k±(1)
is a measure for the gravitational anomaly, while their sum is a measure for the conformal

anomaly.
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Thus, we have extended one of the main results of previous near horizon analyses [5, 6]

to locally non-maximally symmetric solutions. Namely, the near horizon symmetry algebra

consists of two u(1) current algebras or, equivalently, of infinitely many Heisenberg algebras

together with two zero mode charges J±

0 . The discussion of soft hair excitations in these

papers generalizes straightforwardly to the present case. This is so, because the near

horizon Hamiltonian H (5.10) is a sum of zero mode charges

H = a
(

J+
0 + J−

0

)

= a J0 (5.18)

and therefore commutes with all raising operators J±

−n so that, like in previous cases, all

soft hair descendants have the same energy as the parent state.

6 Entropy

Thermodynamics of warped black holes in TMG was studied in [14], where they found a

macroscopic result for the entropy

S =
π

24νG

(

(9ν2 + 3) r̂+ − (ν2 + 3) r̂− − 4ν
√

r̂+r̂−(ν2 + 3)
)

(6.1)

and suggested a microscopic one of Cardy-type that matches the result above. Given that

the asymptotic symmetries of warped black holes are of warped CFT type [51] a slightly

more natural microscopic formula for these black holes that also matches the macroscopic

result (6.1) was proposed in [52] based on a Cardy-like formula for warped CFTs.

The conjecture that we want to test in the current paper is whether or not the macro-

scopic entropy (6.1) again has the simple form in terms of near horizon variables given

by (1.1). The algebraic relations (3.6) and (3.7) allow to express the entropy (6.1) as

S =
2π

4G

(

γ +
ω

3ν

)

= 2π J0 . (6.2)

In the second equality of the simple result (6.2) we used the definition of the near horizon

charges (5.9) in terms of Fourier modes (5.11). Comparing the result for entropy (6.2)

with the near horizon Hamiltonian (5.18) and using the standard relation between Rindler

acceleration and Unruh temperature, a = 2πT , yields H = TS, so that we recover the

expected5 near horizon first law [5, 9]

dH = T dS . (6.3)

The final step is to use the diagonal basis (5.13) to bring the entropy into the form

conjectured in the introduction

S = 2π
(

J+
0 + J−

0

)

. (6.4)

In appendix D we derive a general result for the entropy in the CS-like formulation, which

reproduces the entropy (6.4) for soft hairy warped black holes in TMG.

Our main result (6.4) shows that the entropy of warped black holes (and their soft

hairy generalizations constructed in the present work) is the sum of zero mode charges of

two commuting u(1) current algebras that arise in their near horizon description.

5The form of the near horizon first law (6.3) is expected on general grounds [1–4, 53], since H is the

charge associated with the Killing vector along the horizon.
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7 Conclusions

We provided the first example of locally non-maximally symmetric black holes that exhibit

the entropy law (6.4), conjectured to be universal in [6], which provides highly non-trivial

evidence for the conjecture. While doing so, we have established novel boundary condi-

tions (3.9)–(3.13) [or, equivalently, (3.19) in first order formulation for constant Rindler

acceleration] that allow soft hair excitations of warped black holes in TMG.

Our example is the first of possibly numerous others. There are two natural generaliza-

tions. One could consider soft hairy warped black holes in other higher derivative/CS-like

theories of three-dimensional gravity (see e.g. [19] and refs. therein), and/or one could study

other locally non-maximally symmetric black hole solutions (see e.g. [32] and refs. therein

for such solutions in TMG). To this end our general framework for computing canoni-

cal boundary charges and asymptotic symmetry algebras in Chern-Simons-like theories of

gravity will surely be useful.

It would be very interesting to verify if the “fluffball” proposal for semi-classical near

horizon microstates [54–56] works also for warped black holes. Relatedly (but also indepen-

dently) it would be gratifying to know the precise coefficient of the log corrections to (soft

hairy) warped black holes. We expect the calculation to be analogous to the BTZ case [57],

with the only subtlety being the use of an ensemble different from the usual ones that arise

in asymptotic discussions (see e.g. [58] regarding the role played by the choice of thermody-

namical ensemble for the numerical coefficient in the log-corrections to black hole entropy).

