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Soft Magnetoactive Laminates:
Large Deformations, Transverse
Elastic Waves and Band Gaps
Tunability by a Magnetic Field
We investigate the behavior of soft magnetoactive periodic laminates under remotely
applied magnetic field. We derive explicit formulae for the induced deformation due to mag-

netic excitation of the laminates with hyperelastic magnetoactive phases. Next, we obtain
the closed-form formulae for the velocities of long transverse waves. We show the depen-
dence of the wave velocity on the applied magnetic intensity and induced strains, as well

as on the wave propagation direction. Based on the long wave analysis, we derive
closed-form formulae for the critical magnetic field corresponding to the loss of macro-

scopic stability. Finally, we analyze the transverse wave band gaps appearing in magne-
toactive laminates in the direction normal to the layers. We illustrate the band gap
tunability—width and position—by magnetically induced deformation.
[DOI: 10.1115/1.4044497]
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1 Introduction

Magnetoactive elastomers (MAE) can change their size and
material properties in response to a remotely applied magnetic
field. Typically, these soft active materials are composed of magne-
tizable particles (such as iron, nickel, or Terfenol-D) dispersed in a
polymer matrix [1,2]. An external magnetic field magnetizes the
particles, resulting in modification of the mechanical properties
and deformation of the soft composites. The remote and reversible
principle of actuation and properties modification naturally lends
these active materials to a large variety of applications, such as
variable-stiffness devices [3–5], tunable vibration absorbers [6–8],
damping components [9,10], noise barriers [11,12], sensors
[13,14], actuators [15–17], bio-medicine [18], and soft robotics
[19,20] among others. In this paper, we focus on the applications
of MAEs for remote control and manipulation of elastic waves.
The development of the research on wave propagation in magne-

toelastic materials (up to 1981) is summarized by Maugin [21],
along with providing the governing equations for magnetoelastic
waves in finitely strained materials. Succeeding works on wave phe-
nomena in magnetoelastic materials have analyzed nonlinear
surface waves [22,23] and inhomogeneous plane waves [24]. Des-
trade and Ogden [25] have generalized the analysis of the infinites-
imal waves in the finitely strained magnetoelastic solids in a
magnetic field. Following this noteworthy contribution, Saxena
and Ogden have investigated Rayleigh-type surface waves [26]
and Love-type waves [27] propagating in a finitely deformed isotro-
pic and layered half-spaces of an incompressible non-conducting
magnetoelastic solids immersed into a magnetic field, respectively.
Here, we consider transverse wave propagation in finitely

deformed bi-phase periodic magnetoelastic layered composites in

the presence of a magnetic field. Following the studies on elastic
waves in purely mechanical hyperelastic laminates [28] and in
finitely strained dielectric elastomer laminates in the electric field
[29], we consider small amplitude transverse waves in the magneto-
elastic layeredmediumwith two isotropic alternatingmagnetoelastic
materials. We exploit a micromechanics-based technique [30] and
derive the closed-form formulas for the velocities of long (wave-
length≫ period of the laminate) transverse waves. The explicit for-
mulas are given for a general propagation direction. Based on our
long wave analysis, the explicit expressions for the critical magnetic
field and stretch for the loss of stability are derived. Additionally, we
consider the case of magnetodeformation (often referred to as mag-
netostriction in the literature [1,2,31–33]), whenwe induce deforma-
tion by a magnetic field applied normally to the layers and derive
explicit relation for the induced stretch. These results can be used
for verification of numerical approaches for modeling of the magne-
toelastic materials [34–36]. Finally, we derive the dispersion relation
for the transverse waves propagating normally to the layers under the
finite strains induced by a magnetic field.

2 Overview of Nonlinear Magnetoelasticity

Consider a magnetoelastic solid occupying Ω0 and Ωt domains in
the undeformed and deformed configurations, respectively. The
deformation gradient is F(X, t)= ∂x(X, t)/∂X, withX and x are posi-
tion vectors in the undeformed and deformed states. In this paper,
we examine incompressible solids, so that J ≡ detF = 1.
We follow the work by Dorfmann and Ogden [37] and consider

the quasi-magnetostatic approximation, assuming that there are no
electric fields nor free body charges and currents. The magneto-
statics equations in the deformed state are

div B = 0 and curl H = 0 (1)

where B is the magnetic induction andH is the magnetic intensity in
the deformed configuration. Here and thereafter, the first letters of
the differential operators indicate either it is taken in the reference
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(capital first letter) or in the current (low-case fist letter) con-
figurations. The magnetostatics equations in the undeformed con-
figuration are

Div BL = 0 and Curl HL = 0 (2)

where

BL = F−1 · B and HL = FT ·H (3)

are the Lagrangian magnetic induction and magnetic intensity,
respectively.
Assuming that there are no body forces, and the deformation is

applied quasi-statically, we can write the equations of motion as

div σ = 0 (4)

Note that σ includes the mechanical and magnetic stresses and is
referred to as the total Cauchy stress tensor; the total stress tensor
is symmetric, namely, σ= σ

T. Equation (4) can be transformed
into the corresponding form in the undeformed configuration

Div P = 0 (5)

where P is the first Piola-Kirchhoff total stress tensor related to σ via
the following relations for an incompressible material

P = σ · F−T (6)

Consider an energy-density scalar-valued function ψ(F, BL) such
that

P =
∂ψ

∂F
− pF−T and HL =

∂ψ

∂BL

(7)

Due to the incompressibility constraint, the unknown scalar p is
introduced. By defining the tensors of magnetoelastic moduli as

