
Soft Mathematical Morphology: Extensions, 

Algorithms and Implementations 

 

A. Gasteratos and I. Andreadis  

Laboratory of Electronics 

Section of Electronics and Information Systems Technology 

Department of Electrical and Computer Engineering 

Democritus University of Thrace 

GR-671 00 Xanthi, Greece 

E-mail: {agaster, iandread}@demokritos.cc.duth.gr 



 

 

2

Preface 

Linear filters have been used as the primary tools in signal and image processing. They 

exhibit many desirable properties, such as the superposition, which makes them easy to 

design and implement. Furthermore, they are the best solution in additive Gaussian noise 

suppression. However, when the noise is not additive or when there exist system non-

linearities linear filters are not adequate. For example all image processing is, of 

necessity, non-linear. In such cases non-linear filters should be utilized. The advantage of 

non-linear filters is their ability to pass structural information while suppressing noise or 

removing clutter. Pattern and edge information are often crucial to image understanding, 

and in many circumstances  it is possible to design non-linear filters that pass structural 

information in a manner superior to that of linear filters. Non-linear filtering has been 

developed along three lines: logical (set), geometrical (shape) and numerica l (order 

based). These three approaches are deeply interrelated. Shape-based non-linear filtering is 

centered around mathematical morphology.  

Soft morphological filters are a relatively new subclass of non -linear filters. They 

combine morphological filters with weighted order statistics filters. Standard 

morphological opera tors are defined using local min and max operations. In soft 

mathematical morphology rather flexible definitions are provided, by substituting the min 

and max operators with general weighted order statistics. Soft morphological filters have 

been introduced to improve the results of standard morphological filters in noisy 

conditions. In this paper the trends in soft mathematical morphology are described. Fuzzy 

soft mathematical morphology applies the concepts of soft morphology to fuzzy sets. The 

definitions of the basic fuzzy soft morphological operations and their algebraic properties 

are provided. An algorithm for soft morphological structuring element decomposition is 
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also presented. Furthermore, techniques for software and hardware implementation of soft 

morphological operations are included. 
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I. Introduction 

Mathematical morphology is an active and growing area of image processing and 

analysis. It is based on set theory and topology (Matheron, 1975, Serra, 1982, Haralick et 

al., 1986, Giardina and Dougherty, 1988). Mathematical morphology studies the 

geometric structure inherent within the image. For this reason it uses a predetermined 

geometric shape known as the structuring element. Erosion, which is  the basic 

morphological operation, quantifies the way in which the structuring element fits into the 

image. Mathematical morphology has provided solutions to many tasks, where image 

processing can be applied, such as in remote sensing, optical character recognition, radar 

image sequence recognition, medical imaging etc. Soft mathematical morphology was 

introduced by Koskinen et al. (1991). In this approach the definitions of the standard 

morphological operations were slightly relaxed in such a way that a degree of robustness 

is achieved, while most of their desirable properties are maintained. Soft morphological 

filters are less sensitive to additive noise and to small variations in object shape than 

standard morphological filters. They have found applications mainly in noise removal, in 

areas such as medical imaging and digital TV (Harvey, 1998).  

Another, relatively new, approach to mathematical morphology is fuzzy mathematical 

morphology. A fuzzy morphological framework has been introduced by Sinha and 

Dougherty (1992). In this framework the images are not treated as crisp binary sets, but as 

fuzzy sets. The set union and intersection have been replaced by fuzzy bold union and 

bold intersection, respectively, in order to formulate fuzzy erosion and dilation, 

respectively. This attempt to adapt mathematical morphology into fuzzy set theory is not 

unique. Several other attempts have been developed independently by researchers, and 

they are all described and discussed by Bloch and Maitre (1995). Several fuzzy 
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mathematical morphologies are grouped and compared and their properties are studied. A 

general framework, unifying all these approaches is also demonstrated. 

In this paper recent trends in soft mathematical morphology are presented. The rest of the 

paper is organized as follows. The standard morphological operations and their algebraic 

properties and fuzzy morphology are discussed in section II. Soft mathematical 

morphology is described in section III. A soft morphological structuring element 

decomposition technique is introduced in section IV. The definitions of fuzzy soft 

morphological operations and their algebraic properties are provided in section V. Several 

implementations of soft morphological filters are analyzed in section VI. Concluding 

remarks are made in section VII. 

II. Standard Mathematical Morphology  

The considerations for the structuring element used by Haralick et al. (1987) have been 

adopted for the basic morphological operations. Also, the notations of the extensions of 

the basic morphological operations (soft morphology, fuzzy morphology and fuzzy soft 

morphology) are based on the same consideration. Moreover, throughout the paper the 

discrete case is considered, i.e. all sets belong to the Cartesian grid Z2.  

A. Binary Morphology 

Let the set A denote the image under process and the set B the structuring element. Binary 

erosion and dilation are defined: 

I
B

)A(A
∈

−=Β
x

x  T

 

and               (1)  
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)A(A
∈

=Β⊕
x

x                 (2) 

respectively. 

where A, B are sets of Z2 and (A)x is the translation of A by x, which is defined as 

follows: 

( ) { }Asomefor|ZA 2 ∈∈= a      x+a=c cx               (3)  

The definitions of binary opening and closing are: 

( ) BBABA ⊕= To  and               (4) 

( ) BBABA T⊕=•                (5) 

respectively. 

