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Abstract

Maximum entropy deep reinforcement learning (R-
L) methods have been demonstrated on a range of
challenging continuous tasks. However, existing
methods either suffer from severe instability when
training on large off-policy data or cannot scale to
tasks with very high state and action dimension-
ality such as 3D humanoid locomotion. Besides,
the optimality of desired Boltzmann policy set for
non-optimal soft value function is not persuasive e-
nough. In this paper, we first derive soft policy gra-
dient based on entropy regularized expected reward
objective for RL with continuous actions. Then, we
present an off-policy actor-critic, model-free max-
imum entropy deep RL algorithm called deep soft
policy gradient (DSPG) by combining soft policy
gradient with soft Bellman equation. To ensure sta-
ble learning while eliminating the need of two sep-
arate critics for soft value functions, we leverage
double sampling approach to making the soft Bell-
man equation tractable. The experimental results
demonstrate that our method outperforms in perfor-
mance over off-policy prior methods.

1 Introduction

Model-free reinforcement learning (RL) aims to acquire an
effective behavior policy through ongoing trial and error in-
teraction with a black box environment. The sole goal of s-
tandard RL is to optimize the quality of an agent’s behavior
policy by maximizing cumulative discounted rewards. And
so far, standard model-free RL has been applied to a range
of challenging domains, such as games [Silver et al., 2016],
robotics [Levine et al., 2016], finance [Prashanth et al., 2016]

and healthcare [Shortreed et al., 2011]. However, some no-
torious drawbacks of standard model-free RL such as sam-
ple complexity, hyperparameter sensitivity or instability, have
limited its widespread adoption in real-world domains.

Generally, policy optimization and value iteration are two
basic paradigms in standard model-free RL. Policy based ap-
proaches, such as TRPO [Schulman et al., 2015], directly
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optimize the quantity of interest while remaining stable un-
der function approximation, but policy based RL typically re-
quires on-policy learning that is extravagantly expensive. By
contrast, value based approaches, such as DQN [Mnih et al.,
2015], can learn from any ”off-policy” transitions sampled
from identical environment, making them inherently more
sample efficient [Gu et al., 2017]. But unfortunately, off-
policy learning does not stably interact with function approxi-
mation. Recently, some attempts have been made by combin-
ing policy and value based RL under actor-critic framework,
such as DDPG [Lillicrap et al., 2015], but there still remain
some unsettled issues including how to set choose the type of
policy and exploration noise.

Maximum entropy RL, which augments the standard max-
imum RL objective with an entropy regularization term [Tou-
ssaint, 2009], is another popular framework that can han-
dle the tasks with multi-modality. As discussed in prior
work, a stochastic policy may emerge as the optimal answer
when maximum entropy RL tries to connect the optimal con-
trol with probabilistic inference [Todorov, 2008]. Intuitive-
ly, framing control as inference produces policies that try to
learn all of the ways instead of the best way to perform the
task. More importantly, maximum entropy framework shows
several amazing advantages when compared to standard R-
L framework. First, entropy regularization encourages ex-
ploration and helps prevent early convergence to sub-optimal
policies. Second, the resulting policies can serve as a good
initialization for finetuning to a more specific behavior. Third,
maximum entropy framework provides a better exploration
mechanism for seeking out the best mode in a multimodal
reward landscape. Fourth, the resulting policies are more ro-
bust in the face of adversarial perturbations as demonstrated
in [Haarnoja et al., 2017].

Actually, prior works have proposed various policy and
value based RL methods under maximum entropy frame-
work, such as combining policy gradient with Q-learning
[O’Donoghue et al., 2016], soft Q-learning [Haarnoja et al.,
2017; Schulman et al., 2017]. However, policy based meth-
ods requiring on-policy learning suffer from poor sample
complexity, while value based methods applying off-policy
learning need a complex approximate sampling procedure in
continuous action spaces.

In this paper, we explore to design an off-policy and stable
model-free deep RL algorithm by combining policy and val-
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ue based methods under maximum entropy RL framework,
which we call Deep Soft Policy Gradient (DSPG). First, we
propose soft policy gradient under maximum entropy RL
framework, and rigorous derivation of this proposition is giv-
en. Second, soft policy gradient is combined with soft Bell-
man equation by employing two deep function approximators
to learn the soft Q-function and the stochastic policy, respec-
tively. Finally, we present experimental results that show a
significant improvement in performance over prior methods
including DDPG and SAC.