C0 =
∂
2ψ

∂F∂F
, B0 =

∂
2ψ

∂F∂BL

, and M0 =
∂
2ψ

∂BL∂BL

(8)

the linearized (or incremental) constitutive equations can be written
as

Ṗ = C0 : Ḟ + pF−T · Ḟ
T
· F−T

− ṗF−T
+ B0 · ḂL and

ḢL = Ḟ :B0 +M0 · ḂL

(9)

where Ḟ, ṗ, ḂL, and ḢL are the incremental changes in F, p, BL, and
HL, respectively.
By introducing the counterparts of ḂL, ḢL, and Ṗ in the frame of

the updated Lagrangian formulation, namely

ḂL⋆ = F · ḂL, ḢL⋆ = F−T · ḢL, and Ṗ⋆ = Ṗ · FT (10)

we can write the corresponding equations for infinitesimal motions
(“small on large”) as

div ḂL⋆ = 0, curl ḢL⋆ = 0, and div Ṗ⋆ = ρẋ,tt (11)

where ρ is the density. Next, with the updated tensors of elastic
moduli defined as

Cirks = C0ijklFrjFsl, Birk = B0ijmFrjF
−1
mk , and

M = F−T ·M0 · F
−1

(12)

the linearized constitutive law (Eq. (9)) can be rewritten as

Ṗ⋆ = C :U + pUT
− ṗI + B · ḂL⋆ and

ḢL⋆ = U :B +M · ḂL⋆

(13)

where we have used ẋ = u, U = grad u = Ḟ · F−1 together with the
incompressibility constraint

trU ≡ div u = 0 (14)

Next, we follow Destrade and Ogden [25] and look for a solution
for Eq. (11) in the form of plane waves, namely

u= g f (n · x− ct), ḂL⋆ = h h(n · x− ct), and ṗ=Π(n · x− ct)

(15)

where f, h, and Π are sufficiently smooth function, n is the direction
of wave propagation, c is the velocity, and g and h are the corre-
sponding polarization vectors. Inserting Eqs. (13) and (15) into
Eqs. (11) and (14), we obtain the following eigenvalue problem

for the generalized acoustic tensor Â for an incompressible magne-
toelastic solid:

Â · g = ρc2g and g · n = 0 (16)

The generalized acoustic tensor is given as [25]

Â = Q̂ −
2

(trM̂)2 − trM̂
2
Ẑ · (trM̂)Î − M̂

( )

· Ẑ
T

(17)

where Î = I − n⊗ n is the projection tensor, M̂ = Î ·M · Î,

Q̂ = Î ·Q · Î, Ẑ = Î · Z · Î, Qik = Cijkl njnl, and Z = n · B. The

eigenvalues of the generalized acoustic tensor Â define the veloci-
ties of the plane waves propagating in a magnetoelastic solid.

3 Results and Discussion

We examine magnetoelastic layered materials (schematically
shown in Fig. 1(a)) with two isotropic incompressible constituents
with volume fractions v(1) and v

(2)
= 1− v

(1); thus, the alternating
layer thicknesses are L(1)

= v(1)L and L(2)
= v(2)L, and L is the

period of the undeformed layered material. Here, we denote the
parameters of the corresponding constituents as •( )(1) and •( )(2).
Magnetic excitation results in deformation of MAEs (as shown in

Fig. 1(b)), so that the thicknesses become

l(1) = λ
(1)
2 L(1), l(2) = λ

(2)
2 L(2), and l = �λ2L (18)

where λ
(1)
2 and λ

(2)
2 are the phase stretch ratios in the direction e2 and

�λ2 = v(1)λ
(1)
2 + v(2)λ

(2)
2 is the corresponding average stretch ratio.

The average deformation gradient �F and Lagrangian magnetic
induction �BL represent the macroscopically applied magnetomecha-
nical loads defined as

�F = v(1)F(1)
+ v(2)F(2) and �BL = v(1)B

(1)
L + v(2)B

(2)
L (19)

The displacements continuity condition at the layer interface yields

F(1)
− F(2)

( )

· s = 0 (20)

where s is a unit vector normal tom, which is a unit vector denoting
the initial lamination direction. The tractions continuity condition
results in

P(1)
− P(2)

( )

·m = 0 (21)

The corresponding interface conditions for BL and HL are

B
(1)
L − B

(2)
L

( )

·m = 0 and H
(1)
L −H

(2)
L

( )

×m = 0 (22)

The interface conditions Eqs. (21) and (22) can be written in the
deformed state as

σ
(1)

− σ
(2)

( )

·m = 0, B(1)
− B(2)

( )

·m = 0, and

H(1)
−H(2)

( )

×m = 0
(23)

3.1 Magnetodeformation. Consider the laminates with the
phases defined by the following energy-density function (EDF)
for isotropic incompressible magnetoelastic materials

ψ (ξ)(I
(ξ)
1 , I

(ξ)
5 ) = ψ

(ξ)
elas(I

(ξ)
1 ) +

1

2 μ(ξ)
I
(ξ)
5 (24)
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where ψ
(ξ)
elas(I

(ξ)
1 ) represents the mechanical part of the total EDF, C

is the right Cauchy-Green deformation tensor, I1= trC=F : F is its
first invariant, I5=BL ·C ·BL is the invariant accounting for the
magnetomechanical coupling, and μ(ξ) is the magnetic permeability.
First, consider the EDF (24) with neo-Hookean elastic part, namely

ψ
(ξ)
elas(I

(ξ)
1 ) =

G(ξ)

2
I
(ξ)
1 − 3

( )

(25)

where G(ξ) is the shear modulus. For incompressible neo-Hookean
magnetoelastic laminates, an exact solution can be obtained [30].
The solution can be used for constructing the following effective
EDF

ψ(�F, �BL) = ψ̃elas(
�F) + ψ̃c(

�F, �BL) (26)

where the elastic part of the EDF is

ψ̃elas(
�F) =

�G

2
�F : �F − 3
( )

−
�G − Ğ

2
m · �C ·m −

1

m · �C
−1

·m

( )

(27)

where �C = �F
T
· �F and the effective shear moduli are defined as �G =

v(1)G(1) + v(2)G(2) and Ğ = v(1)/G(1) + v(2)/G(2)
( )−1

. The magnetoe-

lastic coupled term of the EDF is

ψ̃c(
�F, �BL) =

1

2 �μ
�BL · �C · �BL +

1

2

1

μ̆
−
1

�μ

( )