B. Basic Algebraic Properties 

The basic algebraic properties of the morphological operations are provided in this 

section: 

Duality Theorem 

Erosion and dilation are dual operations: 

(AT B)C=AC ⊕BS         (6) 

where AC is the complement of A, and it is defined as: 

AC = {x ∈  Z2 | x ∉ A}       (7) 
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and BS is the reflection of B, and it is defined as: 

BS = {x  | for some b ∈  B, x = -b}      (8) 

Opening and closing are also dual operations: 

(A • B)C=AC ° B
S        (9) 

Translation Invariance 

Both erosion and dilation are translation invariant operations: 

(A)x ⊕ B = (A ⊕ B)x and      (10) 

(A)x T  B = (A T  B)x       (11) 

respectively. 

Increasing 

Both erosion and dilation are increasing operations: 

 C? C??? TT ⊆⇒⊆        (12) 

DBD??? ⊕⊆⊕⇒⊆       (13) 

Distributivity 

Erosion distributes over set intersection and dilation distributes over set union: 

(? ∩? )T C=(? T C)∩(? T C) and       (14) 

)CB()CA(C)BA( ⊕∪⊕=⊕∪       (15) 
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respectively.  

Anti-extensivity - Extensivity 

Erosion is an anti-extensive operation, provided that the origin belongs to the structuring 

element: 

?BA B0 ⊆⇒∈ T        (16) 

Similarly, dilation is extensive, if the origin belongs to the structuring element: 

????0 ⊕⊆⇒∈        (17) 

Idempotency 

Opening and closing are idempotent, i.e. their successive applications do not change 

further the previously transformed result: 

ΒΒΑ=ΒΑ ooo )(  and       (18) 

Β•Β•Α=Β•Α )(        (19) 

C. Gray-scale Morphology with Flat Structuring Elements 

The definitions of morphological erosion and dilation of a function f: ZF →  by a flat 

structuring element (set) B are: 

(f T B) (x) = min {f (y ) | y ∈  (B)x} and     (20) 

(f ⊕ B) (x) = max {f (y ) | y ∈  (BS)x}      (21) 

respectively. 
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where 2Z∈y x,  are the spatial coordinates and 2ZF ⊆  is the domain of the gray-scale 

image (function). 

D. Gray-scale Morphology with Gray-scale Structuring Elements 

The definition of erosion and dilation of a function f: ZF →  by a gray-scale structuring 

element g: ZG →  are: 

)}()({min))((
G

ygyxfxg  f
y

−+=
∈

T  and     (22) 

)}()({max))((
F

G
ygy-xfxgf

yx
y

+=⊕
∈−

∈
     (23)  

respectively. 

where 2Z∈y x,  are the spatial coordinates and 2ZG,F ⊆ , are the domains of the gray-

scale image (function) and gray-scale structuring element, respectively. 

E. Fuzzy Morphology 

In this paper the definitions introduced by Sinha and Dougherty (1992) are used. These 

are a special case of the framework presented by Bloch and Maitre (1995). In this 

approach, fuzzy mathematical morphology is studied in terms of fuzzy fitting. The 

fuzziness is introduced by the degree to which the structuring element fits into the image. 

The operations of erosion and dilation of a fuzzy image by a fuzzy structuring element 

having a bounded support, are defined in terms of their membership functions as follows: 
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     (25) 

where 2Z∈y x,  are the spatial coordinates and µA, µB are the membership functions of the 

image and the structuring element, respectively. 

It is obvious from Eqs. (24 ) and (25) that the results of both fuzzy erosion and dilation 

have membership functions whose values are within the interval [0,1]. 

III. Soft Mathematical Morphology  

In soft morphological operations the maximum or the minimum operations, used in 

standard gray-scale morphology, are replaced by weighted order statistics. A weighted 

order statistic is a certain element of a list, the members of which have been ordered. 

Some of the members from the original unsorted list, participate with a weight greater 

than one, i.e. they are repeated more than once, before sorting (David, 1981, Pitas and 

Venetsanolpoulos, 1990). Furthermore, in soft mathematical morphology the structuring 

element B is divided into two subsets; the core B1 and the soft boundary B2.  

A. Binary Soft Morphology 

The basic definitions of the binary soft erosion and dilation are (Pu and Shih, 1995):  
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(27) 

respectively. 

where k  is called the order index, which determines the number of times that the elements 

of core participate into the result and Card[X] denotes the cardinality of set X, i.e. the 

number of the elements of X. 

In the extreme case when the order index k=1 or, alternatively, B=B1 (B2= ∅ ) soft 

morphological operations are reduced to standard morphological operations. 

Example 1: The following 

example demonstrates a 

case of soft binary dilation 

and erosion. The adopted 

coordinate system is (row, 

column). The arrows 

denote the origin of the coordinate system and its direction. 

If k>Card[B2], soft morphological operations are affected only by the core B1, i.e. using 

B1 as the structuring element. Therefore, in this case the nature of soft morphological 

operations is not preserved (Kuosmanen and Astola, (1995), Pu and Shih, (1995)). For this  

reason the constraint ( ) ( ){ }2BCard,2/BCardmin  k ≤  is used. In the above example 

min(Card(B)/2, Card(B2))=2.5 and, therefore, only the cases k=1 and k=2 are considered. 

?
? 1={(0,0)}
B2={(-1,0), (0,-1),
            (0,1), (1,0)}

? ⊕ [B1,B2,1] ? ⊕ [B1,B2,2]

? T [B 1,B2,1] ? T [B 1,B2 ,2]  
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For k=1 the results of both dilation and erosion are the same to those that would have been 

obtained by applying Eqs. (2) and (1), respectively. 

B. Gray-scale Soft Morphology with Flat Structuring Elements 

The definitions of soft morphology were first introduced by Koskinen et al. (1992), as 

transforms of a function by a set. In the definition of soft dilation the reflection of the 

structuring element is used, so that in the case of k=1 the definitions comply with 

(Haralick et al., (1987)). 