2 Related Work

Our deep soft policy gradient (DSPG) algorithm mainly in-
corporates two ingredients: an off-policy actor-critic archi-
tecture with separate stochastic policy and action-value func-
tion networks, and an entropy regularization term to enable
stability and exploration. We review prior works that draw on
some of these ideas in this section.

Off-policy actor-critic has been verified as a feasible
method to improve sample efficiency by exploiting off-policy
data from other sources, such as past experience. And a par-
ticularly popular implementation of off-policy actor-critic ar-
chitecture is DDPG [Lillicrap et al., 2015], which employs
a Q-function estimator to enable off-policy learning, and a
deterministic actor to optimize this Q-function by applying
deterministic policy gradient [Silver et al., 2014]. However,
some issues are still not completely settled. First, for many
tasks with continuous action spaces, it is not possible to s-
traightforwardly apply Q-learning which solves the greedy
policy, DDPG instead uses deterministic policy to avoid glob-
al optimization with respect to the action at every timestep,
but which is at the cost of performance loss. Second, addi-
tional noise process is required for exploration in the context
of deterministic policy, the type and scale of noise must be
chosen meticulously for different problem settings to achieve
good performance. Furthermore, the interplay between the
deterministic actor and the Q-function typically makes DDPG
suffer from severe hyperparameter sensitivity [Henderson et
al., 2017]. As a consequence, it is difficult to generalize D-
DPG to very complex, high-dimensional tasks.

Maximum entropy reinforcement learning optimizes poli-
cies to maximize the entropy regularized expected reward ob-
jective. More recently, several progresses have been made in
developing policy and value based methods under the frame-
work of maximum entropy reinforcement learning. Rough-
ly speaking, existing works fall into two categories: softmax
temporal consistency [Nachum et al., 2017a; Nachum et al.,
2017b] and soft policy iteration [O’Donoghue et al., 2016;
Haarnoja et al., 2017; Haarnoja et al., 2018]. Softmax tem-
poral consistency between the optimal policy and soft opti-
mal state value leads to path-wise consistency learning (PCL)
methods [Nachum et al., 2017a] and Trust-PCL [Nachum et
al., 2017b], which solve jointly the policy and soft state val-
ue by minimizing soft consistency error. However, PCL and
Trust-PCL depend on complete trajectories and succumb to
the instability when training on large off-policy data. Con-
current to PCL and Trust-PCL, some other methods such as
PGQ [O’Donoghue et al., 2016] and soft Q-learning [Haarno-

ja et al., 2017], instead apply the idea underlying general-
ized policy iteration to learn maximum entropy policies by
alternating policy evaluation and policy improvement. How-
ever, PGQ operate on simple tabular representations and are
difficult to scale to continuous or high-dimensional domain-
s, while soft Q-learning draws samples from an approximate
sampling network. Building on soft Q-learning, soft actor-
critic (SAC) [Haarnoja et al., 2018] realizes policy improve-
ment by minimizing Kullback-Leibler divergence between
the current policy and the desired policy. However, how to
choose the desired policy set for non-optimal value functions
is somewhat subjective. Moreover, a separate function ap-
proximator for soft state-value is necessary to stabilize the
learning, but which results in cumulative approximation er-
rors. In contrast, we derive directly soft policy gradient based
on the entropy regularized expected reward objective. And
double sampling approach is utilized to stabilize the learning
without separate soft value function approximator.

3 Preliminaries

In this section, we will define the reinforcement learning
problem addressed in this paper and briefly summarize max-
imum entropy reinforcement learning framework.

