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1 Introduction

Recently, soft limits have been investigated from the point of view of the asymptotic sym-

metries of flat spacetime [1–3]. In particular, Weinberg’s soft graviton theorem has been

derived from the action of the supertranslations of the BMS group on the gravitational

S-matrix. The BMS group can be extended by considering transformations that act singu-

larly on the sphere at infinity [4, 5] These new transformations, called superrotations, act

on the S-matrix. This action has been conjectured to be connected to a new universal sub-

leading divergence around the soft limit of gravitational scattering amplitudes [6]. With

that in mind, I derive the analogous sub-leading divergence of colour-ordered Yang-Mills

amplitudes and show that they are given by an angular momentum generator acting on

the scattering amplitude. It is not unreasonable to conjecture that this sub-leading term

might be connected to symmetries of the asymptotic data of Yang-Mills on flat spacetime.

Sub-leading effects in gauge theory amplitudes were first studied in [7] and the results

extended to more general scattering states in [8, 9]. In the context of gravity they were

first studied in [10]. These sub-leading terms also have a strong resemblance to structures

found in the systematic expansions of amplitudes carried out in [11–13].

The usual soft limit is taken by introducing a small parameter ǫ which rescales one of

the gluons as

λs →
√
ǫλs, λ̃s →

√
ǫλ̃s. (1.1)

However, in order to see the sub-leading term it is better to use a related limit. This limit

is a holomorphic version of the soft-limit [14], and is related to the usual one by the little

group transformation

M({
√
ǫλ,

√
ǫλ̃,+1}) = ǫM({ǫλ, λ̃,+1}). (1.2)

Notice that this relation differs from the one for gravity by a power of ǫ, so in Yang-Mills

there is no sub-sub-leading divergence as in gravity. The claim is that gluon amplitudes

behave under a holomorphic soft-limit as

Mn+1({ǫλs, λ̃s}, 1, . . . , n) =
(

1

ǫ2
S(0) +

1

ǫ
S(1)

)

Mn(1, . . . , n) +O(ǫ0). (1.3)

Here S(0) is the usual soft limit for colour-ordered YM amplitudes, and the sub-leading

term is

S(1) =
EνqµJ

µν
a

q · ka
, (1.4)

where the particle labelled by a is adjacent to the particle going soft. Notice that this term

is gauge-invariant due to the antisymmetry of Jµν , so it has more in common with what

was called S(2) in [6]. In spinor notation this can be written as

EνqµJ
µν
a

q · ka
=

µαλ̃sα̇

〈µs〉
λsβλ̃sβ̇

〈sa〉 [sa] (ε
αβ J̃ α̇β̇ + εα̇β̇Jαβ), (1.5)

where

Jαβ = λα ∂

∂λβ

+ λβ ∂

∂λα
, J̃ α̇β̇ = λ̃α̇ ∂

∂λ̃
β̇

+ λ̃β̇ ∂

∂λ̃α̇

. (1.6)

– 1 –



J
H
E
P
0
8
(
2
0
1
4
)
0
7
7

2 Proof

The proof follows closely the one given in [6], so I adopt their notation in what follows. First,

consider the colour-ordered amplitude for the scattering of n+1 particles in Yang-Mills at

tree-level, Mn+1(s, 1, . . . , n− 1, n). I denote by s the soft particle which, for simplicity, I’ll

assume to have helicity hs = +1. The amplitude without the momentum conserving delta

function will be called M . Next, deform this stripped amplitude using the BCFW shift

λs(z) = λs + zλn, λ̃n(z) = λ̃n − zλ̃s. (2.1)

The amplitude factorizes as

Mn+1 =
∑

ML(s(z
∗), 1, . . . , j, I)

1

P 2
I

MR(−I, j + 1, . . . , n(z∗)) (2.2)

where the sum is over the set of ordered particles as well as the helicities of the internal

particle.

In the soft limit the only interesting term in the sum is the one where j = 1. In this

case, ML is a three particle amplitude. The other terms are finite in the soft limit. The

proof is the same as the one given in appendix A of [6]. Therefore in the following I’ll drop

all other terms except

ML(s(z
∗), 1, I)

1

P 2
I

Mn(−I, 2, . . . , n− 1, n(z∗)). (2.3)

In this term the pole is located at

(ks(z
∗) + k1)

2 = 0, z∗ = −〈1s〉
[1n]

(2.4)

which fixes the internal spinor to be

λI = λ1, λ̃I =
〈ns〉
〈n1〉 λ̃s + λ̃1. (2.5)

The three point amplitude is non-zero when h1 = −hI and both choices of helicity of the

internal particle give the same contribution. Combining terms, the BCFW recursion gives

Mn+1(s, 1, . . . , n) =
〈n1〉

〈ns〉 〈s1〉Mn(−I, 2, . . . , n(z∗)) + . . . . (2.6)

Now rescaling λs → ǫλs, the above equation becomes

Mn+1({ǫλs, λ̃}, {λ1, λ̃1}, . . . , {λn, λ̃n}) (2.7)

=
1

ǫ2
〈n1〉

〈ns〉 〈s1〉Mn

(

{λ1, λ̃1 + ǫ
〈ns〉
〈n1〉 λ̃s}, λ2, λ̃2}, . . . , {λn, λ̃n + ǫ

〈s1〉
〈n1〉 λ̃s}

)

.

Mn is finite when ǫ → 0 and corresponds to the stripped n point amplitude. Restoring

the momentum conserving delta functions to the amplitude and expanding it to first order

around ǫ = 0 gives

Mn

(

{λ1, λ̃1 + ǫ
〈ns〉
〈n1〉 λ̃s}, λ2, λ̃2}, . . . , {λn, λ̃n + ǫ

〈s1〉
〈n1〉 λ̃s}

)

(2.8)

=

(

1 + ǫ
〈ns〉
〈n1〉 λ̃s ·

∂

∂λ̃1

+ ǫ
〈1s〉
〈1n〉 λ̃s ·

∂

∂λ̃n

)

Mn(ǫ = 0).
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After multiplying by the soft factor, the expression for the amplitude is

Mn+1({ǫλs, λ̃s}, 1, . . . , n) =
(

1

ǫ2
S(0) +

1

ǫ
S(1)

)

Mn(1, . . . , n) +O(ǫ0) (2.9)

S(0) =
〈n1〉

〈ns〉 〈s1〉 , S(1) =
1

〈s1〉 λ̃s ·
∂

∂λ̃1

+
1

〈ns〉 λ̃s ·
∂

∂λ̃n

(2.10)

as claimed.

Notice that there is no sub-sub-leading divergence in this limit as is the case for gravity.

Here the term at this order is finite and mixes with the rest of the BCFW recursion terms.

Another important difference is that while S(0) is universal for tree-level amplitudes, at

loop-level this soft factor receives corrections [15, 16], while the gravitational soft-factor

does not. It is expected that the sub-leading divergence S(1) will also receive quantum

corrections.

Nevertheless, this tree-level data is still interesting. The sub-leading divergences are

proportional to the angular momentum operator just like in gravity, and might be derived

by asymptotic methods as was done for the usual soft limit in [1]. On the other hand, this

sub-leading divergence is gauge-invariant by itself, not requiring conservation of linear or

angular momentum much like the sub-sub-leading divergence of the soft limit in gravity.

It would be interesting to investigate the extent to which these terms are in any sense

universal or connected to properties of the asymptotic boundary of flat spacetimes.
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