Finally, it could be rewarding to lift our results to dimensions higher than three. There

are already indications that a similar entropy law exists in four spacetime dimensions [59]

based on four u(1) current algebras [54] and that the “fluffball” proposal could generalize as

well [60], but it remains to be seen how universal are the higher-dimensional generalizations

of the entropy formula (1.1).

We conclude with restating the initial conjecture with more confidence: non-extremal

black holes in three dimensions (in Einstein gravity, higher derivative and/or higher spin

gravity) have an entropy of the form (1.1), where J±

0 are zero modes of u(1) current algebras

that arise as near horizon symmetries. It would be excellent to find a generic proof of this

conjecture or a non-trivial counter-example.6
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A Algebra conventions

We use the sl(2, R) generators

L+ =

(

0 0

−1 0

)

L0 =
1

2

(

1 0

0 −1

)

L− =

(

0 1

0 0

)

(A.1)

which have standard commutation relations

[L+, L−] = 2L0 [L±, L0] = ±L± (A.2)

and the following non-vanishing traces

tr
(

L+L−

)

= −1 tr
(

L0L0

)

=
1

2
. (A.3)

For comparison with literature on CS-like theories (see [19] and refs. therein) it is useful

to convert into an so(1, 2) basis T a, given by

T 0 =
L+ + L−

2
T 1 =

L+ − L−

2
T 2 = L0 (A.4)

with the standard commutation relations (a, b = 0, 1, 2)

[T a, T b] = ǫabc Tc ǫabc = +1 (A.5)

where indices are raised and lowered by the Minkowski metric

ηab = 2 tr
(

T aT b
)

= diag(−1, 1, 1)ab . (A.6)

The translation between wedged commutators, index notation and the cross-product no-

tation of [19] is then given by

[B ∧, A] = [A ∧, B] ≡ Ta ǫ
abcAb ∧Bc ≡ A×B = B ×A . (A.7)

Note that in the first and last equality there are two compensating signs. For varying the

action (3.17) the triple product identity

A ∧ [B ∧, C] = B ∧ [C ∧, A] = C ∧ [A ∧, B] (A.8)

is useful.
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B Chern-Simons-like variables in near horizon expansion

Starting with the triad (3.19) to lowest orders in r we iteratively solve the equations of

motion (3.18), thereby obtaining the connection from the condition of vanishing torsion

and the Schouten one-form from the relation between f and curvature. The final equation

of motion then yields conditions for the next subleading term in the triad e. In this

way solutions to the equations of motion compatible with our boundary and gauge-fixing

conditions (3.19) are found.

We display below the first couple of terms in such a near horizon expansion.

et = a

(

r +
1

6
(3− 2ν2) r3 +O(r5)

)

L+ + L−

2
(B.1)

eϕ = γ

(

1 +
1

2
ν2r2 +

1

24
ν2(7ν2 − 6) r4 +O(r6)

)

L0

+

[

− ω r +

(

3

4
ν(ν2 − 1) γ − 1

6
(3− 2ν2)ω

)

r3 +O(r5)

]

L+ + L−

2
(B.2)

er =
L+ − L−

2
(B.3)

ωt = a

(

1 +
1

2
(3− 2ν2) r2 +O(r4)

)

L0 − a

(

3

4
ν(ν2 − 1) r3 +O(r5)

)

L+ + L−

2
(B.4)

ωϕ =

[

− ω +
1

2

(

3ν(ν2 − 1) γ − (3− 2ν2)ω
)

r2 +O(r4)

]

L0

+

[

ν2 γ r +
1

12
ν
(

2ν(7ν2 − 6) γ + 9(ν2 − 1)ω
)

r3 +O(r5)

]

L+ + L−

2
(B.5)

ωr =
3

4
ν
(

ν2 − 1
)

r2
L+ − L−

2
+O(r4) (B.6)

ft = a
(

3ν(1− ν2) r2 +O(r4)
)

L0 + a

(

1

2
(3− 2ν2) r +O(r3)