3.1 Notation

We study reinforcement learning and control tasks with con-
tinuous action spaces. An agent aims to learn the optimal
policies to maximize an entropy regularized expected reward
objective by continuing trial-and-error in a stochastic envi-
ronment. To this end, we define the problem as policy search
in an infinite-horizon Markov decision process (MDP), which
consists of the tuple (S,A, p, r). The state space S and action
space A are assumed to be continuous, and the state transi-
tion probability pat

stst+1
: S ×S ×A → [0,∞) represents the

probability density of next state st+1 ∈ S given current state
st ∈ S and action at ∈ A. The environment emits a reward
r : S × A → [rmin, rmax] on each transition, which we will

abbreviate as rt , r(st,at) to simplify notation. Throughout
this paper, we use pπk (s → s

′) to denote the probability of
going from state s to state s

′ in k steps under the policy π.
For s0 = s, sk = s

′, we have

pπk (s→ s
′) =

∑

a0

π(a0|s0)
∑

s1

pa0

s0s1
· · ·

∑

ak−1

π(ak−1|sk−1)p
ak−1

sk−1sk
,

(1)

except that pπ0 (s→ s) = 1. Besides, we will also use ρπ(st)
and ρπ(st,at) to denote the state and state-action marginals
of trajectory distribution induced by the policy π(at|st).

3.2 Maximum Entropy Reinforcement Learning

Different from standard reinforcement learning, the sole goal
of maximum entropy reinforcement learning is to maximize a
more general entropy regularized objective, which is defined
by augmenting the expected sum of rewards with discounted
entropy terms, such that the optimal policy aims to maximize
its entropy at each visited state:

J(π) =
∑T−1

t=0
E(st,at)∼ρπ

[

r(st,at) + τHπ(·|st)
]

, (2)
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whereHπ(·|st) = −
∑

at
π(at|st) log π(at|st) is the entropy

of policy π at state st. And τ ≥ 0 is a user-specified temper-
ature parameter that controls the degree of entropy regular-
ization. For the rest of this paper, we omit writing the tem-
perature explicitly, as it can always be subsumed into the re-
ward by scaling it by τ−1. Furthermore, this objective can be
easily extended to infinite horizon problems by introducing a
discount factor γ to ensure that the expected sum of rewards
and entropies is finite.

Under the framework of maximum entropy reinforcement
learning, soft Q-function Qπ(st,at) describes the expected
sum of discounted future rewards and entropies except the
entropy of state st after taking an action at in state st and
thereafter following the policy π:

Qπ(st,at) =rt+
∑

i>t
γi−t

E(si,ai)∼ρπ

[

ri +H
π(·|si)

]

.
(3)

Similar to standard reinforcement learning, we can derive di-
rectly soft Bellman equation from the above definition of soft
Q-function as follows.

Qπ(st,at) = Est+1∼p

[

rt+

γEat+1∼π[Q
π(st+1,at+1) +H

π(·|st+1)]
]

.
(4)

Prior works have made great progresses in learning maximum
entropy policy by directly solving for optimal soft Q-function
[Ziebart et al., 2008; Fox et al., 2015; Haarnoja et al., 2017].
In subsequent sections, we will first propose and prove rigor-
ously soft policy gradient under the framework of maximum
entropy reinforcement learning, which corresponds to deter-
ministic policy gradient in standard reinforcement learning.
Then, we will further discuss how we can combine soft policy
gradient with soft Bellman equation to develop an off-policy
and stable deep reinforcement learning algorithm called deep
soft policy gradient (DSPG), which corresponds to DDPG in
standard reinforcement learning.

4 Soft Policy Gradient

Inspired by the observation that policy gradient methods
[Degris et al., 2012] are perhaps the most widely used for
tasks with continuous action spaces in standard reinforcement
learning, we aim to develop corresponding soft policy gradi-
ent methods for maximum entropy reinforcement learning. In
this section, we derive directly soft policy gradient based on
the entropy regularized expected reward objective and there-
after combine it with function approximation.

4.1 Soft Policy Gradient

The basic idea behind soft policy gradient is to represen-
t the policy by a parametric probability distribution π(a|s) =
P[a|s; θ] that stochastically selects action a in state s accord-
ing to parameter vector θ. And soft policy gradient typically
proceed by sampling this stochastic policy and adjusting the
parameter θ of this policy in the direction of greater entropy
regularized expected reward objective.

Proposition 1 (Soft Policy Gradient). Suppose that the MDP
satisfies the policy π(a|s) is differentiable with respect to its

parameter θ, i.e., that
∂π(a|s)

∂θ
exists. Then,

∇θJ(πθ) =E(s,a)∼ρπθ

[(

Qπ(s, a)

− log π(a|s)− 1
)

∇θ log π(a|s)
]

.
(5)

Proof. According to the definition of soft Q-function (3), we
rewrite the entropy regularized expected reward objective (2)
as follows.