�BL ·m
( )2

m · �C
−1

·m
(28)

where the effective permeability moduli are �μ = v(1)μ(1) + v(2)μ(2)

and μ̆ = v(1)/μ(1) + v(2)/μ(2)
( )−1

.
Next, we examine the case of the magnetoelastic laminates

deforming due to a magnetic field applied normally to the layers,
as defined by the following setting:

m = e2, �BL = BL

����

�G μ̆
√

e2, and �σ = v(1)σ(1) + v(2)σ(2) = σ
*
M

(29)

where

σ
*
M =

1

μ0
B*

⊗ B*
−
1

2
B* · B*
( )

I

( )

(30)

is the Maxwell stress outside the laminate, μ0 is the vacuum mag-

netic permeability, and B* = BL

����

�G μ̆
√

e2 is the magnetic induction
outside the laminate. Note that BL denotes the nondimensional (or
normalized) magnetic induction, while its physical value (measured
in Tesla (T)) can be obtained by multiplying the normalized value

by
����

�G μ̆
√

. By making use of the incompressibility condition along

with the in-plane symmetry (〈e1, e3〉) and the interface displacement
continuity condition (Eq. (20)), we can write the average deforma-
tion gradient as

�F = λe2 ⊗ e2 + λ−1/2 I − e2 ⊗ e2( ) (31)

The Cauchy stress and magnetic field in the phases are

σ
(ξ)

= G(ξ)b(ξ) + (μ(ξ))−1B(ξ)
⊗ B(ξ)

− p(ξ)I and H(ξ)
= B(ξ)/μ(ξ)

(32)

Since we consider the case for which B(ξ) = B2 e2 = λBL

����

�G μ̆
√

e2
and b(ξ) = λ2 e2 ⊗ e2 + λ−1 I − e2 ⊗ e2( ), then the stress components
are

σ
(ξ)
11 = σ

(ξ)
33 = G(ξ)λ−1 − p(ξ) and

σ
(ξ)
22 = G(ξ)λ2 + (μ(ξ))−1 �G μ̆ λ2B2

L − p(ξ)
(33)

From the traction continuity condition for the layer interfaces
Eq. (23)1, and for the laminate-outer-space continuity condition
Eq. (29)3, we obtain

σ
(1)
22 = σ

(2)
22 =

1

2
�G μ̆r B

2
L and v(1)σ

(1)
11 + v(2)σ

(2)
11 = −

1

2
�G μ̆r B

2
L

(34)

where μ̆r = v(1)/μ(1)r + v(2)/μ(2)r

( )−1
is the weighted harmonic mean

of relative permeability (μ(ξ)r = μ(ξ)/μ0). Equation (34) produces the

relations between field intensity BL and induced stretch λ as

B2
L =

λ3 − 1

λ μ̆r − λ2
( ) (35)

the results can be also written for the nondimensional Eulerian mag-
netic induction, namely,

B2
=
λ λ3 − 1
( )

μ̆r − λ2
(36)

Due to the choice of the normalization, the relationship (35) and
(36) are independent of the shear moduli. For magnetoactive lami-
nates μ̆r > 1 (otherwise, the laminate is magnetically inactive), thus,
Eq. (36) yields

1 ≤ λ <
���

μ̆r
√

(37)

Hence, a magnetic field applied normally to the layers results in
contraction of the laminates along the layers. Moreover, the

Fig. 1 MAE laminates in (a) the undeformed and (b) magnetically deformed states
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induced stretch is bounded by the certain value defined by the
magnetic properties of the constituents. We note that under
certain magnetomechanical loading, the laminates may experience
magnetoelastic instabilities [30,38]; a more detailed discussion of
the magnetoelastic instability phenomenon in the magnetoactive
laminates is given in the Sec. 3.2.2.
To account for stiffening phenomena due to, e.g., the finite exten-

sibility of polymer chains [39], we consider the Gent model [40] for
the phases

ψ
(ξ)
elas(F

(ξ)) = −
μ(ξ) J(ξ)m

2
ln 1 −

I
(ξ)
1 − 3

J
(ξ)
m

( )

(38)

where J(ξ)m is the locking parameter; recall that in the limit of

(I
(ξ)
1 − 3) → J(ξ)m , the EDF increases drastically. In MAEs laminates

with magnetoelastic Gent phases immersed into a magnetic field
normal to the layers (according to Eq. (29)), the stretch and
Lagrangian magnetic induction are related via

BL
2
=

λ3 − 1

�G λ (μ̆r − λ2)
G(1) ν(1) η(1) + G(2) ν(2) η(2)
[ ]

(39)

where η(ξ) = Jm
(ξ) 3 + Jm

(ξ) − λ2 − 2λ−1
( )−1

. If both phases are char-

acterized by identical locking parameter Jm
(1) = Jm

(2) = Jm, Eq. (39)
reduces to

BL
2
=
λ2 − λ−1

μ̆r − λ2
Jm

3 + Jm − λ2 − 2λ−1

( )

(40)

In terms of Eulerian magnetic induction, Eq. (40) reads as

B2
=
λ λ3 − 1
( )

μ̆r − λ2
Jm

3 + Jm − λ2 − 2λ−1

( )

(41)

Figure 2 illustrates the results of Eqs. (36) and (41) showing the
induced stretch as the function of the dimensionless Eulerian mag-
netic induction for the neo-Hookean (solid curve) and Gent lami-

nates with ν
(1)

= 0.2, μ(1)r /μ(2)r = 1.5, and Jm= 0.1 (dashed curve)

and Jm= 0.2 (dashed-dotted curve).
Next, we illustrate the dependence of the magnetodeformation

(or magnetostriction) on the phase volume fraction in Fig. 3
showing the variations of induced stretch versus volume fraction
ν(1) for MAE composites with (a) Gent with Jm= 0.1 and (b) neo-
Hookean magnetoactive phases. The results are shown for two dif-
ferent ratios of the relative permeability of μ(1)r /μ(2)r = 1.5 and 5

when μ(2)r = 1.5. The dotted, dashed, and solid curves correspond
to the normalized Eulerian magnetic induction of B= 2, 4, and 6,
respectively. As expected, an increase in the volume fraction of
ν(1) (the layers with higher relative permeability) leads to an
increase in the induced stretch λ in the MAE composites.
Figure 3(b) illustrates the influence of the stiffening effect on mag-
netodeformation (or magnetostriction) as compared with the results
for neo-Hookean MAE composites shown in Fig. 3(a).

