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ABSTRACT The study of biological systems is complex and of great importance. There exist numerous
approaches to signal transduction processes, including symbolic modeling of cellular adaptation. The
use of formal methods for computational biological systems eases the analysis of cellular models and
the establishment of the causes and consequences of certain cellular situations associated with diseases.
In this paper, we define an application of logic modeling with rewriting logic and soft set theory. Our
approach to decision-making with soft sets offers a novel strategy that complements the standard strategies.
We implement a metalevel strategy to control and guide the rewriting process of the Maude rewriting engine.
In particular, we adopt the mathematical methods to capture imprecision, vagueness, and uncertainty in
the available data. Using this new strategy, we propose an extension in the biological symbolic models of
pathway logic. Our ultimate aim is to automatically determine the rules that aremost appropriate and adjusted
to reality in dynamic systems using decision-making with incomplete soft sets.

INDEX TERMS Biological systemmodeling, decision making, rewriting logic, rewriting strategies, soft set,
symbolic systems biology.

I. INTRODUCTION

Systems biology is an emergent field that facilitates under-
standing biological systems by describing their structure,
dynamics, and control methods. The growth of genomic
sequence information combined with technological advances
in the analysis of global gene expression has revolutionized
the research in biology and biomedicine [1]. Investigation
of mammalian signaling processes, the molecular pathways
by which cells detect, convert, and internally transmit infor-
mation from their environment to intracellular targets such
as the genome, would greatly benefit from the availability of

The associate editor coordinating the review of this manuscript and
approving it for publication was Shubhajit Roy Chowdhury.

predictive models [2], [3]. Various models for computational
analysis of cellular signaling networks have been proposed to
simulate responses to specific stimuli [4]. However, in many
cases complex cell signaling pathways have to be treated
with other more qualitative modeling approaches, like logic
modeling.

Symbolic models allow researchers to represent partial
information and tomodel and analyze systems atmultiple lev-
els of detail, depending on the information available and the
questions to be studied. Suchmodels are based on formalisms
that provide a language for representing system states and
mechanisms of change such as reactions, while the corre-
sponding analysis tools are based on computational or logical
inference. Symbolic models can be used for simulation of
system behavior.
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Pathway Logic is a symbolic systems biology approach
for modeling and analyzing biological processes, such as sig-
nal transduction. Pathway Logic models are represented and
analyzed using Maude, a formal system based on rewriting
logic [5].
Rewriting logic is a logic of change where non-

deterministic systems can be easily specified and analyzed.
Rewriting logic extends equational logic by means of rewrite
rules. While the equational part is used to define the static
nature of a system, allowing the user to define sorts, construc-
tors, and functions on these sorts; rewrite rules stand for state
transitions in these systems.
With the use of Pathway Logic, we have the problem of

not being able to determine the rewriting rules that are more
appropriate or more probable among all the possible ones.
A metalevel strategy language would be required to control
the rewriting process. Our aim is to automatically determine
the rules that are most appropriate and adjusted to reality
in dynamic systems using decision making with incomplete
soft sets.
Many real life problems require the use of imprecise or

uncertain data. Their analysis must involve the application of
mathematical principles capable of capturing these features.
Fuzzy set theory meant a paradigmatic change in Mathe-
matics by allowing partial membership. We are especially
interested in a generalization of fuzzy sets: the application
of soft sets theory and their extensions to decision making
problems (cf., Molodtsov [6] for a definition and arguments
about its applicability to several fields).
In this paper, we propose a novel metalevel rewriting-logic

approach to guide the executions of rewrite rules in biological
dynamic systems using decision making with incomplete soft
sets. The use of the theory of soft sets allows us a valid exe-
cution even in cases of incomplete information. We include
basic examples of the different phases of the implementation,
with the execution on some pathways of Pathway Logic.
In the following sections of this introduction, we define

the purpose of our work and its significance, and review
the current state-of-art in the related research fields. This
interdisciplinary work covers three very different areas: soft
set theory under incomplete information, rewriting logic, and
computational biology and Pathway Logic. The rest of the
paper is organized as follows. Section II shows the proposed
design of the language extension and the relevant details of
the implementation. In Section III, we expose and describe
its applications in a biological symbolic system through the
Pathway Logic environment. Finally, conclusions are drawn
in Section IV.

A. SOFT SET UNDER INCOMPLETE INFORMATION

One of the great difficulties in designing intelligent systems
consists in the absence of a knowledge base that collects all
the evidence. Scientists must resort to mathematical meth-
ods that capture imprecision, vagueness, or uncertainty in
the available data. In an attempt to overcome this problem,
Molodtsov introduced the theory of soft sets in 1999 [6].

He described the theoretical foundations of this general math-
ematical tool for dealing with uncertainty and discussed its
application to several areas.