J(πθ) = E(s,a)∼ρπθ

[

Qπ(s, a) +Hπ(·|s)
]

. (6)

To get the gradient of (6), we first derive the gradient of the
entropy regularized expected reward objective J(πθ|s0) with
a designated start state s0.

For the convenience of displaying, we give the following
simplified representation.

G(πθ|s) =
∑

a

∂π(a|s)

∂θ
Qπ(s, a) +

∂Hπ(·|s)

∂θ
. (7)

Then, we have

∂J(πθ|s0)

∂θ
=

∂

∂θ
Ea0∼πθ

[

Qπ(s0,a0) +H
π(·|s0)

]

=
∂

∂θ

[

∑

a0

π(a0|s0)Q
π(s0,a0) +H

π(·|s0)

]

=
∑

a0

π(a0|s0)
∂Qπ(s0,a0)

∂θ
+ G(πθ|s0). (8)

Substituting the soft Bellman equation (4) into (8), we obtain

∂J(πθ|s0)

∂θ
= γpπ1 (s0 → s1)

∑

a1

π(a1|s1)
∂Qπ(s1,a1)

∂θ

+
∑

k∈{0,1}

∑

sk

γkpπk (s0 → sk)G(πθ|sk).
(9)

Repeating the above expansion step infinite times, we get

∂J(πθ|s0)

∂θ
=

∞
∑

k=0

∑

sk

γkpπk (s0 → sk)G(πθ|sk)

=
∑

s

∞
∑

k=0

γkpπk (s0 → s)G(πθ|s). (10)

Then, we can get the gradient of (6) by calculating the expec-
tation of start state s0 in (10) as follows:

∂J(πθ)

∂θ
=

∑

s0

ρπ(s0)
∑

s

∞
∑

k=0

γkpπk (s0 → s)G(πθ|s)

=
∑

s

∑

s0

ρπ(s0)
∞
∑

k=0

γkpπk (s0 → s)G(πθ|s)

=
∑

s

ρπ(s)

[

∑

a

∂π(a|s)

∂θ
Qπ(s, a) +

∂Hπ(·|s)

∂θ

]

=
∑

s

ρπ(s)
∑

a

(

Qπ(s, a)−log π(a|s)−1
)∂π(a|s)

∂θ

= E(s,a)∼ρπθ

[(

Qπ(s, a)

− log π(a|s)− 1
)

∇θ log π(a|s)
]

.
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The above expression of soft policy gradient is surprisingly

simple. In particular, there are no terms of the form
∂ρπθ

(s)

∂θ
,

which means the effect of policy changes on the distribution
of states does not appear.

Moreover, this proposition has important practical value,
because it is convenient for approximating the gradient by
sampling. Just as policy gradient theorem [Sutton et al.,
2000] in standard reinforcement learning, a key issue that
soft policy gradient must address is how to estimate the soft
Q-function Qπ(s, a). Actually, a simple approach is to use
a sampled return, which has led to a variant of the REIN-
FORCE algorithm [Williams, 1992].

4.2 Soft Policy Gradient with Approximation

As discussed above, using the true return to approximate soft
Q-function Qπ(s, a) is a feasible approach, but which is no-
toriously expensive in terms of sample complexity. Instead
we consider the case in which Qπ(s, a) is approximated by
a learned function approximator. In principle, if the approxi-
mation is sufficiently good, we might hope to use it in place
of Qπ(s, a) in (5) and still point roughly in the direction of
the gradient. And [Singh et al., 1994] has proved that for
the special case of function approximation arising in a tabu-
lar POMDP one could assure positive inner product with the
gradient, which is sufficient to ensure improvement for mov-
ing in that direction.

However, substituting a function approximator Qω(s, a)
for the true soft Q-function Qπ(s, a) may introduce bias. For-
tunately, there will be no bias if the following two conditions
are satisfied according to [Sutton et al., 2000].

• The function approximator Qω(s, a) is compatible in the
sense that

∂Qω(s, a)

∂ω
=

∂π(s, a)

∂θ

1

π(s, a)
. (11)

• The parameters ω are chosen to minimise the mean-
squared error ε2(ω).

ε2(ω) = E(s,a)∼ρπθ

[

(

Qω(s, a)−Qπ(s, a)
)2
]

. (12)

Then, we have the following soft policy gradient with func-
tion approximation.