(f T [B1, B2, k]) (x ) = min(k) ({k◊f (y) | y ∈ (B1)x}∪({f (z) | z ∈ (B2)x}) and (28) 

( )  })Β( ∈ | )( ({∪})Β( ∈ | )( ◊{ = )( ]) ,Β ,Β[⊕ 221 xx
k z zfy ykxk  (f SS

1
)(max  (29) 

respectively.    

where min(k) and max(k) are the k th smallest and the kth largest element of the multiset, 

respectively; a multiset is a collection of objects, where the repetition of objects is allowed 

and the symbol ◊ denotes the repetition, i.e.: {k  ◊ f (x )}={ f (x ), f (x  ), ... f (x )} (k   times). 

C. Gray-scale Soft Morphology with Gray-scale Structuring Elements 

Soft morphological erosion of a gray-scale image f: F→Z by a soft gray-scale structuring 

element [a, ß, k ]: B→Z is (Pu and Shih, 1995): 

[ ]( ) ( ) ( ) ( )( ){ } ( ) ( ){ }( )zßzxfyayxfkxkß,a, f k

z
y

−+∪−+◊=

∈
∈

min

2
1

B
B

T

    

(30) 

Soft morphological dilation of f by [a, ß, k ] is: 
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[ ]( ) ( ) ( ) ( )( ){ } ( ) ( ){ }( )zßz-xfyay-xfkxk ß,a, f k

z
y

z-xy-x
+∪+◊=⊕

∈
∈

∈
max

2
1

B
B

F)(),(

   

(31) 

where 2Z∈z y, x, , are the spatial coordinates; a:  B1→Z is the core of the gray-scale 

structuring element; ß: B2→Z is the soft boundary  of the gray-scale structuring element 

and 2
21 ZB,B,F ⊆  are the domains of the gray-scale image, the core of the gray-scale 

structuring element and the soft boundary of the gray-scale structuring element, 

respectively. 

Figure 1 demonstrates one-dimensional soft morphological operations and the effect of 

the order index k . The same structuring element is used for both operations. It is an one-

dimensional structuring element with five discrete values. The central value corresponds 

to its core and it is equal to 30. Additionally it denotes the origin. The four remaining 

values belong to its soft boundary and they are equal to 20. From both Figures 1(a) and 

(b) it is obvious that the greater the value of the order index, the better the fitting.  

IV. Soft Morphological Structuring Element Decomposition 

A soft morphological structuring element decomposition technique is described in this 

section (Gasteratos et al., 1998d). According to this technique, the domain B of the 

structuring element is divided into smaller non-overlapping sub-domains B1, B2, ... Bn. 

Also, BB...2B1B =∪∪ n . The soft morphological structuring elements obtain values 

from these domains and they are denoted by [?1, µ1, k ], [?2, µ2, k ], ... [?n, µn, k ], 

respectively. These have common origin, which is the origin of the original structuring 

element. Additionally, the points of B which belong to its core are also points of the cores 

of B1, B2, ... Bn and the points of B which belong to the soft boundary are also points of 

Insert Figure 1 here à 
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the soft boundaries of B1, B2, ... Bn. This process is graphically illustrated in Figure 2. In 

this figure the core of the structuring element is denoted by the shaded area. 

Soft dilation and erosion are computed as follows: 

[ ]( )
( )
( )

( ) ( )( ){ } ( ) ( ){ }( )]max[max

1
B
B

)(

1

)(

2
1

zµz-xfy?y-xfkxk ß,a, f ii

k

=j
z-x
y-x

j
n

i

k +∪+◊=⊕
∈
∈=

 

 (32) 

[ ]( )
( )
( )

( ) ( )( ){ } ( ) ( ){ }( )]min[min

1
B
B

)(

1

)(

2
1

zµzxfy?yxfkxk ß,a,f ii

k

=j
z-x
y-x

j
n

i

k −+∪−+◊=
∈
∈=

T  (33) 

respectively.  

where B1 and B2 are the domain of the core and the soft boundary of the large structuring 

element [a, ß, k ]: B →Z. 

Proof:  

U
n

i
i y?ya y 

1
1 )()(:B

=

=∈∀  

[ ]U
n

i
i y?y-xfyay-xf 

1

)()()()(
=

+=+⇒ , (x-y ) ∈Β1 

( ) [ ]

( ) 1

1

B)()()(),...()(),()(

)()()()(

∈+−++◊

=









+◊=+◊⇒
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n21

n

i
iU    (34) 

Also, U
n

i
i zµzß z 

1
2 )()(:B

=

=∈∀  

Insert Figure 2 here à 
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Through Eqs. (31), (34) and (35) we obtain: 
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The above equation can be expressed, in terms of order statistics of the multiset, as 

follows: 

[ ]( )
( )
( )

( ) ( )( ){ } ( ) ( ){ }( )

( )
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( ) ( )( ){ } ( ) ( ){ }( )

( )
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,max
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)1N(
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)N(

1
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zµzxfy?yxfkxkß,a,f
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k
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+−∪+−◊

+−∪+−◊=⊕
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∈

∈
∈

−

∈
∈=

 

where N is the number of the elements of the multiset. 

However, if an element is not greater than the local (N-k)th order statistic, then it cannot be 

greater than the global (N-k )th order statistic. Therefore, the terms max(N) … max(k+1) can 

be omitted:  
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Similarly Eq. (33) can be proven. 