Research on soft set theory has progressed rapidly in many
different lines. Concerning the theoretical study of soft sets,
Maji et al. [7] defined some basic algebraic operations on
soft sets; Aktaş and Çağman [8] initiated soft groups as an
algebraic structure for soft sets; and Alcantud [9] established
formal relationships among notions arising from the theories
of soft sets and fuzzy sets.
We recall the notion of soft sets introduced by Molodtsov,

and some other useful definitions on soft sets [7], [10].
Throughout the paper, let U be the universe of alternatives,
let E be the universal set of parameters, and let A be a subset
of relevant parameters. P(U ) denotes the power set of U .
Definition 1 (cf. Molodtsov [6]): The pair (F,A) is a soft

set over U , if and only if F : A −→ P(U ) and A ⊆ E .
Definition 2 (cf. Maji et al. [7]): The intersection of the

soft sets (F1,A) and (F2,B) is a soft set (F1,A) ∧ (F2,B),
defined as (G,A×B) whereG(a, b) = F1(a)∩F2(b) for each
element (a, b) in A× B.
In other words, a soft set over U is a parameterized family

of subsets of U . For e ∈ A, F(e) may be considered as the
set of e-approximate elements of (F,A), or the subset of U
approximated by e [11].

In practical applications both U and A are usually finite.
Soft sets can be represented using a two-dimensional table,
where rows are attached with objects in U , and columns are
attached with parameters in A [12]. If ui ∈ F(e) then tij = 1,
otherwise tij = 0, where tij are the entries of the table. These
representations are binary (i.e., all cells are either 0 or 1).
The incomplete soft set notion leads to a more general sce-
nario. In incomplete soft sets, according to Definition 3, one
can proceed similarly but the possible values for cells are
0, 1, or ∗, the latter standing for the lack of information case.
In formal terms one has the following definition:
Definition 3 (cf. Han et al. [10]): A pair (F,A) is an

incomplete soft set over U if and only if A ⊆ E and F :

A −→ {0, 1, ∗}U , where {0, 1, ∗}U is the set of all functions
from U to {0, 1, ∗}.

In the analysis of soft sets, the evaluations always take the
value 1 (if u belongs to the set of e-approximate elements of
the soft set) or 0 (otherwise). However, when we deal with
incomplete data in soft sets, we cannot assure that such entry
is either 0 or 1. In that case, we use the ∗ symbol to indicate
lack of information. That is, F(e)(u) = ∗ means that we do
not know whether u belongs to the subset of U approximated
by e or not. Obviously, every soft set can be considered an
incomplete soft set in a trivial manner.

Concerning standard soft set based decision making,
the fundamental reference is Maji et al. [13]. When a soft
set (F,A) is represented in matrix form through the k × l

matrix T = (tij), where k and l are the cardinals of U and A,
respectively, then the choice value of an object ui ∈ U is ci =∑

j tij. A suitable choice is made when the selected object uk
verifies ck = maxi ci: objects that maximize the choice value
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TABLE 1. Tabular representation C of the incomplete soft set (F , E) in the
Example 1.

TABLE 2. The four completed tables Ci for the incomplete soft set (F , E)
in the Example 1 with corresponding choice values ci . (a) C1 matrix.
(b) C2 matrix. (c) C3 matrix. (d) C4 matrix.

are satisfactory outcomes of the problem. Example 1 below
shows a matrix representation for an incomplete soft set.
Example 1: Let U be a nonempty finite set of objects and

let E be a nonempty finite set of attributes. Suppose thatU =

{u1, u2, u3} and E = {e1, e2, e3, e4}. Define an incomplete
soft set (F,E) as follows:
1) u1 ∈ F(e2), u1 6∈ F(e3)∪F(e4). It is unknown whether

u1 ∈ F(e1) or not.
2) u2 ∈ F(e1)∩F(e3), u1 6∈ F(e4). It is unknown whether

u2 ∈ F(e2) or not.
3) u3 ∈ F(e1) ∩ F(e4), u3 6∈ F(e2) ∪ F(e3).
Table 1 captures the information defining a soft set (F,E).

We have two unknown values (which we denote by the
parameter w = 2). As a result, the soft set (F,E) becomes
an incomplete soft set. We can enumerate the two cells with
value ∗ as ((1, 1), (2, 2)). For each v ∈ {0, 1}w, one feasible
completed table arises, that is, we can associate respective
values {v1 = (0, 0), v2 = (0, 1), v3 = (1, 0), v4 = (1, 1)}
to these two cells in the enumeration. The four completed
tables that are produced appear in Table 2, together with
the corresponding choice values of the objects. Note that u1
reaches the highest choice value in C2 only, u2 reaches the
highest choice value ci in all these tables, and u3 reaches the
highest choice value exactly in C1 and C2.

Soft set theory has potential practical applications in
many different fields including decision-making. Decision-
making procedures under incomplete information were
investigated by Zou and Xiao [14], Han et al. [10],
Qin et al. [15], and Alcantud and Santos-García [16], [18]
and Alcantud et al. [17]. There are numerous approaches
to obtain ‘‘decision values’’. In this sense, Alcantud and
Santos-García [18] define a new criterion of choice values
extraction for incomplete soft sets based on a combinatorial

study of potential associated completed soft sets. It aims
at reasoning as in Example 1: the higher the proportion of
completed tables where an option gets the top choice value,
the better position it occupies in the final ranking.