∇θJ(πθ) = E(s,a)∼ρπθ

[(

Qω(s, a) (13)

− log π(a|s)− 1
)

∇θ log π(a|s)
]

.

In other words, compatible function approximators are lin-
ear in the same features as the stochastic policy, and the pa-
rameters ω are the solution to the linear regression problem
that estimates Qπ(s, a) from these features. In practice, con-
dition (12) is usually relaxed in favour of policy evaluation
algorithms that estimate the value function more efficient-
ly by temporal-difference learning [Bhatnagar et al., 2008].
Based on (13), a form of policy iteration with function ap-
proximation can be proved to converge to a locally maximum
entropy policy according to prior works [Bertsekas and Tsit-
siklis, 1996; Sutton et al., 2000].

5 Combined with Soft Bellman Equation

In this section, we will present our proposed deep soft policy
gradient (DSPG) algorithm, which is motivated by combin-
ing soft policy gradient with soft Bellman equation. First,
We will further discuss how to achieve soft policy evaluation
with soft Bellman equation (4) when a function approximator
is used for soft Q-function. Then, the details of our DSPG
algorithm will be given.

5.1 Soft Bellman Equation with Approximation

To improve the sample efficiency, we employ a function ap-
proximator Qω(s, a) to estimate soft Q-function Qπ(s, a) in
order to make soft policy gradient tractable while avoiding
on-policy interaction with environment. Similar to many ap-
proaches in standard reinforcement learning, we make use of
soft Bellman equation (4) to update the parameters ω of func-
tion approximator Qω(s, a).

According to soft Bellman equation (4), we first define soft
Bellman backup operator T Qω as follows.

T Qω = rt+

γEat+1∼π

[

Qω(st+1,at+1) +H
π(·|st+1)

]

.
(14)

But in practice, we typically use the following sampled soft
Bellman backup operator.

T̃ Qω = rt+ (15)

γ

M

∑

j

[

Qω(st+1,a(t+1)j)− log πθ′(a(t+1)j |st+1)
]

.

where the actions a(t+1)j are sampled from the target policy

πθ′(·|st+1) of current policy. Different from DDPG, which is
a commonly used off-policy actor-critic algorithm in standard
reinforcement learning and applies the deterministic policy to
avoid the inner expectation in Bellman equation, we approxi-
mate the expectation of action in (14) by repeatedly sampling
with the current policy. Indeed, the deterministic policy may
induce catastrophic and unstable update of the policy and val-
ue function.

Note that the outer expectation in soft Bellman equation
(4) depends only on the environment or state transition prob-
ability, which makes it possible to learn Qω(s, a) by using
previous off-policy transitions sampled from a replay buffer.
Therefore, the parameters ω of Qω(s, a) can be optimized by
minimizing the soft loss:

L(ω) =
1

N

∑

i

[

(

Qω(si,ai)− T̃ Q
ω′)2

]

. (16)

where Qω′

is the target network used to stabilize the learning
of soft Q-function Qω .

5.2 Deep Soft Policy Gradient Algorithm

It is not possible to straightforwardly apply soft Bellman e-
quation (4) to continuous action spaces, because the inner ex-
pectation with respect to the action is intractable when there
is not an explicitly feasible way to sample from the current
policy. Instead, we used an off-policy actor-critic approach
based on soft policy gradient derived in last section. Specif-
ically, as discussed above, soft policy gradient method main-
tains a parameterized actor function πθ(a|s), which specifies
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the current policy by stochastically mapping states to all pos-
sible actions, while the critic Qω(s, a) is learned to evaluate
the current policy by optimizing the soft loss (16) based on
soft Bellman equation.

Gradient Clipping. One unique challenge in maximum en-
tropy reinforcement learning when applying soft policy gra-
dient is that there exist the terms Qω(s, a) explicitly in (13),
which means that soft Q-function will directly influence the
scale of gradient and thus lead to unstable update of policy
and even bad convergence. Motivated by the idea to deal with
gradient explosion problem, we leverage gradient clipping
approach to address this issue. Gradient clipping approach
aims to limit soft policy gradient to an appropriate range by a
global norm N . Intuitively, clipped gradients prevent drastic
updates of the current policy and thus stabilize the learning.
And an additional benefit from gradient clipping is that con-
strained soft policy gradient eliminates the impact of different
baselines of soft Q-functions in various reinforcement learn-
ing tasks. By contrast, it is not necessary for DDPG to use
gradient clipping approach, because the deterministic policy

gradient depends on
∂Qω(s,a)

∂a
rather than Qω(s, a).