Example 2: Let us consider the following image f and soft structuring element [a, ß]: 

 

 

Soft dilation at point (0,0) for k=2, according to Eq. (31) is:  

[ ]( ) ( ){ } { }( ) ( ) 1617,12,12,16,13,13,14,14max17,12,12,1613,142max0,02 )2()2( ==∪◊=⊕  ß,a, f
  

According to the proposed technique the structuring is divided into three structuring 

elements: 

 

The following multisets are obtained from the above structuring elements: }16),14(2{ ◊ , 

}12),13(2{ ◊  and {12,17}, for the first the second and the third structuring elements, 

respectively. From these multisets the max and max(2) elements are retained: ({16,14}, 

8 1 2 12 4 12 12 4

f a,ß[        ]

14 9 3 3

 

4 12 12 4

?   ,µ1 1[            ] ?   ,µ2 2[            ]

3 3

?   ,µ3 3[            ]
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{13,13} and {17,12}). The max(2) of the union of these multisets, i.e. 16, is the result of 

soft dilation at point (0,0). It should be noticed that although 16 is the max of the first 

multiset, it is also the max(2) of the global multiset.  

V. Fuzzy Soft Mathematical Morphology 

A. Definitions 

Fuzzy soft mathematical morphology operations are defined taking into consideration that 

in soft mathematical morphology the structuring element is divided into two subsets, i.e. 

the core and the soft boundary, from which the core 'weights' more than the soft boundary 

in the formation of the final result. Also, depending on k , the k th order statistic provides 

the result of the operation. Also, fuzzy soft morphological operation should preserve the 

notion of fuzzy fitting (Sinha and Dougherty, 1992). Thus, the definitions for fuzzy soft 

erosion and fuzzy soft dilation are (Gasteratos et al., 1998a ):  

( ) ( ){ }

{ })]1)()(

1)()((min,1min[)(
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2
1
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and  (36) 
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(37) 

respectively. 

where 2Z∈z y, x, , are the spatial coordinates and µA, µB1
, µB2

 are the membership 

functions of the image, the core of the structuring element and the soft boundary of the 
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AT [? 1, ? 2, 1]
µ

 

structuring element. Additionally, for the fuzzy structuring element B⊂Z2: 21 BBB ∪=  

and ∅=∩ 21 BB . 

It is obvious that for k=1 Eqs. (36) and (37) are reformed to Eqs. (24) and (25) 

respectively, i.e. standard fuzzy morphology. 

Example 3: Let us consider the image A 

and the structuring element B. Fuzzy soft 

erosion and fuzzy soft dilation are 

computed for cases k=1 and k=2. 

In order to preserve the nature of soft morphological operations, the constraint 

( ) ( ){ }2BCard,2/BCardmin  k ≤  is adopted in fuzzy soft mathematical morphology, as well 

as in soft mathematical morphology. In this example only the cases of k=1 and k=2 are 

considered, in order to comply with this constraint. 

Case 1 (k=1): The fuzzy soft erosion of the image is calculated as follows: 

( ) [ ][ ]
( ) [ ][ ]

( ) [ ][ ] 2.0112.0,18.02.0min,1min2,5

5.018.07.0,119.0,119.0,18.03.0min,1min1,0

3.018.09.0,119.0,113.0min,1min)0,0(0,0 ]1,B,BAE 21

=+−+−

=+−+−+−+−

=+−+−+−=

Ε

Ε

 =µ

    =µ

 µ=µ

M

T [

 
Therefore, the eroded image is: 

 

 

The values of the eroded image at points (0, 2) and (1, 2) are higher than the rest values of 

the image. This agrees with the notion of fuzzy fitting, since only at these points the 
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structuring element fits better than the rest points of the image. Fuzzy erosion quantifies 

the degree of structuring element fitting. The larger the number of pixels of the structuring 

element, the more difficult the fitting. Furthermore, fuzzy soft erosion shrinks the image. 

If fuzzy image A is considered as a noisy version of a binary image (Sinha and 

Dougherty, 1992), then the object of interest consists of points (0, 1), (0, 2), (0, 3), (0, 4), 

(1, 1), (1, 2), (1, 3), (1, 4), (2, 1) and (2, 2) and the rest is the background. By eroding the 

image with a 4-pixel horizontal structuring element it would be expected that the eroded 

image would comprise points (0, 2) and (1,2). This is exactly what it has been obtained.  

Similarly, the dilation of the image is calculated as follows: 

( ) [ ][ ]
( ) [ ][ ]
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Therefore, the dilated image is: 

 

 

As it can be seen, fuzzy soft dilation expands the image. In other words the dilated image 

includes the points of the original image and also points (0, 0), (0, 5), (1, 0), (1, 5), (2, 0), 

(2, 3) and (2, 4). 

Case 2 (k=2): The erosion of the image is calculated as follows: 
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The eroded image for k=2 is: 

 

 

In this case the values of the eroded image at points (0, 1), (0, 2), (0, 3), (1, 1), (1, 2) and 

(1, 3) are higher than the rest values of the image. This is in agreement with the notion of 

fuzzy soft fitting. At these points the repeated k times "high value" pixels, which are 

combined with the core of the structuring element and the pixels which are combined with 

the soft boundary of the structuring element, are greater than or equal to the 

kCard[B1]+Card[B2]-k+1. 

Similarly, the dilation of the image is calculated: 
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Therefore, the dilated image for k=2 is: 

 

 

Here again fuzzy soft dilation expands the image, but more ‘softly’, than when k=1. This 

means that certain points  ((0, 0),(1, 0), (2, 0) and (2, 4) ) which were considered image 

points (when k=1), now (k=2) belong to the background. The greater the k , the less the 

effect of dilation. 