B. REWRITING LOGIC AND MAUDE

Rewriting logic [19] is a logic of change where non-
deterministic systems can be easily specified and analyzed.
Rewriting logic extends equational logic by means of rewrite
rules. While the equational part is used to define the static
nature of a system (e.g. data structures), allowing the user to
define sorts, constructors, and functions on these sorts, rules
stand for state transitions. Following these ideas, the rewriting
logic approach has been successfully applied to many models
of concurrency [20], [21].
Rewriting logic is implemented in Maude [22], a high-

performance logical framework with support for equational
and rewriting logic computation. Since rewriting logic is
parameterized by an equational theory Maude implements
membership equational logic [23] that, in addition to sorts,
constructors, and functions, allows users to state membership
axioms stating the members of a sort.
A Maude system module is defined with syntax mod

NAME is... endm. Maude types are defined with the
keyword sort; in turn, subtypes are defined by means of
subsort. For example, we can define the sort Marking
that stands for a multiset of items and coins. This sort has
Coin and Item as subsorts, which stand for coins and items,
respectively:

sorts Coin Item Marking.

subsorts Coin Item < Marking.

Functions are defined with the keyword op, given the sorts
of the arguments and the sort of the result. In particular,
constants are defined with an empty lists of sorts as arity. For
example, quarters (q), dollars ($), apples (a), and cakes (c)
are defined as follows:

ops q $: -> Coin [ctor format (r! o)].

ops a c: -> Item [ctor format (b! o)].

where the attribute ctor indicates these functions are con-
structors and the format attribute specifies the pretty print-
ing options (red bold font in the first case and blue bold font
in the second one). Likewise, we define sets by specifying the
empty set (null) and the composition, defined in this case
with empty syntax:

op null: -> Marking.

op _ _: Marking Marking -> Marking

[ctor assoc comm id: null].

where the attribute id indicates that null is the identity
element forMarking andassoc andcomm indicate that the
operator is associative and commutative, respectively. Using
this syntax, a Marking with two quarters, one dollar, and
two apples could be written as q q $ a a, but it would
be equivalent to a a q q $ and a q $ q a, among all
others including all these elements.
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The static behavior of the system is defined by means
of (possibly conditional) equations. However, in this work
we are only interested in the dynamic behavior, which in
Maude is defined by means of rewrite rules (rl and crl for
conditional rules). For example, the rules buy-apply and
change indicate that we can get an apple and a quarter from
a dollar and that it is possible to obtain a dollar from four
quarters, respectively:

rl [buy-apply]: $ => a q.

rl [change] : q q q q => $.

Now, we illustrate how Maude works with a simple exam-
ple from [22]. There, the authors define a vending machine
where it is possible to buy an apple (a) from a dollar ($) and
receive a quarter (q) back, as shown by rule buy-apple;
or buy a cake (c), receiving no change, as specified by rule
buy-cake. It is also possible to get a dollar from 4 quarters,
as shown by rule change. All the elements in this example
form a set of sort Marking:

mod VENDING-MACHINE is

sorts Coin Item Marking.

subsorts Coin Item < Marking.

op _ _: Marking Marking -> Marking

[assoc comm id: null].

op null: -> Marking.

ops q $: -> Coin [format (r! o)].

ops a c: -> Item [format (b! o)].

rl [buy-apply]: $ => a q.

rl [buy-cake] : $ => c.

rl [change] : q q q q => $.

endm

C. COMPUTATIONAL BIOLOGY AND PATHWAY LOGIC

Substantial progresses over the past four decades in bio-
chemistry, molecular biology, and cell physiology, coupled
with emerging high throughput techniques for detecting
protein-protein interaction, have ushered in a new era in
signal transduction research [24]. Given the size and com-
plexity of the cellular signaling networks, it has become
necessary to develop predictive mathematical models to
understand the system behavior of these networks, and to
predict higher order functions that can be validated by
experiments [2].

Various models for the computational analysis of cellular
signaling networks have been proposed to simulate responses
to specific stimuli [3], [25]–[27]. The use of differential
equations to represent changes in the concentrations from
the input to the output is an adequate approach when, for
a given pathway or sub-pathway, there is a large amount of
quantitative information and a small number of reactions to
be modeled [28]. However, in many cases complex cell sig-
naling pathways have to be treatedwith othermore qualitative
modeling approaches, like logic modeling [29].

Symbolic models are based on formalisms that provide a
language to represent the states of a system; mechanisms to
model their changes (such as reactions); and tools for anal-
ysis based on computational or logical inference. A variety
of formalisms have been used to develop symbolic models

of biological systems, including Petri nets; ambient calculi;
statecharts; live sequence charts; and rule-based systems [30].
The key feature of rule-based modeling that makes this
approach suitable for studying the site dynamics of biomolec-
ular networks is the simplifying idea of representing
biomolecular interactions in terms of local rule [31].

Pathway Logic is a symbolic systems biology approach
for modeling and analyzing biological processes, such as
signal transduction. Pathway Logic models are represented
and analyzed using Maude, a formal system based on rewrit-
ing logic [5]. Some capabilities of Pathway Logic include
the ability to build and analyze models with multiple levels
of detail, define new sorts of data and properties, execute
queries on dynamically generated pathways using search,
and model-checking. Pathway Logic allows researchers to
develop abstract qualitative models, even quantitative and
probabilistic models [32], of signaling processes that can be
used as the basis for analysis by powerful tools to study
a wide range of questions. The Pathway Logic system, its
documentation, a collection of examples, and related papers
are available at http://pl.csl.sri.com.