3.2 Transverse Waves in Magnetoelastic Laminates Under
Magnetomechanical Loads: Long Waves. The magnetoelastic
acoustic tensor (Eq. (17)) for the effective EDF (Eq. (26)) can be
written as

Â(n, �F, �BL) = A1Î + A2 Î · �F
−T

·m
( )

⊗ Î · �F
−T

·m
( )

(42)

where

A1 = �G n · �b · n
( )

+ Ğ − �G
( )

n · �F ·m
( )2

(43)

and

A2 =
�G− Ğ

α2
4β2

α
− 1

( )

−
1

μ̆
−
1

�μ

( )

(

�BL ·m
( )2

α2
−
4

γ

×

(

�BL ·m
( )2

β2

α2
+
1

4
n · �F · �BL

( )2
−

�BL ·m
( )

n · �F · �BL

( )

β

α

))

(44)

where �b = �F · �F
T
, α =m · �C

−1
·m, β = n · �F

−T
·m, and γ =

α �μ/μ̆+ β2 1 − �μ/μ̆
( )

. The eigenvalues of the magnetoelastic acous-

tic tensor (Eq. (42)) are

a1 = A1 and a2 = A1 + A2 α − β2
( )

(45)

The eigenvalues define the values of the transverse wave veloc-
ities, namely,

�c1 =
�����

a1/�ρ
√

and �c2 =
�����

a2/�ρ
√

(46)

where �ρ = v(1)ρ(1) + v(2)ρ(2). We note that the first wave velocity �c1
does not depend on magnetic field, and the expression is the same as
for the transverse wave velocity in purely elastic laminates without
a magnetic field [28]. The second velocity �c2, however, depends on
the magnetic field.
Next, we specify the results for the magnetically induced defor-

mation gradient (31).

3.2.1 Transverse Waves Traveling Perpendicularly to the
Layers. Consider the propagation direction perpendicular to the
layers (n= e2) as schematically shown in Fig. 4(a). For this
special case, the velocities simplify to

�c = �c1 = �c2 = λ

�����

Ğ/�ρ

√

(47)

The velocities are identical and explicitly independent of a magnetic
field; the external excitation influences the velocities only through
the induced stretch λ= λ(BL).

3.2.2 Transverse Waves Travelling Parallel to the Layers.
Consider the propagation along the layers (n= e1) as schematically
shown in Fig. 4(b). Here, the velocities are different, and the
in-plane (with polarization g (2)

= e2) transverse wave velocity is a
function of the applied magnetic field, namely

�c1 = λ−1/2
�����

�G/�ρ
√

(g(1) = e3) (48)

and

�c2 =

����������������������������������������

λ−1 + λ2
Ğ

�G
− 1 − B2

L 1 −
μ̆

�μ

( )( )( )

�G

�ρ

√

(g(2) = e2) (49)

Fig. 2 Induced stretch versus nondimensional Eulerian mag-
netic induction in neo-Hookean (solid curve) and Gent laminates
with Jm=0.1 (dashed curve) and Jm=0.2 (dashed-dotted curve)
and ν

(1)
=0.2, μ

(1)
r /μ

(2)
r = 1.5, and μ

(2)
r = 1.5
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Figure 5(a) shows the velocities of transverse waves given by
Eqs. (47), (48), and (49) as functions of the dimensionless magnetic
induction for the MAE composite with ν

(1)
= 0.2, G(1)/G(2)

= 1,

G(2)
= 1 MPa, μ(1)r /μ(2)r = 5, and μ(2)r = 1.5 (such MAE laminates

can be constructed from layers filled with a mixture of magnetically
inactive and active stiff fillers, and from layers filled with magnetiz-
able particles). The velocities are normalized by their corresponding
values in the undeformed state (no deformation, nor magnetic exci-
tation), �c0 = �c (BL = 0). Consequently, the presented results are
true for any choice in ρ(1)/ρ(2). The solid and dashed-dotted curves
are for the transverse wave velocity with the propagation direction
parallel to the layers n= e1 and polarizations g (2)

= e2 and g (1)
=

e1, respectively. The dotted curve corresponds to the velocity of
the transverse waves traveling in the direction normal to the lami-
nates (n= e2). The velocity increases slightly as the magnetic inten-
sity level is magnified. For the transverse waves traveling along the
layers, the magnetically induced changes result in a decrease in the
velocity. The velocity of the out-of-plane wave experiences only
slight reduction due to the induced deformation, while the in-plane
wave (g (2)

= e2) is affected significantly by the magnetic field.
Figure 5(b) shows the corresponding induced stretch versus

Lagrangian magnetic induction, together with the limiting critical
magnetic induction level and the corresponding induced stretch.

