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Possible critical phenomena associated with chiral symmetry breaking and restoration are studied in
the mean field approximation with the use of a QCD-motivated effective Lagrangian. Collective excita-
tions in a system with zero temperature and zero chemical potential are examined extensively: It is shown
that (i) there exists a precursorv mode in the Wigner phase, which softens as the system approaches the
critical point for chiral symmetry breaking, and (ii) the o-meson mode in the Nambu-Goldstone (NG) phase
softens being associated with symmetry restoration. The observabilities of these critical phenomena in
experiment such as ultra-relativistic heavy ion collisions are discussed. We also calculate the critical
temperature T and critical chemical potential #, where chiral symmetry gets restored and we obtain Ty
=164 MeV for (N.=3, N,=2)-case without free parameters.

§1. Introduction

As is implied by the asymptotic freedom of QCD and is explicitly shown by the lattice
Monte-Carlo simulations,” the chirally symmetric phase (the Wigner phase) is sure to be
realized in the systems with large-momentum scale, at high temperature and/or high
density; fqr example, the interior of the hadron bags, the intermediate stages of ultra-
relativistic heavy ion collisions and the deconfined quark matter in the early uriverse. In
this paper, we investigate the critical phenomena associated with chiral symmetry break-
ing (CSB); it should provide us with some characteristic features of such systems.

A study on this subject has been briefly reported by the present authors in Ref. 2):
They have shown the existence of soft modes® in the Wigner phase, which are the
precursory modes of CSB, by using the Nambu-Jona-Lasinio® (NJL) type of effective
Lagrangian. In this paper, we examine the nature of the modes extensively and show that
the existence of the soft modes is a direct reflection of an enhancement of the long range
correlations of the specific pair operators in the Wigner phase. Thus one finds that the
softening is a characteristic feature of the systems which are near the critical point of
CSB. A critical phenomenon seen in the system in the Nambu-Goldstone (NG) phase near
the critical point has been discussed in a phenomenological analysis® (see also Ref. 7)).
We will also investigate such critical phenomena associated with the restoration of chiral
symmetry (CS).

Although it is now controversial what is the most essential mechanism of chiral
transition in QCD, there have been some proposals for it; the perturbative gluon ex-

*) Soft modes are seen in some fields of physics. A soft mode for the magnetic phase transition to the
ferromagnet is known as the paramagnon,which isobserved as a bump of the cross section of the neutron scattering
in the low energy transfer region.” The pairing vibration in nuclei in normal phase, which causes an enhancement
of the cross section of a two-particle transfer reaction is a soft mode for the phase transition to the superconducting
phase.”
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766 T. Hatsuda and T. Kunihiro

change,” the instanton effect,” the confining force,'” the large N, limit'” and the strong
coupling limit."® In this paper, we adopt the following Lagrangian as an effective one

which works well in the intermediate length scale between the asymptotic free and
confinement region,

I:IO_*_II, (1'13)
Iozggzi“(z'y-a—mi)gbia, (l'lb)
Li=2K[det{¢*(1+7s) ¢4} +h.c], (1-1c)

where a=1, ---, N¢ is a color index, i, j=1, *--, Ny are flavor indices, m:’s are the current
mass of quarks, and det denotes a determinant with respect to the flavor indices. - The
interaction -£, which has chiral SU(N,)QSU(N;) symmetry, has a form of a local
approximation to the instanton-induced effective interaction'®'®* and is also derived
from the chiral Lagrangian incorporating the U,(1) anomaly term.'” We will show that
the following two-scale picture for CSB is consistent with our effective Lagrangian: A
chiral invariant force in the intermediate length scale is responsible for the dynamical
breaking of CS and the effect of confinement can be treated as a small perturbation in this
region.*™

In the following, we confine ourselves to the N,=2 case. Then, .L, can be rewritten
in a form of an NJL type interaction,***

L1=K[(99)*+ (dirsd)?—(gz¢)2— (hirs$)?] _ (1-1d)

where color and flavor indices are suppressed. In our model, there are two free para-
meters; the coupling constant K and a momentum-cutoff /1 which must be introduced
because of the nonrenormalizability of the interaction. Hereafter, we use a dimensionless
quantity @err=gNcNyA?/(27%) instead of K, with g being K(1+1/(2N.)). The cutoff
procedure implies that the interaction has an effective vertex,