D. MODELING IN PATHWAY LOGIC:

DISHES AND REWRITE RULES

We briefly present STM7, a model of intracellular signal
transduction, to illustrate how Pathway logic can deal with
signaling pathways. A formal knowledge base contains infor-
mation about the changes that occur in the proteins inside a
cell in response to exposure to receptor ligands, chemicals,
or various stresses. In our case study, we will focus on models
of response to transforming growth factor beta 1 (TGF-β1)
stimulation. TGF-β1 is the prototypic member of a large
family of structurally related pleiotropic-secreted cytokines.
The TGF-β1 signaling pathway is involved in many cellular
processes such as growth, proliferation, differentiation, and
apoptosis. TGF-β1 has been investigated for association with
risk of breast cancer [33].

Fig. 1 shows a general view of Pathway Logic Assistant,
which is a Java software that implements the Pathway Logic
vision. It shows the Petri net representation of interleukin 6
signaling pathway. Rectangles are transitions (biochemical
reactions) and ovals are occurrences (biological entities) in
which the initial occurrences are darker. The reactants of
a rule are the occurrences connected to the rule by arrows
from the occurrence to the rule. The products of a rule are
the occurrences connected to the rule by arrows from the
rule to the occurrence. Dashed arrows indicate an occurrence
that is both input and output. For example, the reaction/rule
1229c appears in Fig. 1. In this rule, Jak1 protein (in the
cytoplasm) and Gp130 transmembrane protein (at GP130C
location) intervene as reactants. The result of this reaction
is that Gp130 protein is unchanged and Jak1 moves from
cytoplasm to GP130C location.

Pathway Logic models are structured in four layers: sorts
and operations, components, rules, and queries. The sorts and
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FIGURE 1. A general view of a signaling pathway using Pathway Logic Assistant (cf. Santos-García [4]).

operations layer declares the main sorts and subsort relations,
the logical analogue to ontology. The sorts of entities include
Chemical, Protein, Complex, Location (cellular
compartments), and Cell. These are all subsorts of the
Soup sort that represents unordered multisets of entities. The
sort Modification is used to represent post-translational
protein modifications (e.g., activation, binding, phosphory-
lating). Modifications are applied using the operator [_-_].
For example, the term [Rac1 - GDP] indicates that Ras-
related C3 botulinum toxin substrate 1 (Rac1) is binding to
guanosine diphosphate (GDP).

An initial state or dish (called Tgfb1Dish) with several
locations and elements is defined:

• the outside (location tagXOut) which contains the trans-
forming growth factor beta 1 (Tgfb1);

• the Tgfb1RC location which contains the transform-
ing growth factor beta receptor I and II (TgfbR1 and
TgfbR2);

• the CLo location, which contains the elements stuck
to the outside of the plasma membrane, is empty;

• the membrane (location tag CLm) is empty as well;
• the inside of the membrane (location tag CLi) contains
three proteins bound to GDP:Cdc42,Hras, andRac1;

• the cytoplasm (location tag CLc) contains proteins
Abl1, Akt1, Atf2, Erks, etc.; and

• the nucleus (location tag NUc) contains several genes
(e.g., Smad7, Tgfb1, Cst6, etc.) and proteins
(e.g., Ctdsp1, Ets1, and so on).

FIGURE 2. Schematic representation of a cell. The activated proteins are
marked in red, those phosphorylated in blue, and those bound to GDP in
yellow. Proteins that have no modifications are shown in green.

In Maude syntax, this dish (called Tgfb1Dish) is expressed
by the following equation:
eq Tgfb1Dish =

PD({XOut | Tgfb1} {Tgfb1RC | TgfbR1 TgfbR2}

{CLo | empty} {CLm | empty}

{CLi | [Cdc42 - GDP] [Hras - GDP] [Rac1 - GDP]}

{CLc | Abl1 Akt1 Atf2 Erks Fak1 Jnks Mekk1 Mlk3

P38s Pak2 Pml Smad2 Smad3 Smad4 Smurf1 Smurf2

Tab1 Tab2 Tab3 Tak1 Traf6 Zfyve16}

{NUc | Ctdsp1 Ets1 Smad7 Cdc6-gene Cdkn1a-gene

Cdkn2b-gene Col1a1-gene Col3a1-gene Ctgf-gene

Fn1-gene Mmp2-gene Pai1-gene Smad6-gene

Smad7-gene Tgfb1-gene Timp1-gene Cst6-gene

Dst-gene Mmp9-gene Mylk-gene Pthlh-gene

Gfi1-gene Csrp2-gene RoRc-gene}).