Double Sampling. Another key challenge is that soft policy
gradient (13) depends on not only state distribution but also
the current policy, which makes it impossible to compute soft
policy gradient with transitions sampled from replay buffer.
Instead we utilize double sampling approach to estimate the
expectation with respect to action. The main idea underlying
double sampling approach is to separate the expectation with
respect to the state and action by two sampling steps. The
first sampling step uses the transitions sampled from replay
buffer to approximate the expectation with respect to state
distribution induced by the current policy, which is common-
ly used in policy gradient implementations, such as DPG and
DDPG. In the second sampling step, we estimate the expecta-
tion with respect to action by sampling with the current pol-
icy. Although existing off-policy actor-critic algorithm [De-
gris et al., 2012] uses a different behaviour policy to generate
trajectories, double sampling approach has distinct advantage
in terms of performance and sampling complexity.

Based on above gradient clipping and double sampling ap-
proaches, soft policy gradient can be rewritten in a tractable
form as follows.

∇θJ(πθ) ≈
1

NM

∑

i

∑

j

[(

Qω(si,aij) (17)

− log π(aij |si)− 1
)

∇θ log π(aij |si)
]

.

∇CLIP
θ J(πθ) = Clip by norm(∇θJ(πθ),N ) (18)

where aij is sampled with the current policy π(·|si).
Clip by norm denotes the gradient clipping operator.

To summarize, we propose deep soft policy gradient (D-
SPG, Algorithm 1) algorithm for learning maximum entropy
policies in continuous domains. The algorithm proceeds by
alternating between evaluating the current policy with soft
Bellman equation and improving the current policy with soft
policy gradient.

Algorithm 1: DSPG Algorithm

1 Randomly initialize the critic Qω(s, a) and actor µθ(·|s)
with weights ω and θ;

2 Initialize the target network Qω′

and µθ′ with ω′ ← ω
and θ′ ← θ;

3 Initialize replay bufferR;
4 for each episode do
5 Reset initial observation state s0;
6 for each step do
7 Sample an action at for st using πθ(·|st);
8 Execute action at and receive rt, st+1;
9 Store transition (st,at, rt, st+1) inR;

10 Sample a random minibatch of N transitions
(si,ai, ri, si+1) fromR;

11 Sample M actions a(i+1)j for each state si+1

using πθ′(·|si+1);
12 Compute the soft loss L(ω) (16);
13 Update the critic by minimizing the soft loss;
14 Sample M actions aij for each state si using

πθ(·|si);
15 Compute the clipped soft policy gradient (18);
16 Update the actor by applying the clipped soft

policy gradient∇CLIP
θ J(πθ);

17 Update the target networks:
ω′ ← αω + (1− α)ω′

θ′ ← αθ + (1− α)θ′

18 end

19 end

6 Experiments

We evaluate our proposed algorithm, namely DSPG, across
several benchmark continuous control tasks and compare
them to standard DDPG and SAC implementations. We find
that DSPG can consistently match or beat the performance of
these baselines.

6.1 Setup

We chose four well-known benchmark continuous control
tasks (Ant, Hopper, HalfCheetah and Walker2d) available
from OpenAI Gym and utilizing MuJoCo environment. And
two feed-forward neural networks were used to represent the
policy and value estimates. In addition, we used uniformly a
simple policy represented by a multivariate gaussian for both
DSPG and SAC.

For DDPG, identical experimental setup was employed in
our DDPG as in [Lillicrap et al., 2015], actually which has
to perform a grid search to achieve good performance due
to its hyperparameter sensitivity. Besides, to be consistent
with DDPG and DSPG, we merely compared to the general
form of SAC without applying additional tricks, such as hard
target update every fixed interval and using two Q-functions,
although these tricks are effective for all three algorithms.