V(A 9, @) = aes0O2A—p)O(2A—¢q) . (1-2)

in the momentum space, where 6 is a step function and (p, ¢) are the total and relative
momentum of the interacting quarks. (The effective vertex may be considered to
simulate the instanton induced vertex®® by the step function.) Then /1 has the following
physical meaning; only the two particles with the relative momentum smaller than 2/ can
contribute to the dynamical breaking of CS. A and dynamically generated mass of
quarks will be determined to be about 1 GeV and 240 MeV respectively by putting the
experimental values of the pion decay constant f» and pion mass m- into the calculated
physical quantities. Here we note that the obtained value for A is consistent with the
picture mentioned above; the typical scale of CSB (A=1GeV) is greater than that of

*) It has been explicitly shown that instanton-induced nonlocal interaction is sufficiently strong to break the
CS and produces the Nambu-Goldstone bosons.®® For the relation between our effective Lagrangian and the
U4(1) problem, see the review'® and Ref. 14).

**) A phenomenological justification of this picture is made in Ref. 18) and the consistency with the non-
relativistic quark model and the low-energy chiral Lagrangian is argued in Ref. 18a~c¢). The instanton approach
also gives this picture.*® ]

***) Possible modifications of our Lagrangian are discussed in the Appendix.
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Fig. 1. A schematic figure which represents our picture. R. and R, are the characteristic length scale
of confinement and chiral symmetry breaking. A is the cutoff of our effective interaction. The
SU(N;)®SU(N,) determinantial interaction denotes Eqs.(1-1 a~c) in the text.

confinement (Aqcp=200 MeV). This result is also consistent with the other analyses of
CSB.3~d9018)  Ror definiteness, the relevant regions to this paper are shown schematica-
lly in Fig. 1.

In this paper, we deal with the deconfined vacuum with zero temperature (7°=0) and
zero chemical potential (#=0). We assume that the cutoff A is independent of the phases
of the system and investigate the collective excitations in the system by varying the
dimensionless coupling constant @esr by hand. The qualitative features of the results
obtained by this prescription survive when we perform the calculation at finite 7" and x
with fixed @err.'” It may be noticed here that, in our model interaction (1-1d), chiral
transition is second order at least within the Hartree-Fock approximation. Although
there is a possibility that the order of the transition becomes first order if we consider the
higher order correlations®® or the larger number of flavors,?" the soft modes are expected
to exist for the weak first order transitions.®

This paper is composed as follows. In § 2, we give field equations of the collective
excitations on the basis of the self-consistent mean field theory. Section 3 is devoted to
the determination of A and the consistency check mentioned above. In §4, collective
excitations in the Wigner phase are analyzed. It will be shown that the very precursory
modes with J?=0* exist and they cause an enhancement of the total cross section of the
q-7 annihilation process or the strength function. In § 5, collective excitations in the NG
phase are analyzed and we discuss a typical critical phenomenon associated with the
restoration of CS. In § 6, we examine how the current mass of quarks modifies the results
obtained in the preceding sections, and also discuss the critical temperature and chemical
potential of chiral transition.

§ 2. Preliminaries

In this section, using a self-consistent mean field (SCMF) method,*® we give necessary
equations and expressions for the later sections.

In the SCMF method, the system is approximated by an assembly of non-interacting
quasi-particles moving in the MF’s which are generated self-consistently by the particles.
Let |C>=llo, =, 7, &, Fh, FA1> be a state where the Lorentz scalar ¢¢(¢r¢), pseudo
scalar ¢irsd(diystg) and anti-symmetric tensor ¢om¢(Pontd) operators have the fol-
lowing expectation values
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[ o(x) ] r 1 1
7r(x) i?’sl’
PPN I 16 i7s .
¥ G 5(0) =<{Cl¢(x) . $(x)|C>, (2-1)
Fi(x) Ouv] VAN 2
L Fa(x) L a,wr/1/41\/c+2J

where ¢ with a mass dimension has been introduced to make the MF’s o, T, 7, 8 have unit.
mass dimension and G is a dimensionless quantity defined by

G*l1*=2K(1+1/2N.)=2g . ‘ (2-2)
In the mean-field approximation (MFA), the Lagrangian (1-1) becomes
Lo Lyea=Plir-0—m— Glo+iyst-m—ivsn—1°8
+ (0" Ffh— 0"+ Fh) [ /IN:+2) 19
— 122 (o*+ P~ — 82+ FE—FY) | | (2-3)

where we have assumed m.=ma.=7. We note that the Hartree and Fock terms of the
interaction produce the scalar and pseudo scalar fields, while’ only the Fock terms which
are next to leading in the 1/Nc-expansion® produce the vector fields (F2, and F,w)