)

L+ + L−

2
(B.7)

fϕ =

[

1

2
(4ν2 − 3) γ +

(

1

4
ν2 (16ν2 − 15) γ + 3ν(ν2 − 1)ω

)

r2 +O(r4)

]

L0

+

[(

3ν(ν2 − 1) γ − 1

2
(3− 2ν2)ω

)

r +O(r3)

]

L+ + L−

2
(B.8)

fr =
1

2

(

3− 2ν2
) L+ − L−

2
+O(r4) (B.9)

As in the main text, we assumed above that Rindler acceleration is constant, a = const.,

so that the near horizon Ward identities (3.14) imply that the state-dependent functions γ

and ω depend solely on the angular coordinate ϕ.

The results above together with the formula for the metric

gµν = 2 tr
(

eµ eν
)

(B.10)

yield the line-element (3.15).
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C Warped DGGP boundary conditions

In section 5.1 we discussed the transformations ξp that preserve our near horizon warped

black hole boundary conditions (3.19). An implicit assumption in that derivation (inspired

by the Einstein gravity case [5, 6]) is that we take the near horizon gauge generator to

be independent of the functions specifying the state, γ(ϕ) and ω(ϕ). This is a subtle,

but important difference with respect to the work of Donnay, Giribet, González and Pino

(DGGP) [9, 10], where the near horizon Killing vector ζµ is assumed to be independent of

the state-dependent function. This approach leads to different near horizon charges and a

different near horizon algebra.

For our near horizon warped black hole boundary conditions in TMG, it is also possible

to repeat the analysis of section 5 while assuming the near horizon Killing vector is indepen-

dent of γ(ϕ) and ω(ϕ). We may write it in terms of two arbitrary functions T (ϕ) and Y (ϕ)

ζ = T (ϕ)∂t + Y (ϕ)∂ϕ +O(r2) . (C.1)

By (4.3) this implies that the gauge parameters ξp read

ξe = Y (ϕ)γ(ϕ)L0 + (aT (ϕ)− Y (ϕ)ω(ϕ)) r
L+ + L−

2
+O(r2) (C.2a)

ξω = (aT (ϕ)− Y (ϕ)ω(ϕ))L0 + ν2 Y (ϕ)γ(ϕ) r
L+ + L−

2
+O(r2) (C.2b)

ξf = −1

2
(4ν2 − 3)Y (ϕ)γ(ϕ)L0 (C.2c)

+

(

3ν(ν2 − 1)Y (ϕ)γ(ϕ) +

(

3

2
− ν2

)

(aT (ϕ)− Y (ϕ)ω(ϕ))

)

r
(L+ + L−)

2
+O(r2)

which is simply (5.6) with η(ϕ) = (aT (ϕ) − Y (ϕ)ω(ϕ)) and ε(ϕ) = −Y (ϕ)γ(ϕ). These

relations also hold in the variation of the state-dependent functions (5.8) which now read

δγ(ϕ) =
(

Y (ϕ)γ(ϕ)
)′

δω(ϕ) = (Y (ϕ)ω(ϕ))′ − aT ′(ϕ) . (C.3)

Here the prime denotes differentiation with respect to ϕ. The variation of the canonical

boundary charges (4.11) is again integrable and finite. Once integrated the charges give

Q[T, Y ] =
1

8πG

∮

dϕ

[

a T

(

γ +
ω

3ν

)

+ Y

(

γ ω +
1

6ν

(

ω2 + (4ν2 − 3)γ2
)

)]

. (C.4)

The Fourier modes Ln = Q[T = 0, Y = einϕ] and Pn = Q[T = einϕ, Y = 0] span the ‘near

horizon warped DGGP’ algebra, which reads

[Ln, Lm] = (n−m)Ln+m [Ln, Pm] = −mPm+n [Pn, Pm] =
κ

2
n δn+m,0 . (C.5)

Like in [9], this is a semidirect sum of the Witt algebra with a u(1) current algebra. How-

ever, now the u(1) current has a non-zero level

κ =
a2

6νG
. (C.6)
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Note that the level κ is determined entirely by the gravitational anomaly and thus vanishes

only in the limit of infinite ν. As observed in [9] for the BTZ black hole, also the warped

black hole entropy (6.1) is given by P0 times the inverse temperature β = 2π/a. The

warped conformal analysis done in AdS [5] can be repeated verbatim and leads to the same

result for entropy. Linearity of the entropy in P0 is also predicted by the warped conformal

generalization of the Cardy formula for vanishing central charge c = 0, see eq. (49) in [52].

