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Abstract  

Tissues belong to the broad field of active matter, a novel class of non-equilibrium materials 

composed of many interacting units that individually consume energy and collectively 

generate motion or mechanical stresses. Active systems span an enormous range of length 

scales, from individual living cells, to tissues and organisms, to animal groups. We introduce 

the concept of biological tissues as examples of entangled active matter, where the units 

(cell) are bound by transient links. We focus here on the mechanical properties (surface 

tension, elasticity, and viscosity) of cells and tissues derived from measurements performed 

by the pipette aspiration technique. This approach has been very fruitful in unveiling striking 

analogies between the physics of inert soft matter (polymer, viscous pastes, and Silly Putty®) 

and the behavior of biological tissues. The results obtained from such analogies suggest 

important implications in the fields of tissue engineering and development. 

1. Introduction  

Living cells are capable of sensing mechanical stimulations arising from both the external 

and physiological environments 1. Depending on the magnitude, direction and distribution of 

these mechanical stimuli, cells can respond in a variety of ways 2. The mechanical properties 

of individual cells can determine the structural integrity of whole tissues arising from the 

mechanical interactions between cells and the surrounding extracellular matrix. Mechanical 

loads exerted at the tissue level are transmitted to individual cells .Any deviation from cell 

mechanical properties can result in the breakdown of cell biological functions and possibly 

lead to several diseases considered major health risks such as cancer. For instance 

mechanical characterization of cells from the pleural fluids of patients revealed that the 

Young's modulus of cancer cells is considerably less than in benign cells  3. And, in arthritis, 

there is an increase in stiffness and viscosity of the chondrocytes  related to abnormal 

mechanical factors that change the cellular behavior of the cells causing joint degenerations 
4. Thus, critical insights into diverse cellular processes and pathologies can be gained by 

understanding the biomechanics and mechanobiology of cell and tissue. The mechanical 

http://pubs.acs.org/author/Winnik%2C+Fran%C3%A7oise+M
http://pubs.acs.org/author/Brochard-Wyart%2C+Fran%C3%A7oise
http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.5b02785?journalCode=langd5#cor1
http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.5b02785?journalCode=langd5#cor1


 2 

properties of cells are extracted from models that are based on the continuum approach. In 

this approach, the cell is assumed to have homogeneous material properties. Various 

models based on this continuum approach have been developed to characterize the 

mechanical properties of living cells when subjected to mechanical stimuli 5.  

Various experimental techniques have been developed to probe mechanically single cells 

and cell aggregates with forces and displacements. We present here several studies in which  

tools originally developed for studies in soft matter physics are used to characterize the 

mechanical properties of living matter, form single cells to tissues  where cells are glued 

together by specific proteins. We focus on the pipette aspiration technique that yields the 

surface tension, elasticity, and viscosity of single cells 6 and multicellular aggregates 13. This 

straightforward method easily generates several mechanical properties of cells, for instance 

(i) by modeling the cell as a liquid drop, the micropipette aspiration experiments were 

analyzed using the Laplace law and the viscoelastic rheological models for the dynamics of 

aspiration and (ii) by observing the aspiration-driven penetration of cells into the 

micropipette and measuring the evolution over time of the cell penetration length, two 

types of cellular behavior were observed: cells, such as neutrophils 7,8 and erythrocytes, that 

have a liquid-like behavior 9 and solid-like cells, such as chondrocytes 10 and endothelial cells, 

that act as a continuum solid. 11,12.  

Studies of cellular aggregates by the micropipette aspiration technique have indicated 

that aggregates behave like “living” viscoelastic droplets 13: Just like silly putty pastes, they 

behave like gelly drops at short times and flow like a liquid at longer times.  In contrast to 

viscous pastes, cell aggregates reinforce their mechanical properties as they are subjected to  

the aspiration pressure.  This behaviour, which has never been observed with viscous pastes, 

reflects the mechanosensitive active response of the cells’ acto-myosin cortex. Upon 

aspiration at a constant suction pressure, ΔP, the aggregate  penetrates into the 

micropipette if ΔP is larger than ΔPc = 2   (1/Rp – 1/R), where Rp and R are the micropipette 

and aggregate radii, respectively, and  is the surface tension. From the dynamics of 

aspiration, one can measure the surface tension, the elastic modulus, the viscosity, and the 

tissue relaxation time. 