Finally, fuzzy soft opening and closing are defined as: 
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[ ] ( ) )()( ],2B,1B[],2B,1B[ A,B,BA 21
xµxµ k kk ⊕= To  and    (38) 

( ) )()( ],2B,1B[ ],2B,1B[ A],2B,1B[ A xµxµ kkk T ⊕• =
 
    (39) 

 respectively. 

Illustration of the basic fuzzy soft morphological operations is given through one-

dimensional and two -dimensional signals . Figure  3 depicts fuzzy soft morphological 

erosion and dilation in one-dimensional space. More specifically, Figure 3a shows the 

initial one-dimensional signal and fuzzy soft erosion for k=1 and for k=2. Figure 3b shows 

the initial one-dimensional signal and fuzzy soft dilation for k=1 and for k=2. Figure 3c 

shows the structuring element. The core of the structuring element is the shaded area and 

the rest area of the structuring element is its soft boundary. From Figures 3a and 3b it 

becomes clear that the action of the structuring element becomes more effective when 

k=1, i.e. the results of both fuzzy soft erosion and dilation are more visible in the case of 

k=1, than in the case of k=2. Moreover, both erosion and dilation preserve the details of 

the original image better in the case of k=2, than in the case of k=1. 

Figure 4 presents the result of fuzzy soft morphological erosion and dilation on a two- 

dimensional image. More specifically, Figures 4a and 4b present the initial image and the 

structuring element, respectively. The image in Figure 4b has been considered as an array 

of fuzzy singletons (Goetcharian, 1980). The results of fuzzy soft erosion (k=1) after the 

first and second interactions are presented in Figures 4c and 4d, respectively. The white 

area is reduced after each interaction. The white area of the eroded image (Figure 4c) is 

the area of the initial image, where the structuring element fits better. Similarly, Figures 

4e and 4f present the results of fuzzy soft erosion (k=3) after the first and second 

interaction, respectively. Comparing Figures 4c and 4e it becomes clear that the greater 

the k  the less visible the results of fuzzy soft erosion. Figures 4g and 4h depict the results 

Insert Figure 3 here à 
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of fuzzy soft dilation (k=1) after the first and second interaction, respectively. In the case 

of fuzzy soft dilation the white area increases. Similarly, in Figures 4i and 4j the results of 

fuzzy soft dilation (k=3) after the first and the second interaction, respectively. Again, the 

greater the k  the less visible the results of fuzzy soft dilation. 

B. Compatibility with Soft Mathematical Morphology 

Let us consider Example 3. By thresholding image A and structuring element B (using a 

threshold equal to 0.5), the following binary 

image and binary structuring element are 

obtained: 

By applying soft binary erosion and soft binary dilation to image A with structuring 

element B the following images are obtained for k=1 and k=2: 

k=1: 

 

k=2: 

 

It is obvious that these results are identical to those of Example 3, when the same 

threshold value is used. This was expected, since binary soft morphology quantifies the 

soft fitting in a crisp way, whereas fuzzy soft erosion quantifies the soft fitting in a fuzzy 

way. The same results are obtained using a threshold equal to 0.55. However, when fuzzy 

soft morphology and thresholding with a threshold equal to or greater than 0.6 on the one 

hand and thresholding with the same threshold and soft morphology on the other hand are 
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applied, different results will be obtained. This means that, in general, the operations do 

not commute. 

C. Algebraic Properties of Fuzzy Soft Mathematical Morphology 

Duality Theorem 

Fuzzy soft erosion and dilation are dual operations: 

( ) )()( C
2121

C ],B,BA],B,[A
xµxµ

kk [  T
=

−Β⊕
     (40) 

Opening and closing are also dual operations: 
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21
xµxµ kk −−• =  [ o      (41) 

Translation Invariance 

Fuzzy soft erosion and dilation are translation invariant: 
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where A and A?, are two images with membership functions µ?  and µA?, respectively and 

µ? (x)< µA?(x), ∀x∈Z2. 

Distributivity 

Fuzzy soft erosion is not distributive over intersection, as it is in standard morphology: 

( ) ( ) ( ) )()(|ZB,2A,1AandZ ],B,B2A],B,B1A],,B[B2A1A
22

212121
xµxµ x k kk [ [ TTT ∩∩ ≠⊆∃∈∃ (44) 

Example 4: Consider the following image A and structuring element B, where image A is 

the intersection of images A1 and A2.  

 

The fuzzy soft erosion for k=2 of A, A1, A2 and the intersection of the eroded A1 and the 

eroded A2 are: 

 

In general, fuzzy soft dilation does not distribute over union: 
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( ) ( ) ( ) )()(ZB,2A,1AandZ ],B,B2A],B,B1A],B,B2A1A
22

212121
xµxµ| x k kk [ [ [ ⊕∪⊕⊕∪ ≠⊆∃∈∃ (45) 

Anti-extensivity - Extensivity 

Fuzzy soft opening is not anti-extensive. If it were anti-extensive, then 

2
],B,B[A Z),()(

21
∈∀≤ Α x  xµxµ ko . In the following example it is shown that 2Z∈∃x  | 

)()( A],B,B[A 21
xµxµ k >o .  

Example 5: Consider the image A and the 

structuring element B, for k=2. In this 

example 

2.0)2,0(9.0)2,0( A],B,B[A 21
=>= µµ ko , 

which means that fuzzy soft opening is not anti-extensive.  

Similarly, it is shown that, in general, fuzzy soft closing is not extensive too: 2Z∈∃x  and 

A,B ⊆Z2 | )()( A],B,B[A 21
xµxµ k <• . 