To evaluate DSPG’s performance with an appropriate glob-
al gradient norm N , we performed a simple grid search over
N ∈ {1, 3, 5}. And the search results show that smaller
global gradient norm will slightly slow down the learning but
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Figure 1: The results of DSPG against DDPG and SAC baselines
on continuous control benchmarks. Each plot shows the average to-
tal rewards of evaluation rollouts across 7 randomly seeded training
runs after choosing best hyperparameters. The x-axis shows millions
of environment steps.

make the learning more stable. Based on this conclusion, we
chose N = 5 for both Ant and Walker2d, while N = 1 and
N = 3 were chosen for Hopper and HalfCheetah, respective-
ly. Moreover, we sampled M = 64 times with the current
learned policy πθ to estimate the expectation with respect to
the action in each train step, and we performed 4 train steps
every interaction step to accelerate the learning for all algo-
rithms. A detailed description of our implementation and ex-
perimental setup is available in the Appendix A. The source
code of our DSPG implementation will be available online
after the paper is accepted.

6.2 Results

We present the average total rewards over training of DSPG,
DDPG and SAC in Figure 1. And Table 1 shows the best
average total rewards in all steps of training for our imple-
mentation and baselines. The results show that, overall, D-
SPG substantially outperforms DDPG on all of benchmark
tasks, in terms of both sample efficiency and convergent per-
formance. The notable gap of performance between DSPG
and DDPG is ascribed to the hyperparameter sensitivity of
DDPG, but also suggests significant advantage of our DSPG
relative to DDPG in challenging tasks with very high state
and action dimensionality. Moreover, it can be seen in Figure
1 that DSPG beats the performance of SAC in Hopper and
Walker2d, and can match the performance of SAC in Ant and
HalfCheetah.

In addition to the average total rewards, the stability of al-
gorithm also plays a crucial role in performance. And a con-
clusion can be drawn from Figure 1 that DSPG outperforms
consistently SAC in terms of the stability in all four bench-
mark tasks. The good stability of DSPG can be demonstrated
from two observations. First, clipped soft policy gradient is
applied to guarantee steepest optimization direction and pre-
vent large update step of policy, which is typically consid-
ered to be main source of instability. Second, only one critic

Domains DSPG SAC DDPG

Ant-v2 3384.074 3472.346 1012.242

HalfCheetah-v2 7889.747 8103.202 1014.372

Hopper-v2 3674.029 3652.893 3097.082

Walker2d-v2 6060.884 5520.419 2507.199

Table 1: The results for best average total rewards in all training
steps for our DSPG, DDPG and SAC implementations. These result-
s are each on different setups with different hyperparameter search-
es. Thus, although it is not possible to make any definitive claims
based on this data, we do conclude that our results are overall com-
petitive with DDPG and SAC baselines.

network is used to estimate soft Q-function with double sam-
pling approach in DSPG, which avoids cumulative approx-
imation errors resulting from a separate soft value function
approximator. In practical, we suggest to take into account
available computing resources and the cost of sampling when
choosing appropriate algorithm for specific task. For tasks
with limited computing resources but low cost of sampling,
DSPG seems to be better.

7 Conclusion

We presented deep soft policy gradient (DSPG), an off-policy
actor-critic and model-free maximum entropy deep reinforce-
ment learning algorithm. Our theoretical results derive soft
policy gradient based on entropy regularized expected reward
objective. Building on this result, we formulated our DSPG
algorithm by combining soft policy gradient with soft Bell-
man equation. The experimental results suggest that DSPG
can perform well on a set of challenging continuous control
tasks, improving upon DDPG and SAC in terms of average
total rewards and stability. Moreover, soft policy gradien-
t provides a promising avenue for future works.
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A Experimental Setup

Throughout all experiments, we use Adam for learning the
neural network parameters with a learning rate 5× 10−5 and
5 × 10−4 for the actor and critic respectively. For critic we
use a discount factor of γ = 0.99. For the soft target updates
we use α = 0.01. Both the actor and critic are represent-
ed by full-connected feed-forward neural network with two
hidden layers of dimensions 512. And all hidden layers use
ReLU activation. Specially, we use identity and sigmoid ac-
tivations for the mean and standard deviation in the output
layer respectively. The algorithm use a replay buffer size of
three million and train with minibatch sizes of 100 for each
train step. Training does not start until the replay buffer has
enough samples for a minibatch and does not stop until the
global time step equals to the threshold of 3 × 106. In addi-
tion, we scales the reward function by a factor of 5 for all four
tasks, as is common in prior works.
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