2. The analogy of tissues with soft matter physics 

The analogy between tissues and fluids has improved considerably our understanding of the 

morphogenesis and movement of biological tissue. It was evoked for the first time by 

Malcolm Steinberg 14 who observed that, similarly to a liquid droplet, a tissue of lower 

surface tension engulfs a tissue of higher surface tension  15.  Since then, there are 

numerous examples demonstrating that analogies with soft matter physics bring valuable 

insights into the rheological properties of tissues. At first sight, cell packing in a tissue is very 

similar to the packing of bubbles in foam (Figure.1.Analogy 1).  This analogy has been used 

successfully to describe the static properties of cell configuration in tissue development, but 

it failed when applied to the dynamics of tissues. Foams are solid, and flow only above a 

yield stress σy. In contrast, tissues are ultra-viscous liquids (Figure.1. Analogy 2) similar to 
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polymer melts: below a relaxation time  ( few hours) a tissue behaves like rubber with an 

elastic modulus E. Above , it flows like a liquid of viscosity  = E. The difference between 

foams and tissues is due to the noise produced by live cells. Thermal agitation is too weak to 

allow the reorganization of foams subjected to mechanical stresses. The energy barriers 

corresponding to the reorganization shown in (Figure.1) are much larger then the thermal 

agitation energy kBT and the system is frozen.  Since cells are active and produce a large 

noise, tissues can flow, however. The difference between cell “living” droplets and liquid 
droplets is due to the life of the cells. Cells are sensitive to the surrounding environment; 

they feel the rigidity and the forces applied on them. Therefore, such living drops can be 

described as “active” viscoelastic pastes, able to react to forces applied on them by a 

reinforcement of their mechanical properties.  

 

Figure 1: Analogies of cellular aggregates. (A) Foam structure and (B) viscoelastic paste Silly 

Putty. Maxwell equation for the stress σ versus the deformation ε, where τ is the tissue 

relaxation time, E  the elastic modulus, and η = Eτ the viscosity. 

Analogies between tissue mechanics and dynamical phenomena involving liquid interfaces, 

known as wetting phenomena, have been used to explain several ubiquitous tissue 

behaviors. Particularly striking is the analogy between tissue mechanics and liquid wetting  

found in tissue spreading. For instance, when two aggregates are brought into contact, they 

coalesce to form a single larger spheroid16, as observed in Fig 2 which depicts the spreading 

and fusion of two aggregates . 
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Figure 2: Fusion of two cellular aggregates. (A) Two aggregates in contact. (B) A neck 

connects the aggregates and (C) Spreading and fusion of the aggregates. The scale bar 

corresponding to 100 μm, courtesy S. Douezan. 

When an aggregate is deposited on a substrate, two regimes  can be observed, depending 

upon the sign of the spreading parameter S.  S = Wcs- Wcc describes the competition between 

the cell substrate adhesion energy, Wcs , and the cell cell adhesion energy, Wcc. If S < 0, cells 

prefer to stay in contact with other cells: the aggregate does not spread, which corresponds 

to the  “partial wetting” situation . At equilibrium, the  aggregate forms a spherical cap with 

a finite contact angle.  Partial wetting is experimentally observed when a cell aggregate is 

placed on Pegylated poly(L-lysine) (PLL-PEG) coated surfaces. If S > 0, the attraction to the 

substrate is dominant: the aggregate spreads with a precursor film consisting of a cell 

monolayer, a situation analogous to “complete wetting”. The spreading parameter S = Wcs -

Wcc can be tuned by changing the cell surface adhesion Wcs, either chemically (PLL-PEG vs 

fibronectin) or physically, by changing the substrate rigidity 17,18. The dynamics of the 

precursor film result from the balance between the gain of surface energy, and the viscous 

losses associated to the permeation of the cells from the (3D) aggregate into the (2D) film 
18,19. We have shown that the contribution due to the slippage of the monolayer that 

expands around the aggregates is negligible. On patterned substrates with adhesive strips 

separated by non-adhesive PLL-PEG bands (Fig. 13), we observed spreading of the 

monolayer on the stripe with a constant velocity V* (V*≈ 7.9 10-9 m/s on glass coated with 

fibronectin), demonstrating that the permeation is the factor limiting the spreading 18. 

3. The micropipette aspiration technique 

The tools used to examin cell mechanics can be classified in two sections summarized in 

(fig.3); (i) force application techniques, whereby a force is applied to a cell and the cell 

mechanical and/or biochemical response to this force is recorded And, (ii) force-sensing 

techniques, whereby cells are deposited on a soft substrate and the amplitude of the 

deformations is measured and used to evaluate the traction forces produced by cells during 

development, contraction, migration, and other commonly occurring cell processes. The 

disparity of experimental techniques and of applied loads that are used to explore 

mechanical response in the cell, elicit different mechanical responses in the cell. Thus, there 

are different mechanical models for living cells based (i) on the continuum approach 5, and 

(ii) the Micro/Nanostructural Approach 20.  
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Figure 3: Experimental methods for measuring cell mechanics. Adapted from21
. 