D Entropy from a boundary term at the horizon

In this appendix we generalize the arguments from [61] for computing the entropy of black

holes to Chern-Simons-like theories of gravity. Obviously, for the results here to hold,

we would need a suitable CS-like theory of gravity that allows for non-trivial and non-

degenerate solutions whose metric interpretation is that of a stationary black hole with

regular horizon at a radial coordinate r = r+ and inverse temperature β = 2π/a. We will

assume here that such solutions exist in the theory of our interest, but other than that the

derivation holds for general CS-like theories.

We start with the action (4.1) and add a boundary term to ensure that the variational

principle is well-defined

I =
k

2π

∫

tr

(

gpq a
p ∧ daq +

1

3
fpqr a

p ∧ aq ∧ ar
)

+Br+ (D.1)

The Hamiltonian form of the action is obtained by performing a space-time split

ap = at
p dt+ ai

p dxi , (D.2)

where i represents spatial indices. This leads to the Lagrangian density

L = tr
(

−ǫijgpqai
p∂taj

q + 2at
pφp
)

, (D.3)

with the constraint functions φp. Following [61], we will pass to Euclidean signature via a

Wick rotation t = −iτ . Now, both ϕ and τ are periodic with periodicities ϕ ∼ ϕ+2π and

τ ∼ τ + β.

The entropy of a black hole can be obtained by evaluating the action on-shell, i.e., on

the black hole solution. The action has to be of such a form that if we demand it to be

stationary with some boundary conditions at infinity, the equations of motion should hold

everywhere. We choose to work in the Hamiltonian form because black hole solutions are

time independent as they describe a thermodynamic system in equilibrium. Then, the first

term in (D.3) vanishes and the constraint φp = 0 has to hold on-shell. The entropy comes

from a contribution to the action at the horizon r+ that stems from demanding a regular

solution at r+.

The variation of the action (D.1) reads on-shell

δI
∣

∣

EOM
= δBr+ − i

k

π

∫

r=r+

dτ dϕ tr
(

gpqaτ
pδaϕ

q
)

. (D.4)
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From our assumptions on the stationarity of the solution it follows that we can readily

evaluate the time integral as

δI
∣

∣

EOM
= δBr+ − i

k

π
β

∮

r=r+

dϕ tr
(

gpqaτ
pδaϕ

q
)

. (D.5)

Now, Br+ is chosen such that δI = 0. This requires us to integrate the surface term

in the above expression, which may in general be non-trivial. Fortunately, as explained

in section 4.3, by consistency of the boundary conditions, the time component of the

fields at
p have to be proportional to a boundary condition preserving gauge transformation

of aϕ
p. This implies that the condition that the surface term in (D.5) is integrable is

equivalent to the condition that the canonical boundary charges (4.11) are integrable at

the horizon. Provided that these conditions are met, and the gauge parameters do not

depend on the charges (which is the case for our near horizon boundary conditions) we can

readily integrate (D.5) and write on-shell

Br+ = i
k

π
β

∮

r=r+

dϕ tr
(

gpqaτ
paϕ

q
)

. (D.6)

When (D.1) is evaluated on-shell for stationary configurations, the canonical bulk action

vanishes, and the entropy is given by the contribution of the boundary term at the horizon.

Going back to Lorentzian signature, this yields

S = −k

π
β

∮

r=r+

dϕ tr
(

gpqat
paϕ

q
)

. (D.7)

One can now easily verify that the TMG field space metric (5.1), together with the near

horizon solution for the fields ap given in appendix B, reproduce the entropy (6.2) at r = 0.

Open Access. This article is distributed under the terms of the Creative Commons
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