Note that Eq. (49) produces the formula for the critical stretch
and magnetic field at which the composite loses magnetomechani-
cal stability [41]. Recall that this occurrence is identified with van-
ishing of the velocity value [28]. In particular, Eq. (49) yields

B
(cr)
L = λ−3cr +

Ğ

�G
− 1

( )1/2

1 −
μ̆

�μ

( )−1/2

(50)

Moreover, substitution of Eq. (35) into Eq. (50) produces a polyno-
mial equation for the critical stretch

a5 λ
5
cr + a3 λ

3
cr + a2 λ

2
cr + 1 = 0 (51)

where a5 = �μ−1r − Ğ(�G μ̆r)
−1, a3 = Ğ�G

−1
− 1, and a2 = −�μ−1r . For

magnetically inactive laminates, the expression for the critical
stretch reduces to

λcr = 1 −
Ğ

�G

( )−1/3

(52)

recovering the result for the purely mechanical case [28]. Figure 6
illustrates the result for the critical magnetic field (Eq. (50))
showing the contour plots in the coordinates of shear modulus

Fig. 3 Induced stretch versus volume fraction ν
(1) for laminates with (a) neo-Hookean phases and

(b) Gent (Jm=0.1); with two different ratios of μ
(1)
r /μ

(2)
r = 1.5 and 5 when μ

(2)
r = 1.5. The dotted, dashed,

and solid curves are for magnetic induction B=2, 4, and 6, respectively.

Fig. 4 Schematic representation of transverse waves traveling in the direction (a) normal and
(b) parallel to layers
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and magnetic permeability ratios of the constituents. These results
describe the behavior of the neo-Hookean magnetoactive laminates
with ν

(1)
= 0.5 and ρ

(1)/ρ(2)= 1. Two ranges of contrasts

(a) 2μ(1)r /μ(2)r 10 and 2 ⩽ G
(1)/G(2)

⩽ 20 and (b) 1.1μ(1)r /μ(2)r 2 and

1 ⩽ G(1)/G(2)
⩽ 2 are demonstrated separately.

3.2.3 Transverse Wave Propagation at Oblique Angles. Next,
we consider oblique transverse wave propagating in the direction
n = cosφ e1 + sinφ e2. By combining the expressions for the
velocities Eq. (46) with Eqs. (31) and (35), we obtain the slow-
nesses plots �s(φ) = 1/�c(φ) presented in Fig. 7 for (a) out-of-plane
(with polarization g= e3) and (b) in-plane (with polarization
vector lying in plane 〈e1, e2〉) transverse waves. The examples are
given by the magnetoelastic composites of v(1)= 0.2, G(1)/G(2)

= 1,
μ(1)r /μ(2)r = 5, G(2)

= 1 MPa, and μ(2)r = 1.5 excited magnetically.
These solid, dashed, and dotted curves correspond to the slownesses
of the laminates subjected to the magnetic induction BL= 0, 0.63,
and 1.26, respectively. The out-of-plane wave velocity is weakly
affected by the magnetic excitation. However, the in-plane trans-
verse wave velocity experiences more pronounced changes as the
magnetic induction is increased, especially as the direction of
the wave propagation changes from the one perpendicular to the
layers to the one along the layers. It can be seen from the elongated
(along n1-axis) elliptical shape of the slowness curve for the lami-
nate subjected to BL= 1.26, indicating that the velocity of the
wave traveling along the layers significantly drops near a magnetoe-
lastic instability.

3.3 Transverse Wave Band Gaps. Let us consider infinitesi-
mal steady-state transverse excitations propagating perpendicularly
to the layers (in x2 or e2 direction, as shown in Fig. 1). We assume

that the incremental fields u(ξ), Ḃ
(ξ)

L⋆, and ṗ(ξ) are functions of the

coordinate x2 and time t. The magnetoelastic tensors (Eq. (12))
for the energy-density function (Eq. (24)) are

C
(ξ)
ijkl = 2 δik b

(ξ)
lj ψ

(ξ)
1 + 2 b

(ξ)
ij b

(ξ)
kl ψ

(ξ)
11

( )

+
1

μ(ξ)
δik B

(ξ)
l B

(ξ)
j ,

B
(ξ)
ijk =

1

μ(ξ)
δik B

(ξ)
j + δ jk B

(ξ)
i

( )

, and M
(ξ)
ij =

1

μ(ξ)
δij

(53)

Fig. 5 (a) Velocities of transverse waves (Eqs. (47), (48), and
(49)) as functions of the dimensionless magnetic induction for
MAE layered materials with ν

(1)
=0.2, G(1)/G(2)

=1, G(2)
=1 MPa,

μ
(1)
r /μ

(2)
r = 5, and μ

(2)
r = 1.5 (b) stretch versus Lagrangian magnetic

induction

Fig. 6 The critical Lagrangian magnetic induction contour map as a function of contrasts in shear modulus and relative magnetic
permeability of phases for neo-Hookean laminates of ν(1)=0.5: (a) 2μ

(1)
r /μ

(2)
r 10 and 2 ⩽ G

(1)/G(2)
⩽ 20 (b) 1.1μ

(1)
r /μ

(2)
r 2 and 1 ⩽ G

(1)/
G

(2)
⩽ 2
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where ψ
(ξ)
1 = ∂ψ (ξ)/∂I

(ξ)
1 and ψ

(ξ)
11 = ∂ψ

(ξ)
1 /∂I

(ξ)
1 . As before, we

assume the magnetically induced deformation gradient (Eq. (31)).
Thus, substitution of Eqs. (13), (14), and (53) into Eq. (11) yields

∂
2u

(ξ)
1

∂t2
= c(ξ)
( )2∂

2u
(ξ)
1

∂x22
,

∂ṗ(ξ)

∂x2
= 0, and

∂
2u

(ξ)
3

∂t2
= c(ξ)
( )2∂

2u
(ξ)
3

∂x22

(54)

where

c(ξ) = λ

�����������

2ψ
(ξ)
1 /ρ(ξ)

√

(55)

Inserting Eqs. (14), (53), and (31) into Eq. (13) gives

Ṗ
(ξ)

⋆12 = 2 λ2 ψ
(ξ)
1

∂u
(ξ)
1

∂x2
+
B
(ξ)
2

μ(ξ)
B
(ξ)
2

∂u
(ξ)
1

∂x2
+ Ḃ

(ξ)

L⋆1

( )

,

Ḣ
(ξ)

L⋆1 =
1

μ(ξ)
B
(ξ)
2

∂u
(ξ)
1

∂x2
+ Ḃ

(ξ)

L⋆1

( )

Ṗ
(ξ)

⋆22 =
2

μ(ξ)
B
(ξ)
2 Ḃ

(ξ)

L⋆2 − ṗ(ξ)

Ṗ
(ξ)

⋆32 = 2 λ2 ψ
(ξ)
1

∂u
(ξ)
3

∂x2
+
B
(ξ)
2

μ(ξ)
B
(ξ)
2

∂u
(ξ)
3

∂x2
+ Ḃ

(ξ)

L⋆3

( )

,

Ḣ
(ξ)

L⋆3 =
1

μ(ξ)
B
(ξ)
2

∂u
(ξ)
3

∂x2
+ Ḃ

(ξ)

L⋆3

( )

(56)

where Eq. (23)2 reduces to B
(ξ)
2 = B2.