Figure 2 shows a schematic representation of a cell. Dif-
ferent elements appear in different parts or locations of the
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cell: outside the cell (XOut), in/across the cell membrane
(CLm), attached to the inside of the cell membrane (CLi),
in the cytoplasm (CLc), and in the nucleus (NUc). Some
proteins are represented: epidermal growth factor (Egf),
PI3 kinase (Pi3k), ERK activator kinase 1 (Mek1), and
so on. Some components appear with different modifiers:
activation (act), phosphorylation on tyrosine (Yphos), and
binding to GDP (GDP). This cell would be represented in
Maude with the following SmallDish:

eq SmallDish =

PD( {XOut | Egf} {CLi | Pi3k [Cdc42 - GDP]}

{NUc | Rb1 Myc Tp53}

{CLc | [Mek1 - act] [Ilk - act] Erks Erk1}

{CLm | EgfR PIP2 [Gab1 - Yphos]}).

Rewrite rules detail the behavior of cell components
depending on biological contexts and modification states.
Each rule represents an action in a biological process such as
intra/inter cellular signaling reactions or metabolic reactions.
For example, we can say that if, in the location CLc (that
corresponds to the cytoplasm), a protein Ikke is found in an
activated form and a protein of the familyAkts is found, then
the proteinAktswill be phosphorylated onS473 andT308:

rl[1598c.Akts.by.Ikke]:

{CLc | clc [Ikke - act] Akts}

=> {CLc | clc [Ikke - act]

[Akts - phos(S 473) phos(T 308)]}.

where the variable clc stands for any other element that
might appear in the corresponding location (see Figure 3 for
a schematic representation of this rule).

FIGURE 3. Schematic representation of the rule 1598c.Akts.by.Ikke.
Blue color of the Akts protein indicates that it is phosphorylated at the
next state.

The TGFB1 Pathway Logic model contains a total
of 57 rules and 968 datums. The experimental evidence for
each rule is supplied in datum form. Each datum represents
a result from an experiment published in a refereed journal.
The rules and evidence can also be found as part of the
STM7 model downloadable from the Pathway Logic website
(http://pl.csl.sri.com) under the Software link.

1) REWRITE RULE 931.TgfbR1.TgfbR2.by.Tgfb1

Pathway Logic contains a set of transition rules, derived from
curated experimental findings. They provide an explanation
of how a signal propagates in response to an TGF-β1 stimu-
lus. Here we describe rule 931, directly sourced from the lit-
erature. Nakao et al. [34] determine that TGF-β signals from
the membrane to the nucleus through serine/threonine kinase
receptors and their downstream effectors, termed SMAD
proteins.
Our rewrite rule 931 establishes: In the presence of

transforming growth factor beta receptor I Tgfb1 in the

outside of the cell (XOut), the receptors TgfbR1 and
TgfbR2 get activated (TgfbR1-act and TgfbR2-act)
and bound together and to Tgfb1 ([TgfbR1 - act]:

[TgfbR2 - act]: Tgfb1). In Maude syntax, this sig-
naling process is expressed by the following rewrite rule:

rl[931.TgfbR1.TgfbR2.by.Tgfb1]:

{XOut | xout Tgfb1 }

{Tgfb1RC | tgfb1rc TgfbR1 TgfbR2 }

=> {XOut | xout }

{Tgfb1RC | tgfb1rc

([TgfbR1 - act]: [TgfbR2 - act]: Tgfb1) }.

2) REWRITE RULE 915.Akt1.irt.Tgfb1

Here we describe rule 915, directly sourced from the
literature [35]. Our rewrite rule 915 establishes: In the
presence of transforming growth factor beta receptor I
activated TgfbR1-act, bound to transforming growth
factor beta receptor II activated TgfbR2-act, bound
to transforming growth factor beta I Tgfb1 and pro-
tein Akt1 in the cytoplasm CLc, Akt1 gets phosphory-
lated at sites S473 and T308—[Akt1 - phos(S 473)

phos(T 308)]. In Maude syntax, this signaling process is
expressed by the following rewrite rule:

rl[915.Akt1.irt.Tgfb1]:

{Tgfb1RC | tgfb1rc

([TgfbR1 - act]: [TgfbR2 - act]: Tgfb1) }

{CLc | clc Akt1 }

=> {Tgfb1RC | tgfb1rc

([TgfbR1 - act]: [TgfbR2 - act]: Tgfb1) }

{CLc | clc [Akt1 - phos(S 473)phos(T 308)] }.

Figures 4 and 5 show the aforementioned rules using the
Pathway Logic Assistant. An oval represents a component
(e.g., gene, protein, etc.) participating in a reaction. A rect-
angle illustrates a reaction rule with a label which represents
its shortened identifier in the knowledge base. A solid arrow
from an occurrence oval to a rule indicates that the occurrence
is a reactant. A solid arrow from a rule to an occurrence oval
indicates that the occurrence is a product. A dashed arrow
from an occurrence oval to a rule indicates that the occurrence
is a control (required for the reaction to fire, but not changed).

II. INCOMPLETE SOFT SET STRATEGIES

FOR DECISION MAKING

We present in this section a brief overview of the different
execution strategies available in Maude. Then, we intro-
duce how we have implemented our rewrite strategy for
incomplete soft sets. The source code of the tool, exam-
ples, and more information is available at https://github.com/
ariesco/pathway.

Given a rewriting logic specification and an initial term,
Maude [22] provides several executions for transforming this
term:

• The rewrite command applies rewrite rules in a non-
deterministic way until a final state (a state that cannot
be further rewritten) is obtained.