The pipette aspiration technique is one of the  force application techniques (1). In the 

following, we describe first the aspiration and extraction of simple oils, Then, we extend our 

study to active liquid drops. 

3.1. Liquid capillary aspiration and extraction 

A wetting liquid invades the capillary spontaneously and the penetration length increases as 

the square root of time in the case of a large drop or infinite reservoir 22,23.  This behavior is 

explained by the balance between the capillary forces and the viscous friction associated to 

the Poiseuille flow. For a small drop the penetration is enhanced by the Laplace pressure 

inside the drop24.  

Non-wetting liquids enter in the capillary only under the action of an aspirating pressure. 

When such liquids are forced to penetrate the capillary, Capillary extraction is observed.  

This is the process by which a non-wetting liquid spontaneously leaves a capillary tube in 

order to minimize its surface energy25. For example, an oil slug initially placed at the end of 

the tube is unstable and comes out of the tube driven by surfaces forces (Fig.4).  The liquid 

outside the tube forms a spherical cap of radius 𝑅 > 𝑅𝑝, connected to a slug of length L 

ended by a hemisphere of radius 𝑅𝑝. Such a shape is not an equilibrium shape because of  

the difference of curvature between its ends. A Laplace pressure difference ∆𝑃 =2𝛾(1 𝑅𝑝⁄ − 1 𝑅⁄ )  is set between the drop extremities, which induces a flow from the small 

to the large cap. The driving force arising from the Laplace pressure difference can be 
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written as: 𝐹(𝑥) = 2𝜋𝛾𝑅𝑝 (1 − 𝑅𝑝𝑅(𝑥) ). The motion stops when the drop is fully extracted at 

the exit of the tube. The origin of the motion can be easily understood: once a meniscus is 

out of the tube, any further displacement of the slug toward this meniscus reduces the 

surface energy of the system until the shape of minimum surface, i.e., a sphere, is attained. 

It has been shown that a drop in completely non-wetting state and placed at the end of a 

capillary tube leaves the latter spontaneously under the action of surface tension25. Unlike 

the capillary penetration of a wetting liquid, the extraction follows  very different dynamics: 

its speed increases slowly from zero to a constant value. The primary cause of this difference 

is that the driving force is not constant during the experiment: it is close to zero at the 

beginning of the movement and grows slowly to a constant value as the drop gets out of the 

tube. The friction is different as well: the presence of a lubricating film between the drop 

and the capillary creates a plug flow in the droplet, unlike the Poiseuille flow in the capillary 

rise. Thus the dissipation at the exit of the tube becomes the main source of resistance if the 

oil is viscous.  

 

Figure 4: Extraction of a non-wetting liquid. Capillary extraction of non-wetting oil drop 

placed in a glass tube immersed in mixture of water ethanol solution of the same density 

with L the length of the slug in the capillary and R the radius of the spherical cap. Image time 

interval is 7.5 s. Adapted from 25. 

3.2. Micropipette aspiration of single living cells 

Micropipette aspiration is a simple and versatile tool to study the mechanical behavior of 

different cell types subjected to forces ranging from 10 pN to 104 nN.  In a typical 

experiment, a capillary glass tube several microns wide at the tip is brought into contact with 

a cell. Then, a known suction pressure is applied within the micropipette, which is connected 

by some tubing to a water-filled reservoir of controllable height. A suction pressure is 

created within the micropipette by decreasing the height of the water surface in the 

reservoir relative to the height of the fluid surface in the cells observation dish. (Fig.5). Once 

the cell is drawn into the micropipette, several important mechanical characteristics of the 
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cell  can be obtained by measuring the length of the protrusion as function of time (Fig.4).  If 

ΔP > ΔPc = 2 (1/Rp - 1/R), either the cell penetrates into the pipette as a viscoelastic liquid 

drop, or else the length reaches an equilibrium value, indicating that the cell is a viscoelastic 

solid (Fig.6). Solid-like behavior was observed for chondrocytes1,0 whereas neutrophils 

where shown to exhibit a liquid behavior 7. When ΔP = 0, the cell exits the pipette like an oil 

droplet in capillary extraction (Fig.4). Cell mechanical models used to model the aspiration 

and the retraction are shown in fig 6. 

 

Figure 5: Sketch of the experimental setup of the micropipette aspiration technique and an 

image of aspiration (ΔP < 0) of blood granulocytes adapted from26. 