Idempotency 

In general, fuzzy soft opening is not idempotent: 

( ) )()(ZB,AandZ ],B,B],B,BA],B,BA
22

212121
xµxµ|  x kkk [ [ [ ooo ≠⊆∃∈∃   (46) 

This is illustrated by the following example: 

Example 6: Consider the image A and the structuring element B, for k=1.  
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From this e xample it is obvious that fuzzy soft opening is not idempotent.  

By the duality theorem (Eq. (41)) it can be proven that, in general, fuzzy soft closing is 

not idempotent too:  

( ) )()(ZB,AandZ ],B,[B],B,[BA],B,[BA
22

212121
xµxµ|  x kkk ••• ≠⊆∃∈∃

     
   (47) 

VI. Implementations 

Soft morphological operations are based on weighted order statistics and, therefore, 

algorithms such as mergesort and quicksort, which were developed for the computation of 

weighted order statistics, can be used for the computation of soft morphological filters 

(Kuosmanen and Astola, 1995). The average complexity of the quicksort algorithm is 

O(NlogN), where N is the number of elements to be sorted (Pitas and Venetsanopoulos, 

1990). Therefore, the average complexity for a soft morphological operation utilizing a 

soft structuring element [a, ß, k ]:B → Z is O((kCard[B1]+Card[B2])log(kCard[B1] 

+Card[B2])). 
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Hardware implementations of soft morphological operations include the threshold 

decomposition and the majority gate techniques. These structures along with an algorithm 

based on local histogram are described in some detail in this section. 

A. Threshold Decomposition 

The threshold decomposition (Wendt et al., 1986) is a well-known technique for hardware 

implementation of non-linear filters. The implementation of soft morphological filters in 

hardware, using the threshold decomposition technique has been described in (Shih and 

Pu, 1995, Pu and Shih, 1995). According to this approach both the gray-scale image and 

the gray-scale structuring element are decomposed into 2b binary images fi and 2b 

structuring elements ßi, respectively. Binary soft morphological operations are performed 

on the binary images by the binary soft structuring elements and then a maximum or a 

minimum selection at each position is performed, depending whether the operation is soft 

dilation or soft erosion, respectively. Finally the addition of the corresponding binary 

pixels is performed. Figure 5 demonstrates this technique for soft dilation.  

The logic-gate implementation of binary soft morphological dilation and erosion are 

shown in Figures 6(a) and (b), respectively. The parallel counter counts the number of 

“ones” of the input signal and the comparator compares them to the order index k  and 

outputs one when this number is greater than or equal to k . 

It is obvious that this technique, although it can achieve high-speed computation times, 

since it is realized using simple binary structures, it is hardware demanding. Its hardware 

complexity grows exponentially both with the structuring element size and the resolution 

of the pixels, i.e. its hardware complexity is O(2N2b).    

Insert Figure 5 here à 

Insert Figure 6 here à 
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B. Majority Gate 

1. Algorithm description 

The majority gate algorithm is an efficient bit serial algorithm suitable for the 

computation of the median filter (Lee and Jen, 1992). According to this algorithm the 

MSBs of the numbers within the data window are first processed. The other bits are then 

processed sequentially until the less significant bits (LSBs) are reached.  Initially, a set of 

signals (named the rejecting flag signals) are set to "1". These signals indicate which 

numbers are candidates to be the median value. If the majority of the MSBs is found to be 

"1", then the MSB of the output is "1", otherwise it is "0". The majority is computed 

through a CMOS programmable device, shown in Figure 7. In the following stage the bits 

of the numbers whose MSBs have been rejected by means of the rejecting flag signals are 

not taken into account. The majority selection procedure continues in the next stages until 

the median value is found. 

Gasteratos et al. (1997a) have proposed an improvement of this algorithm for the 

implementation of any rank filter, using a single hardware structure. This is based on the 

concept that by having a method to compute the median value of 4N+1 numbers and by 

being able to control 2N of these numbers, any order statistic of the rest 2N+1 numbers 

can be determined. Suppose that there are W=2N+1 numbers xi, the r-th order statistic of 

which is required. The 2N+1 inputs are the numbers xi, whereas the rest are dummy inputs 

dl  ( N20 ≤< l ). The binary values of the dummy inputs can be either "00..0" or "11..1". 

This implies that when the W´ numbers are ordered in ascending sequence, dl  are placed 

to the extremes of this sequence.  

2. Systolic Array Implementation for Soft Morphological Filtering 

a. A Systolic Array for a 3x3 Structuring Element  

Insert Figure 7 here à 
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A pipelined systolic array capable of computing soft gray-scale dilation/erosion on a 3x3 -

pixel image window using a 3x3-pixel structuring element, both of 8-bit resolution, is 

presented in Figure 8 (Gasteratos et al., 1998b). The central pixel of the structuring 

element is its core, whereas the rest eight pixels constitute its soft boundary. The inputs to 

this array are the 9 pixels of the image window, the 9 pixels of the soft morphological 

structuring element and a control signal MODE. Latches (L1) store the image window, 

latches (L*1) store the structuring element and latch (L**1) stores number k . Signal 

MODE is used to select the opera tion. When this is "1" soft dilation is performed, whereas 

when it is "0" soft erosion operation is performed. Image data is collected through 

multiplexers MUX1, which are controlled by the signal MODE. The pixels of the 

structuring element remain either unchanged for the operation of dilation or they are 

complemented (by means of XNOR gates) for the operation of erosion. In the next stage 

of the pipeline, data is fed into nine adders. In the case of soft erosion the 2's complements 

of the pixel values of the structuring element are added to the image pixel values. This is 

equivalent to the subtraction operation.  