Let us define the Green’s function Sr(x, y: C) by

Sr(x, y; C)=—iKC|T¢(x) §(MIC>, (2-4)
and also define the following notation for MF’s and matrices:
Ba(x) =(0(x), m(x), 7(x), 8(x), Fo.(x), Fi(x)) (2-52)
and _
Fu=(1, irst, i7s, 7, 0l VNG 2, ) VAN T2), (2-5b)

where Lorentz and isospin structures are labeled by @. Then (2-1) (we call it the
self-consistency condition (SCC)) reads

—12/GBox)=— z'yliggTr‘cfs’[FaSp(x, y; O], (2+6)

where Tr“”® denotes the trace taken over the color, flavor and spin indices. It can be
shown that (i) the SCC (2-1) or (2+6) is reduced to the “gap equation” which determines
the dynamical quark mass M when |[C> is the true vacuum (ground state), and (ii) SCC is
reduced to the fleld equations which govern the space-time dependence of the MF’s when
|C> is a collective state.

If [C> is the ground state, one can put

o(x) =constant=ox and other MF’s=0, (2-7)

on account of the symmetry properties of the state. If we express |C> as |ow), the gap
equation reads
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Soft Modes Associated with Chiral Symmetry Breaking 769

_/IZ/G'GM:<6Ml§Z‘/J|GM>, 7 (2'88.)
. d*p 1 :
I (s) .
— ZZNcTr (27[)4 /i)/_M_l_ Z-e s (2 8b)
C =2NMATI(M?]A?), (2-8¢c)
where ‘
I(M? A =—1/4x) 1= 201+ 272 zsria (2-8d)

and M is the sum of current mass and dynamical mass; M = Mp+ @ with Mp= Gox. Here
we have used an invariant cutoff at A. If we neglect the current quark mass 7, a simple
calculation shows that for @esx<1, ox =0 (the vacuum is in the Wigner phase), and for
@er: >1, 0u is nonvanishing (chiral symmetry is dynamically broken, hence the vacuum is
in the NG phase).”® For the case 7% =0, see § 6.1.

Collective excitations in the system can be described by the space-time -dependent
MF’s fluctuating around the vacuum expectation values. In the small amplitude
approximation for the MF’s, the SCC becomes

—1G-Bulz) =i lim Tr"[ T [@*2Ss(z — 2 M) H(z; ow) Se(z—v; M)],  (2:92)

where
Bu(x)=(s(x), m(x), n(x), 8(x), FA(x), Filx)), (2-9b)
M(z; on) = Gs(z) +iyst-w(z)—irsn(z) —7-8(2)
+ 0" (Fa(z)—1-Fi(2)) [ VAN +2] (2-9¢)
with s{(z)=0(z)—ox and
—zp (x—-)
Srlz—y; M) = /(2%)4 B—M+ie - (2-9d).

A simple evaluation of the r. h. s. of (2:9a) gives the following equations for the respective
modes,

[1J_r4ch]s(—az)][;((z))]:o , (2-102)
[1i4ch]ps(—82)][:((;))]20, | (2-10D)
[1i4ch/(2ch})']v(—az)][I‘Z:Ez;]zo, | (2-10c)
[124gN./ (2Nc+1)'-JA(—aZ)][j::Ej;}o , ' ~ (2-10d)

where

T a*p Ju _ .
]k(q )= 42](; daf(2”)4 [1)2+a/(1—a)q2—M2+z'6]2’ (k—S, s, V, A) (2-11a)
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770 : T. Hatsuda and T. Kunihiro
with

PP—a(l—a)q*+M?, (k=35)

P’—a(l—a)g®*—M?*, (k=ps)
P +a(l—a)g®?—3M?*, (B=V)
p*+3a(l—a)g®*—3M?. (k=A)

Je= (2-11b)

Here we have decomposed anti-symmetric tensor fields into independent vector ( Ve, Vi)
and axial vector (A4,°, A.') fields;

Fgu:#_l[a;z Vyo_auV#o_*" eﬂuxpaxApo] ’: i
/}u:/l_l[aﬂ Vul_auV#1+ empalA“] . (2-12)

§3. Determination of A

3.1. Some physical quantities in the NG phase

In the NG phase, the collective mode in the isovector-pseudoscalar channel appears as
the NG boson. Although we are considering the deconfined phase, it is plausible that this
mode is essentially the same as pion in real world since our interaction is enough strong
to bind ¢-7 in this channel and the confining force gives only the small modification to the
q-q wave function®® In this subsection we evaluate some physical quantities related
with the mode (we call it pion in the following) in the lowest order of the chiral perturba-
tion and determine cutoff /1 by employing the real world’s value of pion decay constant
/= and pion mass m in the next subsection. For later convenience, let us introduce the
pion propagator