• The frewrite command applies rewrites rules in
a non-deterministic and fair way until a final state
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FIGURE 4. Rule 931.TgfbR1.TgfbR2.by.Tgfb1 using Pathway Logic Assistant.

FIGURE 5. Rule 915.Akt1.irt.Tgfb1 using Pathway Logic Assistant.

is reached. Fair rewriting prevents rules from being
applied twice if other rules can be applied to the term.

• The search command checks whether it is possible to
reach a state matching a given pattern and fulfilling a
given condition. Maude follows a breadth-first strategy
to generate the state space, so it is possible to find
solutions even in systems with infinite states.

Given that we cannot control the execution in the first
two cases, analyses usually focus on the search command.
However, due to its breadth-first strategy, it is unfeasible to
analyze highly non-deterministic systems. The execution of
these commands can be bounded with an upper bound clause
and some other options.
An interesting feature of rewriting logic is that, thanks to

its reflective capabilities [23], it is possible to manipulate
modules and terms as usual data. Using this feature, it is
possible to implement tools for analyze and direct howMaude
modules are executed. Following this idea, the Maude strat-
egy language [36] was implemented. This language allows
specifiers to define strategies to define which rules should
be applied to a specific term and which values should the
variables take in a particular step.
However, it is not possible to use the strategy language

to execute a specification implementing incomplete soft sets
because these strategies focus on the term that must be rewrit-
ten, while our approach focuses on optimizing reached state.
For this reason, and following the same metalevel approach
as the strategy language, we present a rewrite strategy that
directs the execution to optimize the value computed from an
incomplete soft set. In particular, we implement our rewrite

strategy extending the framework in [37]. This framework is
implemented in top of Full Maude [22, Part II], an extension
ofMaude written inMaude itself that provides a richer syntax
and features for implementing I/O applications and metatools
extendingMaude. In this way, our incomplete soft set strategy
complements the transformation already integrated in the
framework, such as analysis of causes [29] and stepwise
reachability analysis [5].

A. IMPLEMENTATION OF AN INCOMPLETE

SOFT SET STRATEGY

In order to apply our strategy, we require terms and rules
to be extended with an incomplete soft set. In Maude,
the SOFTSET module defines attributes of incomplete soft
set objects as a set of pairs of the form [Att = V], where
Att is the attribute name and V is its value, which can take
the values 0, 1, and *. In this way, different attributes, when
put together and separated by commas, produce a term of sort
AttSet of the form [Att1 = V1], ..., [Attn =

Vn]. Since sets are defined in Maude as associative and
commutative, the order in the set can be modified without
modifying its meaning.

Once we have defined attributes of incomplete soft sets,
we can extend terms and rules to deal with them. We trans-
form each rewrite rule rl T => T’. (respectively, con-
ditional rules crl T => T’ if COND., for COND a
condition), for T and T’ terms of the given system, as rl T

Atts => T’ Atts’. (respectively crl T Atts =>

T’ Atts’ if COND.), with Atts the attributes of the
incomplete soft set before applying the rule and Atts’ the
transformed attributes of the incomplete soft set. Note how
the values of the attributes in the incomplete soft set can be
modified in each rewrite rule. Likewise, initial (ground) terms
tmust now be defined as t atts, with atts the particular
values of the attributes for t.

Now we apply the decision-making procedure under
incomplete information in [14]. In order to choose the most
appropriate rule to be executed we need to extract the incom-
plete soft set information and manipulate it. Our strategy
computes all the reachable terms from the current term, takes
the information of the soft set attributes, and places it into a
matricial representation of the incomplete soft set SoftSet,
which is defined as a list of lists of values. In order to process
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this matrix, the SS-STRAT module is parameterized by the
SOFT-SET-FUN theory, which requires a computeValue
to be implemented. This function takes a SoftSet as argu-
ment and returns a natural number standing for the row of
the matrix that maximizes the choice value. That is, given the
matrix representation Tk×l = (tij) of an incomplete soft set,
where k is the number of reachable terms and l is the number
of attributes, the choice value of an object ui ∈ U is ci =∑

j tij. Objects that maximize the choice value are satisfactory
outcomes of this decision making problem. Put differently,
a suitable choice is made when the selected object uk verifies
ck = maxi ci. Following the ideas in [16], we examine all
completed tables arising from the original incomplete table.
Their choice values are computed as in [13].
The function computeValue can be implemented in

different ways so undefined values * take different val-
ues. Users can define their own strategies but our system
also provides three predefined strategies: * are computed
as 0 (implemented through the UndefToZero view), as 1
(UndefToOne view), or as 0.5 (UndefSemi view), accord-
ing to indicator di−p proposed by Zou and Xiao [14].
Now we continue with the vending machine example

shown in Section I-B. For example, if we rewrite three times a
term $ q q q, in a possible execution we obtain the term a

c as a consequence of applying rules buy-apply, change
and buy-cake:

Maude> rew~\hbox{[3]} $ q q q.

rewrite~\hbox{[3]} in VENDING-MACHINE: $ q q q.

rewrites: 3 in 0ms cpu (0ms real)