The incremental interface conditions between the layers (x2= 0)
read as

Ṗ
(1)

⋆12 = Ṗ
(2)

⋆12, Ṗ
(1)

⋆22 = Ṗ
(2)

⋆22, Ṗ
(1)

⋆32 = Ṗ
(2)

⋆32,

Ḣ
(1)

L⋆1 = Ḣ
(2)

L⋆1, Ḣ
(1)

L⋆3 = Ḣ
(2)

L⋆3, Ḃ
(1)

L⋆2 = Ḃ
(2)

L⋆2

(57)

Thus, inserting Eq. (56) into Eq. (57), we obtain

ψ
(1)
1

∂u
(1)
1

∂x2

∣

∣

∣

∣

∣

x2=0

=ψ
(2)
1

∂u
(2)
1

∂x2

∣

∣

∣

∣

∣

x2=0

, ψ
(1)
1

∂u
(1)
3

∂x2

∣

∣

∣

∣

∣

x2=0

=ψ
(2)
1

∂u
(2)
3

∂x2

∣

∣

∣

∣

∣

x2=0

,

ṗ(2) − ṗ(1) = B2 ḂL⋆2

1

μ(2)
−

1

μ(1)

( )

(58)

We seek a solution for Eq. (54)1 in the following form:

u
(ξ)
1 =M(ξ)ei k

(ξ)x2−ωt( ) + N(ξ)ei −k
(ξ)x2−ωt( ) (59)

where k(ξ)=ω/c(ξ) is the wavenumber and ω is the angular fre-
quency. Perfect bonding between the layers entails

u
(1)
1

∣

∣

x2=0
= u

(2)
1

∣

∣

x2=0
(60)

Next, inserting Eq. (59) into Eq. (60), we obtain

M(1)
+ N(1)

−M(2)
− N(2)

= 0 (61)

Substituting Eq. (59) into Eq. (58)1, we have

ψ
(1)
1

c(1)
M(1)

−
ψ
(1)
1

c(1)
N(1)

−
ψ
(2)
1

c(2)
M(2)

+
ψ
(2)
1

c(2)
N(2)

= 0 (62)

Two more relations for constantsM(1), N(1),M(2), and N(2) can be
derived from the periodicity of the laminate. To this end, the form of
the solution (Eq. (59)) is altered to be the steady-state wave with the
same wavenumber k for both layers

u
(ξ)
1 = U

(ξ)
1 x2( )ei(kx2−ωt) (63)

where

U
(ξ)
1 (x2) =M(ξ)eiK

(ξ)
− x2 + N(ξ)e−iK

(ξ)
+ x2 and K(ξ)

± = k(ξ) ± k (64)

In accordance with the Floquet theorem, functions U
(ξ)
1 x2( ) must be

periodic with l= l
(1)

+ l
(2) (Fig. 1(b)), i.e.,

U
(1)
1 ( − l(1)) = U

(2)
1 (l(2)) (65)

Then, inserting Eq. (64) into Eq. (65) gives

e−iK
(1)
− l(1)M(1)

+ eiK
(1)
+ l(1)N(1)

− eiK
(2)
− l(2)M(2)

− e−iK
(2)
+ l(2)N(2)

= 0 (66)

Next, substituting Eq. (63) and Ḃ
(ξ)

L⋆1 = h
(ξ)
1 (x2)e

i(kx2−ωt) into

Eq. (56)1, we obtain

Ḣ
(ξ)

L⋆1(x2, t) =H
(ξ)
1 (x2)e

i(kx2−ωt), and

H
(ξ)
1 (x2) =

1

μ(ξ)
B2

iω

c(ξ)
M(ξ)eiK

(ξ)
− x2 − N(ξ)e−iK

(ξ)
+ x2

( )

+ h
(ξ)
1 (x2)

( )

(67)

Fig. 7 Slowness curves for (a) the out-of-plane and (b) the in-plane transverse waves propagating in the magnetoelastic

laminates with v
(1)
=0.2, G(1)/G(2)

=1, μ
(1)
r /μ

(2)
r = 5, G(2)

=1 MPa and μ
(2)
r = 1.5 subjected to a magnetic field perpendicularly

to the layers. Slowness is normalized by c=

�����

Ğ/�ρ

√

. Scale is 0.5 per division. The vertical and horizontal axes with the

labels n2/�c and n1/�c only indicate the principal directions and physical quantities presented on the polar plot.