Dx(q*) == [*(1+4gNeJos(a)] " . . (3-1)

Then the pion mass m. is given by the pole of Dx(¢? and the pion-quark coupling
constant is given by¥

Goe=G* lim (¢*—m4®) Dz(q?) , (3-2a)
q = mz
— d FAY B .
—_[ZNC dqz]ps(q )]q2=m,,2- (32b)

The pion decay constant is defined by
<ol §(0) 7755 9(O7*(@)> = 8 asfras (9

where |oa> is the vacuum in the NG phase and 7°(g) the pion-state with the energy-

uls
W\/\/C;MQ(

Fig. 2. The matrix element of Eq. (3-3). The wavy
line represents the external line of pion with
momentum g.. Ganq is given by Eq.(3-2).
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Soft Modes Associated with Chiral Symmetry Breaking 771

momentum g«(g.2=m:?). The lhs. of (3:3) can be evaluated according to Fig.2 ; then f»

becomes
_ .t d'p M .
f”_NCG-’“’[_Mfo da'f(Zﬂ)“ {p2+a(1—a/)mn2—M2+i6}2]’ (3-4a)
:(NcGnq/ZM)'(]s(?%nz)_]ps(mnz)) . (34b)

In the chiral perturbation, simple relations among the physical quantities are obtained: If
we expand D, '(m:%) and G3%¢ by m.’, we get

2_@ G?tq

V(2] “‘M 2g ; (3'5)

up to O(mx*/A? which corresponds to the expansion up to O(s%/A). Here we note that

mx° is proportional to the current mass of quark. By expanding f» into power series of

m»* and taking the lowest order, we get the Goldberger-Treiman relation in the quark
" level,

(3-6)

Ganlr: MD .
Furthermore, if one recalls the SCC for dynamical mass
—(Mp/ 29) =<oul ddlou> , (3-7)

and combines (3-5) and (3:6), one can reach one of the current algebra relations
fnzmnzz - 771'<6M| ¢_¢|GM> s

which is valid up to O(#/A).

(3-8)

3.2. Determination of A and a cownsistency

A{Gev)

—
™
T T

10~

08

My+Mg=10.0 (Mev)
My+Mg=15.0 (Mev)

- ] Mp(Gev)

»(lll:'ll‘ll{LI
00 02 03 04 05 06 07 08

. Fig. 3. The relation between cutoff /1 and dynamical
mass Mp. The solid line is determined by (3-4)

and the dashed line by (3-8).

check ‘

In this subsection, we determine the
value of A together with the dynamical mass
Mp in the real world. For this sake, we first
pay attention to (3-4) and (3-8): If we
insert the experimental values fz(=93 MeV),
m=(~140 MeV) and 2/ =mu+ma (=10~15
MeV)®® into these equations, we get two
independent A-Mp relations. In the actual
computations, we retain only the lowest
order of #// in each equation,

fe=x[NdI(x?/dx?]V?- A (3-9)

and
fa*maz®=—2Nc(fA)-2I(x?)- A*, (3-10)

where x =Mp/A and I(x?) is defined in
(2-8d). The resultant A-Mp relations are

shown in Fig.3; thus, from the cross point we
get A~1GeV and Mp=~240MeV. The
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0.6
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Fig. 4. aer-dependence of the physical quantities. fx and (—<@u>)""* should be read by the scale of
1.h.s. The real world value of e is 1.2.

value of Mp=240 MeV is smaller than the so-called constituent quark mass (=~Mny/3) but
it coincides with the value obtained from other microscopic approach.2? It is noteworthy
that our A1 GeV is consistent with the two-scale picture of CSB mentioned in § 1: Let
Ry and Rc be the length scales of CSB (R;~/1"") and absolute confinement (Re= NGk
~(200 MeV) ™) respectively, then R,<R. must hold in the picture and this is the case in
our model.” In the following, we use /1=1007 MeV which is obtained from the input 2
=11MeV: In this case, Mp=240 MeV, aer=1.2 and the vacuum condensate becomes

itu>=<{ddy=(~249 MeV)?. (3-11)
One can see the coupling strength dependence of the physical quantities (Mp, fr, Grq

and <#u>) by varying aes: by hand with fixed A. These are shown in Fig. 4 where the
quantities are calculated in the chiral limit (#%=0).