 

Figure 6: Mechanical model to characterize cell’s behavior. The cell is modeled as 

homogeneous viscoelastic solid: Maxwell model (A), and as a viscoelastic liquid (B): modified 

Maxwell model, where k1 is the spring constant related to the elasticity of the cell, k2 
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accounts for the initial jump in L(t), μ2 is the local friction coefficient due to the raising time 

of the elastic deformation, and μ1 is the viscous dissipation of the flowing cell. Creep curves 

showing a fast elastic deformation: (C) before reaching equilibrium, and (D) followed by a 

viscous flow. 

 

3.3. Micropipette aspiration of cellular aggregates 

 The mechanical properties of tissues are usually obtained via the parallel plate compression 

method, which involves the compression at constant deformation of a cellular aggregate 

placed between two non-adhering parallel plates27,28,29. By measuring the evolution of the 

compression force as a function of time, it is possible to obtain the viscoelastic properties, 

namely the elastic modulus E and the viscosity η, of an aggregate. The surface tension  is 

obtained from the shape assumed by the aggregate at equilibrium, which can be  challenging 

to determine experimentally.30  Another drawback of the technique is that it  cannot be 

applied in vivo. Aggregate centrifugation is another experimental technique to quantify the 

mechanical properties of model tissues. In this case, the tissue surface tension   is obtained 

from the deformed shape of an aggregate under centrifugation, 31,32,33,34 Calculation of the 

fracture energy in partially fused aggregates has been used35 as well as the micropipette 

aspiration which is described next13,36,37,38.  An overview of these techniques is given   in 

(Fig.6). 

 
Figure 6: Experimental techniques used to characterize the mechanical properties of cell 

aggregates. Adapted from 39 . 

 

In the micropipette aspiration 13, the aggregate is sucked at constant pressure into a pipette 

of diameter smaller than the aggregate radius or diameter ??. The length of the aspirated 

tongue L (t), is monitored as a function of time (Fig.7).  The aggregate penetrates in the 

pipette if ΔP is larger than ΔPc = 2   (1/Rp – 1/R), where Rp and R are the micropipette and 
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aggregate radii respectively, which allows one to determine the surface tension  of the 

aggegate. The elastic modulus E and the viscosity η are derived from the short term and long 

term aspiration dynamics, The aspiration and retraction curves are fitted by the viscoelastic 

Maxwell model shown in figure 4.B. From the data plotted in (fig. 7B) one obtains η≈1.9x105 

Pa.s and E≈700 Pa. However, cellular aggregates do not behave as simple viscoelastic drops, 

as a result of cell activity as discussed above. First, the surface tension  increases from 

5mN/m to 20mN/m with P, showing that cells stretched in the capillary react by a 

reinforcement of the cortex which regulates the tissue surface tension. Second, in a narrow 

range of pressure P, pulsed contraction or “shivering” of the aggregate occurs, a response 

similar to the observed cell pulsation  attributed to forces exerted between cells in 

developing tissue 40. 

 

 
Figure 7: Cell aggregate aspiration. (A) Illustration of micropipette aspiration of spherical 

cellular aggregate. ΔPc = 2g(1/Rp – 1/R) is the threshold aspiration pressure. (B) Aspiration 

cycle for an aggregate ΔP=1180Pa, with R=175μm, and Rp=35μm and (C) surface tension   
(mN) as function of applied force Rp

2ΔP.  Adapted from 13. 

 

Complete aspiration of aggregates inside a pipette can be used to apply high pressures to 

cancerous tissues in order to investigate the validity of the homeostatic pressure model, 

which predicts that metastatic cells can only grow if the internal pressure of the aggregate is 

below a critical “homeostatic pressure”. Combined with confocal microscopy, tissue 
relaxation under stress can be studied on the microscopic level by probing the cellular 

rearrangements inside an aspirated aggregate. Compared to more conventional methods, 

the micropipette aspiration technique is easy to set up and can be applied to the in vivo 

examination of biological systems, such as living tissue or drug treated tumors, and to other 

complex fluids, such as viscous pastes and foams. 
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4. Conclusion 

Analogies with soft matter, such as foams and pastes, have been applied to biological tissues 

to characterize their fundamental mechanical properties, such as surface tension, viscosity 

and elasticity. The framework of soft matter has been successful in explaining a number of 

dynamical tissue behaviors observed in physiology and development, such as cell sorting, 

tissue spreading, or the escape of individual cells from a tumor. However, living tissues 

exhibit active responses, such as rigidity sensing or cell pulsation, that are absent in inert 

soft materials. Future experiments that allow discrimination between different constitutive 

models should be designed, such as investigations of the frequency response of tissues to 

forces.  
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