According to the constraint k≤min{Card(B)/2, Card(B2)}, in this case k is in the range 

1 ≤k ≤ 4. Table 1 shows the number of the elements of the image data window, contained 

in the list, as well as the number of the dummy elements. For soft dilation all the dummy 

inputs are pushed to the top, whereas for soft erosion they are pushed to the bottom. Thus, 

the appropriate result is obtained from the order statistic unit. A control unit controls an 

array of multiplexers MUX2 (its input is number k). This is a decoder and its truth table is 

shown in Table 2.  It provides the input to the order statistic unit, either a dummy number 

or a copy of the addition/subtraction result of the core.  

The order statistic unit, consists of identical Processing Elements (PEs) separated by 

latches (L**4 to L**11). The resolution of the latches, which hold the 

addition/subtraction results or the dummy numbers (L3 to L11), decreases by one bit at 

Insert Figure 8 here à 

Insert Table 1 here à 

Insert Table 2 here à 



 

 

32 

each successive stage, since there is no need to carry the bits, which have been already 

processed. On the other hand, the resolution of the latches which hold the result (L4* to 

L*11), increases by one bit at each successive stage. The circuit diagram of this PE is 

shown in Figure 9. In this Figure W'=4N+1; the 2N+1 inputs are the numbers xi, whereas 

the rest are the dummy inputs. Due to its simplicity it can attain very sort processing 

times, independent of the data window size. Also, it becomes clear that the hardware 

complexity of the PE is linearly related to the number of its inputs. 

b. Order Statistic Module Hardware Requirements for Other Structuring Elements 

In this subsection a case study of the hardware requirements for the order statistic unit of a 

more complex structuring element is described. The arithmetic unit consists of a number 

of adders/subtractors equal to the number of pixels of the structuring element. Figure 10a 

illustrates the structuring element. In this case: Card(B)=16, Card(B1)=12, Card(B2)=4 and 

k ≤min{8, 4}, i.e. 1≤ k ≤4. When k=4 the maximum number of the elements of the 

multiset is Card(B2)+kCard(B1)=52. The 49th (4th) order statistic of the multiset is sought. 

Thus, the total number of the inputs to the order statistic unit is 97. The dummy numbers 

which are pushed to the top (bottom), in the operation of soft dilation (erosion), are 45. 

When k=3, the elements of the multiset are 40 and the 38th (3rd) order statistic is 

searched. Now the dummy numbers, which are pushed to the top (bottom), are 46 and to 

the bottom (top) are 11. In the same way, when k =2 the elements of the multiset are 28 

and the 27th (2nd) order statistic is searched and the dummy numbers which are pushed to 

the top (bottom) are 47 and to the bottom (top) are 22. Finally, when k=1 the elements of 

the multiset are 16 and the 16th (1st) order statistic is searched. In this case the dummy 

numb ers which are pushed to the top (bottom) are 48 and to the bottom (top) are 33. For 

any structuring element an order statistic unit can be synthesized following the above 

procedure. In this case hardware complexity is linearly related both to the structuring 

element size and the resolution of the pixels, i.e. the hardware complexity is O(Nb).    
Insert Figure 10 here à 

Insert Figure 9 here à 
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3. Architecture for Decomposition of Soft Morphological Structuring Elements 

An architecture suitable for the decomposition of soft morphological structuring eleme nts 

is depicted in Figure 11. The structuring element is loaded into the structuring element 

management module. This divides the structuring element into n smaller structuring 

elements and provides the appropriate one to the next stage. The pixels of the image are 

imported into the image window management module. This provides an image window, 

which interacts with the appropriate structuring element, provided by the structuring 

element management module. Both the previous modules consist of registers and 

multiplexers (MUXs), controlled by a counter modn (Figure 12). The second stage, i.e. 

the arithmetic unit consists of adders/subtractors (dilation/erosion) and an array of MUXs 

that are controlled by the order index k, as the one shown in Figure 9. The MUXs provide 

the multiple copies of the addition/subtraction results to the next stage, i.e. an array of 

order statistic modules (OSMs). The max(l)/min (l) results (l=1,…k ) of every multiset are 

collected through an array of registers . These registers provide the kn ×  max(l)/min(l) of 

the n multisets concurrently to the last stage OSM which computes the final result 

according to Eqs. (32) and (33). 

C. Histogram Technique 

A method to compute an order statistic is by summing the values in the local histogram 

until the desired order statistic is reached (Dougherty and Astola, 1994). However, instead 

of adding the local histogram values serially, a successive approximation technique can be 

adopted (Gasteratos and Andreadis, 1999). This ensures that the result is traced in a fixed 

number of steps. The number of steps is equal to the number b of the bits per pixel. In 

successive approximation technique the result is computed recursively; in each step of the 

process the N pixel values are compared to a temporal result. Pixel values, which are 

Insert Figure 12 here à 

Insert Figure 11 here à 



 

 

34 

greater than, less than or equal to that temporal result, are marked with labels GT, LT and 

EQ, respectively. GT, LT and EQ are Boolean variables. Pixel labels are then multiplied 

by the corresponding pixel weight (wj). The sum of LTs and EQs determines whether the 

k th order statistic is greater than, less than, or equal to the temporal values.  