Journal of Applied Mechanics NOVEMBER 2019, Vol. 86 / 111001-7

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/a

p
p
lie

d
m

e
c
h
a
n
ic

s
/a

rtic
le

-p
d
f/8

6
/1

1
/1

1
1
0
0
1
/5

4
3
3
4
2
0
/ja

m
_
8
6
_
1
1
_
1
1
1
0
0
1
.p

d
f b

y
 B

ib
lio

th
e
e
k
 D

e
r R

ijk
s
u
n
iv

e
rs

ite
it u

s
e
r o

n
 1

7
 O

c
to

b
e
r 2

0
1
9



and

Ṗ
(ξ)

⋆12(x2, t) = P
(ξ)
1 (x2)e

i(kx2−ωt), and

P
(ξ)
1 (x2) = 2 λ2

2 ψ
(ξ)
1

iω

c(ξ)
M(ξ)eiK

(ξ)
− x2 − N(ξ)e−iK

(ξ)
+ x2

( )

+ B2H
(ξ)
1 (x2)

(68)

where according to the Floquet theorem

P
(1)
1 (−l(1)) = P

(2)
1 (l(2)), H

(1)
1 (−l(1)) =H

(2)
1 (l(2)),

h
(1)
1 (− l(1)) = h

(2)
1 (l(2))

(69)

Finally, combining Eq. (68) and Eq. (69), we obtain

ψ
(1)
1

c(1)
e−iK

(1)
− l(1)M(1)

−
ψ
(1)
1

c(1)
eiK

(1)
+ l(1)N(1)

−
ψ
(2)
1

c(2)
eiK

(2)
− l(2)M(2)

+
ψ
(2)
1

c(2)
e−iK

(2)
+ l(2)N(2)

= 0 (70)

The condition for the existence of a nontrivial solution for the
system of Eqs. (61), (62), (66), and (70) is

det

1 1 −1 −1
ψ
(1)

1

c(1)
−

ψ
(1)

1

c(1)
−

ψ
(2)

1

c(2)
ψ
(2)

1

c(2)

e−iK
(1)
− l(1) eiK

(1)
+ l(1) −eiK

(2)
− l(2) −e−iK

(2)
+ l(2)

ψ
(1)

1

c(1)
e−iK

(1)
− l(1) −

ψ
(1)

1

c(1)
eiK

(1)
+ l(1) −

ψ
(2)

1

c(2)
eiK

(2)
− l(2) ψ

(2)

1

c(2)
e−iK

(2)
+ l(2)

⎡

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎦

= 0

(71)

Remarkably, after some mathematical manipulations with Eq. (71)
and taking into account Eq. (55), we can finally obtain the following
compact relation:

cos kl = cos
ω l(1)

c(1)

( )

cos
ω l(2)

c(2)

( )

−
1

2

ρ(1)c(1)

ρ(2)c(2)
+
ρ(2)c(2)

ρ(1)c(1)

( )

× sin
ω l(1)

c(1)

( )

sin
ω l(2)

c(2)

( )

(72)

defining the dispersion relation ω=ω(k). Here, c(ξ)(λ) and l(ξ)(λ) are
functions of deformation; in particular, the dependence of the veloc-
ity on deformation can be found fromEq. (55). Thus, for instance, for
Gent model, substitution of Eq. (38) into Eq. (55) yields

cG
(ξ)

= λ
Jm

(ξ)

3 + Jm(ξ) − λ2 − 2λ−1
μ(ξ)

ρ(ξ)

( )1/2

(73)

The deformation of the laminate results in the layer thickness change
given by Eq. (18). Equations (39), (73), (18), and (72) allow to

evaluate dispersion relations for transverse waves propagating per-
pendicularly to the layers in magnetoelastic layered materials sub-
jected to a magnetic field perpendicularly to the layers. Figure 8
illustrates a dispersion relation Eq. (72) for the MAE laminate with

Gent phases having Jm= 0.1, ν(1)= 0.25, G(1)/G(2) = μ(1)r /

μ(2)r = 15, and ρ(1)/ρ(2)= 1 that is subjected to the magnetic field of

magnitude BL= 2 (the corresponding induced stretch is λ= 1.17).

The reported frequency is normalized as fn = (ωL/2π)
�����

�ρ/Ğ
√

. The
dispersion relation has several frequency ranges where transverse
waves are not allowed to propagate, i.e., band gaps, denoted by the
shaded areas. The lowest band gap is induced around the mid-gap
Bragg frequency that can be evaluated directly from the diagram in
Fig. 8(a) as the intersection of a tangent to the fundamental mode
around the origin and the Brillouin zone boundary at Re(kl/2π)=
0.5. This fact together with the smooth variations of the imaginary
parts of the dispersion bands (Fig. 8(b)) point out at the Bragg scat-
tering origin of the band gap mechanism [42,43].
The derived dispersion relation is in total agreement with the

exact solution for long transverse waves Eq. (47) traveling perpen-
dicularly to the layers in magnetoelastic layered media. This con-
firms that the transverse wave propagation does not depend on a
magnetic field for this specific setting, and the dispersion curves
can be tuned by the application of a magnetic field only through
induced deformation. Equation (72) mimics the classical result for
purely elastic layered materials [44] in the absence of magnetically
or mechanically induced deformations. We note that this relation is
identical to the one studied by Galich et al. [28] for the purely elastic
problem, and it is also identical to the dispersion relation for the
electroactive layered materials, which was first derived by Galich
and Rudykh [29] and, more recently, by Jandron and Henann
[45], who also validated the result numerically. Moreover, the
derived dispersion relation coincides with the finite element simula-
tions in the purely mechanical case (in the absence of a magnetic
field) [46,47]. Here, however, the deformation is induced by a mag-
netic field. The applied magnetic stimulus leads to an extension (in
the magnetic field direction) of the composites, whereas the electric
excitation produces contraction (in the field direction). Next, we
illustrate how the transverse wave band gaps change with the
induced deformation due to the application of a magnetic field.
Figure 9 shows the transverse wave band gap width change with
an increase in the Lagrangian magnetic induction applied perpen-
dicularly to the layers in the MAE laminates with Gent magnetoe-
lastic phases. The examples are given for the laminates with the
ν
(1)

= 0.15, G(1)/G(2) = μ(1)r /μ(2)r = 50, μ(2)r = 1.5, ρ(1)/ρ(2)= 1, and
Jm= 0.1. Clearly, the magnetic field widens and shifts transverse
wave band gaps up toward higher frequencies. For instance, the
applied BL= 1.5 to the laminate shifts the lower boundary of the
first transverse band gap from fn= 0.47 up to 0.71 and widens it

Fig. 8 Dispersion diagrams for (a) real part and (b) imaginary part for transverse waves in