In the proceeding sections, collective excitations will be examined within the chiral

limit by using /A determined above. Modifications of the results due to finite # will be
discussed in § 6. '

§4. Collective excitations in the Wigner phase
—— Soft Modes Associated with CSB ——

In this section, we examine the collective excitations in the Wigner phase. First, we
solve the dispersion equations derived in § 2 to see what types of excitations appear. The
dispersion equations in the Wigner phase can be obtained by setting M=0 in the
momentum representation (—9°—¢”) of (2:10). On account of the chiral invariance of
the vacuum in this phase, ¢ and = (7 and ) become energetically degenerate modes. ‘We
note that there is no real solution of the dispersion equations; this is rather reasonable
because the system is in the Wigner phase which consists of massless quarks, so any
collective mode is embedded in the continuum of ¢- 7 excitations and necessarily becomes

*) A=1GeV is also derived in other analyses.®**
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Soft Modes Associated with Chiral Symmetry Breaking 773

a damping mode with complex mass.® To find out zeros of the dispersion equations
corresponding to such damping modes, we must perform an analytic continuation of (2-10)
to the lower half of the ¢®plane. For example, the results for the scalar and pseudo
scalar modes are as follows:

1+ a'eff[gLogz—(Z—z),i/ 4_ZZ Tan™ ﬁ—l—z- nri]=0, (4-1)

where z=g*//?, » is the sheet number, and positive (negative) sign corresponds to (o, =)
((%, )) mode.

A numerical evaluation shows;

() In (0, 7) channels; a damping solution (Re ¢*>>0, Im ¢*><0) having four-fold degener-
acy appears on the =1 sheet (see Fig. 5). This solution plays a special role in CSB; as
@ers approaches unity from below, this excitation softens more and more, and when ess
exceeds unity, it turns into a tachyon solution (Re ¢?<0, Im ¢*=0) which appears on the
negative axis of the #=0 sheet. The occurence of the tachyon solution for aes>1
indicates that the Wigner phase is unstable in such coupling strength. Therefore, our
resonance-like solution for a@e<1 is the precursory mode for CSB.

(ii) In the (7, §) channels and vector channels, we have also found damping solution on

Imz Imz
n=0 sheet - n=1 sheet
041 04
tachyon
el \ [ cut  Rew ct  Ree
T T T T T g '

-02 Y -02 02

-04 -04
tprecursor

(Oesrc 1)

Fig. 5. A tachyon pole on the #=0 sheet and a damping mode on the n=1 sheet. These two are
continuously connected as a function of @er. 2 denotes g%/A%

W5

Fig. 6. - Optical theorem for the qtfi annihilation process and the ring approximation for it.

*) The damping mechanism is essentially the same as that known as the Landau damping®® in the many body

theory.
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774 T. Hatsuda and T. Kunihivo

n=1 sheet. However they have large mass and width (Re ¢2>A2).

To see a physical relevance of the above excitations, let us consider the g-g annihila-
tion process in the Wigner phase (see Fig. 6). Consider the case where the system is near
the critical point and our effective interaction (1-1) dominates over the perturbative gluon
exchange interaction. Then, because of the optical theorem, the total cross section (Gtot)
of the process is proportional to the imaginary part of the forward scattering amplitude.
If we make an approximation in which only the bosonic excitations (0, =, 7,8, Fi and
F}.) are taken into account as the intermediate states of the amplitude, owt: becomes
proportional to the imaginary part of the polarization propagators (correlation function of
the pair operators), :

Otot( 2)“<T> 1 = TrS g Tt s ) Im[zfd“xe""ﬂag(x)] (4-2)
with
Hos(x) =0 T [ () Tesp () ][ (0) I (0) 110, (4-3)

where p1 and p: are incident four-momentum of quark and anti-quark respectively, g =p:
+p2 and I'%’s are the vertices defined in (2:5b). In the ring-approximation in which the
polarization propagators are assumed to be dominated by the ones of the respective
excitations as depicted in Fig. 6, I7.s(x) can be written as

Im([29iMes(x) r.7.]
=Im:m] for (0, ) , (4-4a)
:Im:l_—@“m] for (7, 8) (4-4b)
=Im| 1¢4gNj§§§cﬂif§-JA(qz) + 1¢4gN27LE§1<f)cli;f§-]v(éz) ] for C ?,i) ’
(4-4c)

where ]((.Iz)E]s(qz)|M~0:]ps(q2)|Mf-0 and (Pa, Pv) are the projection operators on the
axial vector (J?=1%) and vector (J?=1") channels;

rev

(PA)ﬂu;aB:g#a(guﬂ_%é\u&B) +<a(_>‘8>‘“(a"_’,8) _(#‘_’V) ,

(PB)#D;aﬁ:%[g#aauzl\ﬁ‘l‘(;l:;)_(a"_’ﬁ) “(ﬂ‘_’V)] (4'5)

with Zu=qu/vq>. ot for the (o, )channel and other channels are shown in F ig. 7(a)
and (b). From the figures, we can see: (i) 6w has resonance-like peak in the
(0, )-channels the position and width of which correspond to the real and imaginary
parts of the mass of the precursory modes respectively.