The pseudo-code of the algorithm follows:  

Notations: N: Number of pixels; b: pixel value resolution (bits); im1, im2, … imN: image 

pixels; w1, w2, … wN: corresponding weights; k : the sought order statistic; temp: temporal 

result; o: output pixel. 

initial 

o=0 

temp=2b-1 

begin 

for i=1 to b do 

 begin 

 compare(im1, im2, … imN: temp) 

  {if imj=temp then EQj=1 else EQj=0 

 if imj<temp then LTj=1 else LT j=0} 

 if ( ( )∑
=

≥+
N

1j
jjj LTEQ kw ) AND ( ∑

=

<
N

1j
jjLT kw ) 

 then  oßtemp  
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 elsif ∑
=

≥
N

1j
jjLT kw  

 then  tempßtemp-2b-1-i 

 else tempßtemp+2b-1-i 

 end 

end 

A module utilizing standard comparators, adders/subtractors, multipliers and multiplexers 

(for the "if" operations) can be used to implement this technique in hardware. Also, there 

are two ways to realize the algorithm. The first is through a loop, which feeds the temp 

signal back to the input b times. Such a module is demonstrated in Figure 13. Its inputs 

are the addition or subtraction results of the image pixel value data with the structuring 

element pixel values, depending on whether the operation is soft dilation or soft erosion, 

respectively. Alternatively, b successive mo dules can be used to process the data in a 

pipeline fashion. The latter implementation is more hardware demanding, but results into 

a faster hardware structure.  

The above described algorithm requires a fixed number of steps equal to b. Furthermore, 

the number of steps grows linearly according to the pixel value resolution (O(b)). Its main 

advantage is that it can directly compute weighted rank order operations. This means that 

there is no need to reconstruct the local histogram according to the weights of the image 

pixels. Comparative experimental results using typical images, showed that for 5x5 and 

larger image data windows the combined local histogram and successive approximation 

technique outperforms the existing quicksort algorithm for weighted order statistics 

filtering (Gasteratos and Andreadis, 1999). 

Insert Figure 13 here à 
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VII. Conclusions 

Soft morphological filters are a relatively new subclass of non-linear filters. They were 

introduced to improve the behavior of standard morphological filters in noisy 

environments. In this paper the recent descriptions of soft morphological image 

processing have been presented. Fuzzy soft mathematical morphology applies the 

concepts of soft morphology to fuzzy sets. The definitions and the algebraic properties 

have been illustrated through examples and experimental results. Techniques for soft 

morphological structuring element decomposition and its hardware implementation have 

been also described. 

Soft morphological operations are based on weighted order statistics. Algorithms for 

implementation of soft morphological operations include the well-known mergesort and 

quicksort algorithms for weighted order statistics computation. An approach based on 

local histogram and a successive approximations technique has been also described. This 

algorithm is a great improvement in speed for 5x5 image data window or larger. Soft 

morphological filters can be implemented in hardware using the threshold decomposition 

and the majority gate techniques. The threshold decomposition technique is fast but its 

hardware complexity is exponentially related both to the structuring element size and the 

resolution of the pixels. In the majority gate algorithm the hardware complexity is linearly 

related both to the structuring element size and the resolution of the pixels. 
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Figure Captions 

Figure 1. Illustration of one-dimensional soft morphological operations and the effect of 

the order index k ; (a) soft erosion and (b) soft dilation. 

Figure 2. Example of a 4x4 soft morphological structuring element decomposition.  

Figure 3. Illustration of one-dimensional fuzzy soft morphological operations and the 

effect of the order index k ; (a) fuzzy soft erosion, (b) fuzzy soft dilation and (c) the 

structuring element. 

Figure 4. (a) Image, (b) structuring element, (c) fuzzy soft erosion (k=1) after the first 

interaction, (d) fuzzy soft erosion (k=1) after the second interaction, (e) fuzzy soft erosion 

(k=3) after the first interaction, (f) fuzzy soft erosion (k=3) after the second interaction, 

(g) fuzzy soft dilation (k=1) after the first interaction, (h) fuzzy soft dilation (k=1) after 

the second interaction, (i) fuzzy soft dilation (k=3) after the first interaction and (j) fuzzy 

soft dilation (k=3) after the second interaction. 

Figure 5. Illustration of the threshold decomposition technique for soft dilation.  

Figure 6. Implementation of binary (a) soft morphological dilation and (b) soft 

morphological erosion. 

Figure 7. Programmable CMOS majority gate. 

Figure 8. Systolic array hardware structure implementing the majority gate technique for 

soft morphological filtering. 

Figure 9. The basic processing element (PE).  
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Figure 10. (a) structuring element, (b) arrangement of the dummy numbers in soft 

morphological dilation using the structuring element of (a) and (c) arrangement of the 

dummy numbers in soft morphological erosion using the same structuring element. 

Figure 11. Architecture for the implementation of the soft morphological structuring 

element decomposition technique. 

Figure 12. Data window management for soft morphological structuring element 

decomposition. 

Figure 13. Block diagram of a hardware module for the computation of weighted order 

statistics, based on the local histogram-successive approximation technique.  
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- ri,j the rejecting flag signals   

- ti,j  the setting flag signals  

- ii,j intermediate signals  

- bi,j the binary representation 
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Table Captions  

 

Table 1. Use of dummy numbers in the computation of weight order statistics.  

Table 2. Truth table of the control unit. 
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Table 1.  

k  Sequence of 

numbers  

Dummy 

numbers  

1 9 8 

2 10 7 

3 11 6 

4 12 5 
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Table 2.  

Input Outputs 

k i1 i2 i3 i4 i5 i6 i7 i8 

0001 0 0 0 0 0 0 0 0 

0010 1 0 0 0 0 0 0 0 

0011 1 1 0 0 0 0 0 0 

0100 1 1 1 0 0 0 0 0 

 

 