(3000000 rewrites/second)

result Marking: a c

We can add incomplete soft set information by using
attributes a, c, and $, indicating whether there are apples,
cakes, and dollars, respectively. Since the buy-apple rule
introduces an apple in the marking and removes a dollar,
we set the value for the attribute a to 1, while the one for $ is
* (we are not sure whether there are more dollars in the rest of
the marking, so we cannot set it to 0). We reason analogously
for the buy-cake rule. Finally, when the rule change

is used the attribute $ is set to 1. Note that when using
incomplete soft sets we need to use the complete marking
in the rules, using a variable M that matches the rest of the
marking:

rl [buy-apple]: (M $) ([a = V], [$ = V’], Atts)

=> (M a q) ([a = 1], [$ = *], Atts).

rl [buy-cake] : (M $) ([c = V], [$ = V’], Atts)

=> (M c) ([c = 1], [$ = *], Atts).

rl [change] : (M q q q q) ([$ = V], Atts)

=> (M $) ([$ = 1], Atts).

Our rewrite command for incomplete soft sets takes the
term init to be reduced and a list of attributes atts of
interest as follows:

(ssrew init for atts.)

In the example above, we can use this command to maxi-
mize the apples obtained from two dollars by focusing on the
attribute a. The incomplete soft set in our initial term has a

and c as 0, because there are no apples or cakes, while $ takes
the value 1. In the reached state, the values have changed and
a takes the value 1 while $ is *:

Maude> (ssrew ($ $) (a = 0, c = 0, $ = 1) for a.)

result SoftMarking: (a a q q)

(a = 1, c = 0, $ = *)

III. INCOMPLETE SOFT SET STRATEGIES

IN PATHWAY LOGIC

We present in this section the integration between the incom-
plete soft set strategy outlined in the previous section and
the Pathway Logic framework. We first showed a particular
pathway to illustrate the process and then we show how it is
extended to work with incomplete soft sets.

In our Pathway Logic case study, we will focus on
models of response to transforming growth factor beta 1

(TGF-β1) stimulation. In the previous section the initial
state Tgfb1Dish was defined. According to Section II-A,
the Maude module SOFTSET defines attributes of an incom-
plete soft set object as a set of pairs of the form [Att = V].
In the case of our incomplete soft set transformation of
the Pathway Logic models, the names of the genes are
the attributes and the values correspond to their activa-
tion status: the value 0 indicates an inactive gene; the
value 1 represents an active gene; and the value * corre-
sponds to the case of lacking information about its activa-
tion. In this way, different attributes, when put together and
separated by commas, produce a term of sort AttSet of
the form [Att1 = V1], ..., [Attn = Vn]. A con-
crete example of a term of sort AttSet for the model
TGF-β1 is: [cdc6 = 0], [cdkn1a = 0], [cdkn2b =

0], [col1a1 = 1], [col3a1 = 1], [ctgf = *].
Once we have defined these attributes of incomplete soft

sets, we can extend terms and rules to deal with them like
explained in Section II-A. We illustrate how this system
works using the rule 1724.Cdc6-gene.irt.Tgfb1,
that activates CDC6 gene under some conditions:

rl[1724.Cdc6-gene.irt.Tgfb1]:

{Tgfb1RC | tgfb1rc

([TgfbR1 - act]: [TgfbR2 - act]: Tgfb1)}

{NUc | nuc Cdc6-gene}

=> {Tgfb1RC | tgfb1rc

([TgfbR1 - act]: [TgfbR2 - act]: Tgfb1)}

{NUc | nuc [Cdc6-gene - on]}.

The rules of Pathway Logic adapted for the new strat-
egy must define the dynamics for the characteristics or
attributes. In rule 1724.Cdc6-gene.irt.Tgfb1 we
can add incomplete soft set information by using attribute
cdc6, indicating whether there is CDC6 gene in an
inactivated form. Since this rule activates CDC6 gene
([Cdc6-gene - on]), we set the value for the attribute
cdc6 to 1:

rl[SS1724.Cdc6-gene.irt.Tgfb1]:

{Tgfb1RC | tgfb1rc

([TgfbR1 - act]: [TgfbR2 - act]: Tgfb1) }

{NUc | nuc Cdc6-gene}

([cdc6 = V], Atts)
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=> {Tgfb1RC | tgfb1rc

([TgfbR1 - act]: [TgfbR2 - act]: Tgfb1) }

{NUc | nuc [Cdc6-gene - on]}

([cdc6 = 1], Atts).

We reason analogously for the remaining Pathway Logic
rules.
Likewise, initial (ground) terms t must now be defined

as t atts, with atts the particular values of the
attributes for the initial term t. Then we apply a decision-
making procedure under incomplete information proposed by
Zou and Xiao [14]. Our rewrite command for incomplete soft
sets takes the term init to be reduced and a list of attributes
atts of interest as follows:

(ssrew init for atts.)