(ii) As aesr increases, the peak position in (o, ) channel approaches the origin and the
strength is dramatically enhanced, which indicates that the softening of the mode implies
a development of a long range correlation of the pair operators ¢¢ and Jiysz¢.
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al . i
i— 0 (gd~>7) in Wigner Phase
100~ /O(eff=0-gg . N
- _—0l4s=0.85 .
0 L L A L R B S
01 0.2 03 {3 (Gev) 04
(a) »
061 —6.0
o] 0(gg~X) in Wigner Phase Q
Er- X=2.8, v v A A 2
© Kess=0.99 A
04 —40
A°
02 s +20
B ~ Y E -4
O_S)‘;I = T I== _l— T T V‘ I_ _ T _‘\‘I“\:
10 15 J@Gev 20

(b)

Fig. 7 (a) Cross sections of annihilation processes in
(/?,D=(0",1) channel in the Wigner phase.
/4% is the ¢-7 invariant mass. Cross sections in
(J#,I)=(0%, 0) channel ie., 6(¢gd— o) equals to
1/3-0(qq - =).

(b) Cross sections of annijhilation processes in
7, & and vector channels in the Wigner phase.

a(qd - A') should be read by the scale of r.hs.

and others by that of 1.h.s.
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(iii) In the (7, &8)-channel and vector
channels, there arise broad bumps
with large mass, which indicates the
small collectivity of the modes.

Recently it has been argued that
an enhancement of the production
rate of lepton-pairs via the thermal
g-d annihilation process might be a
signature of the formation of the
quark-gluon plasma.’?® If there
exists Well-developed collective
mode with a quantum number
J?=1" in the Wigner phase, it is
expected that the mode causes a
further enhancement of the produc-
tion rate. However, the small col-
lectivity in the (V.°, V.')-channels
shown in our calculation implies
that such a further enhancement is
small, at least if the interaction
(1-1) is dominated near the critical
point. ;

Here we mention possible
experiment to observe the precur-
sors which shows the most dramatic
change in the strength function near
the critical point. One of such
experiments is to see an enhance-
ment of low energy pion production
rate in ultrarelativistic heavy ion
collisions. When the system re-
aches the Wigner phase in the inter-
mediate stage, it may be ap-
proximated by a quasi-free gas
composed of massless quarks,
gluons and low energy precursors;

the last one will gradually disappear as the incident energy of the projectile E increases,
because the system approaches the perturbative region and @ess tends to zero as E grows.
Thus it is expected that near the critical point the enhancement of excitations having the
same quantum numbers as (o, w) shown in Fig. 7(a) will cause an increase of the low
energy pion production rate greatly or might be observed directly through the z°-2y
process, and also they will affect the cooling of the droplet of quark-gluon plasma
produced by the heavy ion collisions.!*?”
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776 T. Hatsuda and T. Kunihiro

§5. Collective excitations in the NG phase

In this section, we briefly examine the collective excitations in the NG phase.

First, let us see the @err dependence of the masses of the respective modes. These are
obtained by solving the dispersion equations (2:10). The results are summarized as
follows:

(1) As is well known,” z-mode becomes massless (NG-mode), irrespective of the value of
Qeft.

(i) As has been paid attention to by some authors,®*® the mass of o-mode (ms) is just
twice the dynamical quark mass Mp, which also holds irrespective of the value of Qess.
Thus m s decreases as the system approaches the critical point. This behavior of g-mode
is a typical critical phenomenon seen when chiral symmetry becomes restored. We Wlll
discuss more on this point later.

(iii) Since our effective interaction breaks the U4(1) symmetry explicitly, 7-mode becomes
necessarily massive and does not appear as the NG-mode.

(iv) The masses of 7, 8 and vector modes are found above the threshold (2M); so we must
have sought the complex solutions of the dispersion equations and found that the real
parts of the masses of all these modes lie above the cutoff A, which indicates the interac-
tions between quark and anti-quark are weak in these channels.