Gent laminate with Jm=0.1, ν(1)=0.25, G(1)
/G

(2)
= μ

(1)
r /μ

(2)
r = 15, and ρ

(1)/ρ(2)=1. The mag-
netic field of BL=2 is applied to the laminate. The shaded rectangles refer to the transverse

wave band gaps. Frequency is normalized as fn = (ωL/2π)

�����

�ρ/Ğ

√

.
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fromΔfn= 0.07 up to 0.12 (see Fig. 9). Figure 10 displays the lowest
(first) band gap width versus the volume fraction in Gent layered
materials with Jm= 0.1, μ(1)r /μ(2)r = 5, and G(1)/G(2)

= 10. The light
and dark gray areas represent the lowest band gap width of the com-
positewithoutmagnetic excitation (BL= 0) and excited byBL= 1.25.
One can see that in accordance with the previous observations the
magnetic excitation widens the band gap width. The band gap
width reaches a maximum at a certain volume fraction, in particular,
ν(1)m = 0.76 for the considered composition; the band gap width
changes from Δf ( max )

n = 0.406 at BL= 0, to Δf ( max )
n = 0.494 when

excited magnetically by BL= 1.25; in addition, the upper boundary
attains the frequency of f (up)n = 0.96 (at BL= 1.25) in comparison to
f (up)n = 0.79 (BL= 0). We remark, however, that the optimum
volume fraction value (for which the maximum width is observed)
barely changes with the magnetic excitation.
Finally, toprovide theguidelines fordesigningwide lowfrequency

bandgaps,we showhow the optimumvolume fraction value changes
with the stiffness ratio and the relative magnetic permeability.
Figure 11 shows the optimum volume fraction versus the stiffness
ratio G(1)/G(2) when μ(1)r /μ(2)r = 50, Jm= 0.1, G(2)

= 1 MPa,
μ(2)r = 1.5, and ρ(1)/ρ(2)= 1. The dashed and solid curves represent
the composite without magnetic excitation and magnetically
excited (BL= 2) composite, respectively. The results show that the

value of the optimum concentration of the stiff layers increases as
the stiffness ratio is increased; also, the difference between these
valuesbecomessmaller.This isbecause the levelof the induceddefor-
mation decreases for compositeswith high stiffness of the reinforcing
layers (when immersed into a magnetic field of the same level).
Figure 12 displays the optimum volume fraction versus the rela-

tive magnetic permeability for the composite with G(1)/G(2)
= 50.

Obviously, the optimum value does not change for the undeformed
composite (dashed horizontal line for BL= 0), however, a slight
increase in the optimum concentration is observed for the excited
composite (solid curve for BL= 2). For instance, the optimum
volume fraction of the stiff layers increases from about 0.88 for
μ(1)r /μ(2)r = 1 to 0.917 for the composite with high contrast in mag-
netic properties of the constituents μ(1)r /μ(2)r = 50.

4 Conclusion

We investigated the behavior of periodic laminates with magne-
toactive hyperelastic isotropic phases. First, we derived explicit

Fig. 9 Band gap widths versus magnetic induction in Gent
layered materials with Jm=0.1, ν

(1)
=0.15, and μ

(1)
r /μ

(2)
r =G

(1)
/

G(2)
= 50

Fig. 10 The first (lowest) band gap widths versus volume
fraction in Gent layered materials with Jm=0.1,
μ
(1)
r /μ

(2)
r = 5, and G

(1)/G(2)
=10 (Color version online.)

Fig. 11 The optimum volume fraction; ν(1) versus the stiffness
ratio (shear modulus); G

(1)/G(2) in Gent layered materials with
Jm=0.1, G(2)

=1 MPa, μ
(1)
r /μ

(2)
r = 50, and ρ

(1)/ρ(2)=1. The dashed
and solid curves are for the magnetic field of BL=0 and BL=2,
respectively.

Fig. 12 The optimum volume fraction; ν(1) versus the relative
magnetic permeability; μ

(1)
r /μ

(2)
r in Gent layered materials with

Jm=0.1, μ
(2)
r = 1.5, G

(1)/G(2)
=50, and ρ

(1)/ρ(2)=1. The dashed
and solid curves are for the magnetic field of BL=0 and BL=2,
respectively.
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expressions for the magnetically induced stretch developing in
response to a remotely applied magnetic field. The relations
between the induced stretch and applied magnetic field were
derived for laminates with neo-Hookean and Gent magnetoactive
phases. Second, the exact solution for magnetoactive laminates
was used to construct the homogenized effective energy function
and to derive the explicit expressions for transverse wave velocities
as functions of the applied magnetic field, deformation, and wave
propagation direction. In general, one of the two transverse wave
velocities depends explicitly on the applied magnetic field.
However, for the specific case of the transverse waves propagating
perpendicularly to the layers, the velocities of both transverse waves
are independent of an applied magnetic field. However, the trans-
verse wave velocities still can be tuned through the magnetically
induced deformation. Based on the long wave analysis for the
case of transverse waves propagating along the layers, we derived
the explicit expressions for the critical magnetic field corresponding
to the onset of macroscopic or long wave instabilities. The critical
condition was specified for the deformation induced by a remotely
applied magnetic field. Finally, we studied the transverse wave dis-
persion relations in the magnetoactive laminates. Similarly to purely
mechanical laminates, the magnetoactive laminates possess forbid-
den frequency ranges or band gaps for transverse waves propagat-
ing perpendicularly to the layers. The transverse wave band gaps
in neo-Hookean magnetoactive laminates are indifferent to the
applied magnetic field and induced deformation. However, the pro-
nounced stiffening effect of Gent magnetoactive laminates results in
tunability of the transverse wave band gaps by the magnetically
induced deformation. Thus, the width and position of the transverse
wave band gaps can be controlled by a remotely applied magnetic
field. The optimum volume fractions maximizing the lowest band
gap were obtained to provide the guidelines toward the design of
low frequency band gap magnetoactive materials.
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