Finally, we apply the previous rule to a specific term
Tgfb1Dish to achieve the optimal solution. In our Pathway
Logic example, we can use this command to obtain the best
rule to rewrite. Some genes are considered: cdc6, cdkn1a,
cdkn2b, col1a1, col3a1, and ctgf. In the reached
state, the values have changed and cdc6 takes the value 1
while cdkn1a is *:

Maude> (ssrew init for cdc6 cdkn1a cdkn2b col1a1

col3a1 ctgf fn1 mmp2 pai1 smad6 smad7 tgfb1

timp1

cst6 dst mmp9 mylk pthlh gfi1 csrp2 rorc .)

Result: PD(

{CLc | Akt1 Atf2 Fak1 Jnks Mekk1 Mlk3 P38s Pml

Smad2 Smad3 Tab1 Tab2 Tab3 Tak1 Traf6 Zfyve16

[Abl1 - act][Erks - phos(TEY)]}

{CLi |([Pak2 - act]:[Rac1 - GTP])[Cdc42 - GTP]

[Hras - GTP]}

{CLm | empty}

{CLo | empty}

{NUc | Cdkn1a-gene Col1a1-gene Csrp2-gene

Cst6-gene

Ctdsp1 Dst-gene Ets1 Gfi1-gene Mmp9-gene

Mylk-gene

Pai1-gene Smad4[Cdc6-gene - on][Cdkn2b-gene

- on]

[Col3a1-gene - on][Ctgf-gene - on][Fn1-gene

- on]

[Mmp2-gene - on][Pthlh-gene - on][RoRc-gene

- on]

[Smad6-gene - on][Smad7-gene - on][Tgfb1-gene

- on]

[Timp1-gene - on]}

{Tgfb1RC | Smad7 Smurf1 Smurf2

Tgfb1: [TgfbR1 - ubiq]:[TgfbR2 - act]}

{XOut | empty})

[cdc6 = 1],[cdkn1a = 0],[cdkn2b = 1],[col1a1

= 0],

[col3a1 = 1],[csrp2 = 0],[cst6 = 0],[ctgf = 1],

[dst = 0],[fn1 = 1],[gfi1 = 0],[mmp2 = 1],[mmp9

= *],

[mylk = 0],[pai1 = *],[pthlh = 1],[rorc = 1],

[smad6 = 1],[smad7 = 1],[tgfb1 = 1],[timp1 = 1]

Our strategy computes all the reachable terms from the
current term, takes the information of the incomplete soft set
attributes, and places it into a matricial representation of the
incomplete soft set SoftSet, which is defined as a list of
lists of values. Given the matrix representation Tk×l = (tij)

of an incomplete soft set, where k is the number of reachable
terms and l is the number of attributes, the choice value

of an object ui ∈ U is ci =
∑

j tij. Objects that maxi-
mize the choice value are satisfactory outcomes of this deci-
sion making problem. Put differently, a suitable choice is
made when the selected object uk verifies ck = maxi ci.
A comprehensive example of this approach is available at
https://github.com/ariesco/pathway.

IV. DISCUSSION AND CONCLUSIONS

There are numerous research works and applications that use
rewriting logic. Decision making with incomplete soft sets
enables our novel strategy that complements the language
of standard strategies in rewriting logic. A great problem in
any system, which occurs on many occasions, is the manage-
ment of incomplete information. This paper allows for facing
problems from another point of view and with the advantages
offered by the theory of soft sets.
Another problem in formal analysis is that situations with

a different probability of occurrence are normally consid-
ered in the same way. A formal system can analyze ele-
ments, options, and cases that in practice do not occur or
are highly infrequent, and these cases mask more frequent
states. It offers a new approach that allows specifiers to fine
tune the dynamics of the biological system. Hence, we can
choose the most likely rules among them all, depending
on the characteristics of the cells. With the use of deci-
sion making techniques, our approach has the advantage of
deducting conclusions and/or extracting the most common
properties.
With our model, the formalism, the circumstances that

participate, and the calculation of the results are established
in a natural way. On the other hand, this model can be
applied to many and varied types of problems with a common
approach. In this paper, we have described a concrete one as
an example of its versatility. Another advantage is that anyone
could use the existing knowledge bases in Pathway Logic and
then modify our soft behavior of the desired model.
Our approach based on symbolic modeling offers an alter-

native view to quantitativemethods (such as differential equa-
tions). Although the conclusions that we obtain are more
theoretical, they are based on evidences contrasted in the
literature that constitute a great knowledge base. Thanks to
these data, we can face challenges of formal analysis of sig-
naling pathways. Advantages over other symbolic approaches
(Kappa, BioNetGen, etc.) lie in the characteristics of the
underlying language Maude (simplicity, expressiveness, and
performance).
The main contribution of our paper is to offer a framework,

based on the theory of soft sets, rewriting logic, and Pathway
Logic, which allows programmers to specify and analyze
formal biological system when there is vague information.
Our second contribution is the extension of the language of
rewriting strategies in Pathway Logic that supports a guided
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execution and analysis, based on a decision making system
with incomplete soft sets.
As future works, it would be interesting to develop other

fuzzy extensions and with other paradigms of the theory
of soft sets. Possible extensions for fuzzy soft sets under
incomplete information can be integrated into the Pathway
Logic Assistant tool to present visually and graphically
these new functionalities. Besides, we intend to explore this
method with some signaling pathways and derive concrete
results.
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