Recall that we are now considering a deconfined system with broken CS. The above
point (iv) suggests that the 7, & and vector-particles in the real world where the
confinement is complete and CS is broken are bound rather by the confining force than by
our determinantial force. The small collectivity in these channels can be seen in Fig. 8
where the total cross sections of ¢-7 annihilations in the NG phase witHin the ring
approximation are shown: There are only broad bumps, the peaks of which all lie above
1.3 GeV. ,

In contrast with these modes, ¢ and & modes which are directly related to CSB can be
considered to be bound by the force responsible for CSB; so they would not change their

- 160
06 > 6
] Q
Er 13
© 6 (qG+X) in NG Phase NANE
Q4+ X=4,8,VIv AA —40

02

T T 3 T . T T :
10 15 J3? (Gev) 20
Fig.8. Cross secfions of annihilation processes in the

NG phase. Only o(gg—A") should be read by
the scale of r.h.s.
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nature whether the confinement occurs or not. This picture is consistent with and
supported by the point of view discussed in § 1. :

Here, we discuss a possible critical phenomena associated with the restoration of CS,
which may serve as a signature of the formation of the quark gluon plasma. Our
argument is based on the relation

me=2Mp for all @er:=>1 , (5'1)

which holds exactly in the small amplitude approximation (RPA) provided that the
current quark mass is neglected. The relation tells us that the mass of o-mode decreases
as the system approaches the critical point and vanishes when the symmetry is restored.
The relation and the above feature hold with some modifications for the systems at finite
temperature.’®?® Therefore if deconfined NG phase is realized in the intermediate stage
of ultra-relativistic heavy ion collisions and if we can observe the total cross section of 0*
channel 6iwt(0"), the peak or bump of 6t:(0") will move to low invariant mass as the
incident energy E is raised so that the system approaches the critical point (@es—1).

§ 6. Discussion

6.1. Modifications due to the curvent quark mass

We have discussed the collective excitations both in the Wigner and NG phase,
neglecting the current quark mass. In this subsection, we give some modifications of the
results due to it.

It is noteworthy that there is no sharp phase transition when the current quark mass
is included, which is shown in Fig.9 where e dependence of ms and m. are shown
together with that of M =Mp+m.* As can be seen from the figure, pion mass increases
as derr decreases; m». is about 140 MeV at @eer=1.2, and at @e:=0.98 the pion pole enters
the ¢-7 continuum. The real part of
the pole of o-mode keeps lying in the
continuum and s takes the minimum
value (=260 MeV) at @ers=0.92. Furth-
ermore, as des: decreases, mass diffe-
rence meq-Mmx becomes smaller.

Thus, one sees that nearly degener-
ate modes which have the same quantum
number with pion and o-meson soften as
@ess increases from a small value (<0.92)
to 0.92. The softening can be consider-
ed as a precursory phenomenon of chiral
st symmetry breaking. The increase of
0o T 20 mx and the decrease of ms which is seen
Fig. 9. aen-dependence of the real part of mg, mx - when @eir decreases from a large value to

and quark mass M=Mp+7. The dashed lines ~ 0.92 can be also considered to be a’
indicate that the modes are in the ¢-7 continuum precursory phenomenon of the restora-
and have a damping width. tion of CS. Therefore, we conclude that

*) We have neglected the higher orders of (#4/A)? in the dispersion equations (2-10) in the calculation of
the masses of ¢ and 7, but we have no approximation for evaluating M.

(Gev)
I

o
vl
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778 T. Hatsuda and T. Kunihiro

the results obtained by neglecting the current quark mass (7%) are not altered qualitatively
but altered somewhat quantitatively with the inclusion of 7.
6.2. Phase diagram in T-y plane :

In the above sections, we have confined ourselves to the case of zero temperature (T
=0) and zero chemical potential (#=0) and we have investigated the typical critical
phenomena by varying the coupling strength @es: by hand. Here we briefly examine the
system with finite 7" and # in the chiral limit by using the parameters (es, A) determined
in T=p=0 system and show the critical temperature T in our model is consistent with
the estimates by different approaches.’® Detailed examination of the soft modes in 7#0
and #+0 system is given in Ref. 19). :

The generalization of our SCC (Eq. (2-1)) to finite T and g is straightforward; we
need only to replace the ground state expectation value <O by the thermal averages
taken by the thermal-equilibrium distributions < @ >>. Then, the gap equation which
determines a (7, u)-dependent dynamical mass M(T, 1) can be written as

— 1] Gron=<g(x)(x)>= —iylirgTrSF(x—y; T, 1), (6-1)

where Sr(x—y; T, 1) is a thermal Green’s function in the real time formulation the
Fourier transform of which can be expressed as®"

Se(p,0; T, 1) =(p +M)[m+2m6(pz—Mz){0(b°) n(p) +¢9(—1>°)m(p)}] (6-2)
with |

n(p) =[1+exp{B(E(p) ~)}I" and m(p)=[+exp{B(E(p)+p)}]", (6-3)

where we use the notation; 8=1/(kT), p*=(p°, p)=(w+x, p) and E(p)=y/p’+ M.
The critical line 7'= T'(x), which is a contour of the phase diagram, is defined as that on
which the nontrivial solution Mu(T, ¢) of (6-1) vanishes. The resulting equation to
determine the critical line is

T T T T ] T T T T T T T T | —
0.2 g T —T)L /u,i ?
=/ Mp{T=4=0)=240MeV [ 6] (;
E Ne=3, Ng=2 H : : .35
= i
| 0.2+ .
0.1 - i ‘ |
i - H030
7 015+ _
L ~ N . | (TR N T S NN W N |
L L L | ' L i 1 [/{(1728.9Me|v L | 0.2 0.3 04
0 01 02 U{Cev] 03 Mp(T=4=0) (Gev)
(a) (b)
Fig. 10 (a) Phase diagram of chiral transition by the use of our effective interaction and the param-

eters determined at 7'=x=0 system.
(b) Critical temperature 7Ty and critical chemical potential g as a fun(_:tion of dynamical
mass in the T=¢=0 vacuum. Upper line corresponds to 7.
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. =Lfdsdlp|'|pl[1—n(p)—m(p)]M=o (6-4)
ad Ao ’

where we have used the three-momentum cutoff Az for convenience. The values of As,
a8} coupling constant in three-momentum cutoff scheme) in 7= =0 system are 825 MeV
and 1.14 respectively, which are determined by the same procedure taken in § 3. The
dynamical mass Mp( T = ¢=0) is equal to 240 MeV in this case also. The critical line thus
determined is shown in Fig. 10 (a). In Fig. 10 (b), the critical temperature 7% and critical
chemical potential x, are shown as a function of Mp(T = =0) with fixed A. The critical

temperature of chiral transition in our model is 164 MeV for (N.=3, N,=2) case, which

is consistent with the estimates by different approaches.®*® Note that we have been

dealing with chiral transition of the deconfined quark matter. As has been stated in § 1,
an additional confinement transition occurs in the real world: It is an open question how
to modelize this effect and incorporate it into our formalism.
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Appendix

We summarize here the various modifications of the effective Lagrangian which gives
the same spectra for ¢ and = channels but gives the different spectra for other channels.
Note that we consider only the color singlet channels and omit the non-singlet parts of the
interaction in the text and in the following.

The determinantial interaction we adopted in the text is

L19Voc(§h)*+(Jiystd)?—(Piysd)*— ()2, (A-1)
and its Fierz transform is
S0+ (Firstd) = (Firsg) ' — () 1+ (o) = (Jowzd)] (A-2)

L£,99 has SU(2)®SU(2) invariance but breaks the Ua(1) symmetry explicitly. A
similar type of Lagrangian having U(2)Q U(2) symmetry is

L1 ™oc (§6)2+(eystd) +(iysd)*+(919)? ' (A-3)
and its Fierz transform reads
— L ry =+ (Frera)?). (A-4)

In this Lagrangian, 7 channel becomes a Nambu-Goldstone mode in the NG phase. So it

needs to add the Ua(l) breaking term to give » a finite mass as is done in Ref. 18¢c). A

Lagrangian adopted by Nambu and Jona-Lasinio® is a sum of -£,“®Y and -£,5"™ |

II(NJL):Il(dEt)+I1(Sym)OC(J‘/’)Z"‘((/ji)’sﬂb)z , (AS)
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780 ' T. Hatsuda and T. Kunihivo

which has SU(2)Q@SU(2) symmetry but breaks Ua(1) symmetry. All the above interac-
tions give not so much binding for the vector channels in the NG phase; the reason is that
the vector modes are produced by the Fock terms if the above interactions and hence
the coupling strength is reduced to1/N.times the Hartree terms. A U (2)® U(2) invariant

Lagrangian which gives more binding to the vector modes is a local version of the gluon
exchange interaction,

LB (FyuA2g) (Jreace) | "~ (A-6)
where A? are the SU:(3) Gell-Mann mafrices. The Fierz transform of (A+6) becomes

SO+ (Firses)+ (Firss) +( Fe)?

— 3 1) = Frrd) 4 e+ L (Framad?]. (A7)

Here one can see that (A-6) has the same particle contents as that of (A-1) and the
coupling strength of the vector modes has no suppression factor being propotional to 1/N;
1/2 in (A-7) originates from the Fierz transform of the Dirac matrices.
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