
Soft-Switching Adaptive Technique of Impulsive

Noise Removal in Color Images

Bogdan Smolka1,� and Konstantinos N. Plataniotis2

1 Silesian University of Technology, Department of Automatic Control,
Akademicka 16 Str, 44-100 Gliwice, Poland

bsmolka@ia.polsl.gliwice.pl
2 The Edward S. Rogers Sr. Department of Electrical and Computer Engineering,
University of Toronto, 10 King’s College Road, Toronto ON, M5S 3G4, Canada

Abstract. In this paper a novel class of filters designed for the removal
of impulsive noise in color images is presented. The proposed filter fam-
ily is based on the kernel function which regulates the noise suppression
properties of the proposed filtering scheme. The comparison of the new
filtering method with standard techniques used for impulsive noise re-
moval indicates superior noise removal capabilities and excellent struc-
ture preserving properties.

1 Introduction

During image formation, acquisition, storage and transmission many types of dis-
torsions limit the quality of digital images. Transmission errors, periodic or ran-
dom motion of the camera system during exposure, electronic instability of the
image signal, electromagnetic interferences from natural or man-made sources,
sensor malfunctions, optic imperfections, electronics interference or aging of the
storage material all disturb the image quality.

In many practical situations, images are corrupted by the so called impulsive
noise caused mainly either by faulty image sensors or due to transmission errors.
In this paper we address the problem of impulsive noise removal in color images
and propose an efficient technique capable of removing the impulsive noise and
preserving important image features.

2 Vector Median Based Filters

Mathematically, a N1 ×N2 multichannel image is a mapping Z
l → Z

m rep-
resenting a two-dimensional matrix of three-component samples (pixels), xi =
(xi1, xi2, . . . , xim) ∈ Z

l, where l is the image domain dimension and m denotes
the number of channels, (in the case of standard color images, parameters l and
m are equal to 2 and 3, respectively). Components xik, for k = 1, 2, . . . ,m and
i = 1, 2, . . . , N , N = N1 ·N2, represent the color channel values quantified into
the integer domain, [1].
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The majority of the nonlinear, multichannel filters are based on the ordering
of vectors in a sliding filter window. The output of these filters is defined as the
lowest ranked vector according to a specific vector ordering technique, [2,3].

Let the color images be represented in the commonly used RGB color space
and let x1, x2, . . ., xn be n samples from the sliding filter window W , with x1

being the central pixel in W . Each of the xi is an m-dimensional vector. The
goal of the vector ordering is to arrange the set of n vectors {x1, x2, . . ., xn}
belonging to W using some sorting criterion.

In [3,4] the ordering based on the cumulative distance function has been
proposed: R(xi) =

∑n
j=1 ρ(xi,xj), where ρ(xi,xj) is a function of the distance

among xi and xj . The increasing ordering of the scalar quantities {R1, . . . , Rn}
generates the ordered set of vectors {x(1),x(2), . . . ,x(n)}.

One of the most important noise reduction filter is the vector median, [2].
Given a set W of n vectors, the vector median of the set is defined as x(1) ∈ W

satisfying
∑

j

∥
∥x(1) − xj

∥
∥ ≤ ∑

j ‖xi − xj‖.
The orientation difference between two vectors can also be used as their dis-

similarity measure. This so-called vector angle criterion is used by the Basic
Directional Filter (BDF), to remove vectors with atypical directions, [5]. Other
techniques like the Directional Distance Filter DDF, [5,6,7,8] and their modi-
fications, [9,10,16] combine the distance and angular criteria to achieve better
noise suppression results,.

3 Proposed Filtering Design

The well known local statistic filters constitute a class of linear minimum mean
squared error estimators, based on the non-stationarity of the signal and the
noise model, [11,12]. These filters make use of the local mean and the variance
of the input set W and define the filter output for the gray-scale images as

yi = x̂i + α (xi − x̂i) = αxi + (1 − α)x̂i , (1)

where x̂i is the arithmetic mean of the image pixels belonging to the filter window
W centered at pixel position i and α is a filter parameter usually estimated
through, [13]

α =
σ2

x

σ2
n + σ2

x

, x̂i =
1
n

∑n

k=1
xk , ν

2 =
1
n

∑n

k=1
(xk − x̂i)

2
, xk ∈ W, (2)

σ2
x = max

{
0, ν2 − σ2

n

}
, α = max

{
0, 1 − σ2

n/ν
2
}
, (3)

where ν2 is the local variance calculated from the samples in the filter window
and σ2

n is the estimate of the variance of the noise process. If ν � σn, then
α ≈ 1 and practically no changes are introduced. When v < σn, then α = 0 and
the central pixel is replaced with the local mean. In this way, the filter smooths
with the local mean, when the noise is not very intensive and leaves the pixel
value unchanged when a strong signal activity is detected. The major drawback
of this filter is that it fails to remove impulses and leaves noise in the vicinity
of high gradient image features.
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Equation (1) can be rewritten using the notation xi = x1, [13] as

y1 = αxi + (1 − α)x̂i = αx1 + (1 − α)x̂1 = (1 − α) (ψ1x1+x2+. . .+xn)/n, (4)

with ψ1 = (1 − α + nα)/(1 − α) and in this way the local statistic filter (1) is
reduced to the central weighted average, with a weighting coefficient ψ1.

Fig. 1. Vector yi lies on the line connecting the vector xi and x(1) in the RGB space

Table 1. Kernel functions, (x = 〈−1, 1〉, h = 〈0,∞), [f(x)]+ = f(x) for x ≥ 0 and

0 if x < 0) used for the construction of the proposed filter (a) and its efficiency in

comparison with VMF, BDF and DDF, (b)

a)

Kernel K (x) K(x) = γhK(x)

(L) e−| x
h | 1

2h
e−|x

h |

(G) e
− x2

2h2 1√
2πh

e
− x2

2h2

(C) 1

1+ x2
h2

1
πh

1

1+ x2
h2

(T)
[
1 − ∣

∣ x
h

∣
∣
]+

[
h(1−| x

h |)
2h−1

]+

(E)
[
1 − x2

h2

]+
[

3h2
(

1− x2

h2

)

6h2−2

]+

b)

Filtering efficiency, (PSNR, [dB] LENA)

Noise p = 1% p = 3% p = 5%

Kernel hopt hest hopt hest hopt hest

L 40.75 40.70 37.92 37.90 36.38 36.35

G 39.22 39.22 36.96 36.95 35.68 35.67

C 39.65 39.39 37.11 37.03 35.72 35.67

T 40.46 40.45 37.76 37.76 36.27 36.27

E 40.87 40.81 37.96 37.94 36.39 36.34

VMF 33.33 32.94 32.58

DDF 32.90 32.72 32.25

BDF 32.04 31.81 31.14

The structure of the new filter called Kernel based VMF (KVMF) is similar
to the presented above approach. However, as our aim is to construct a filter
capable of removing impulsive noise, instead of the mean value, the VMF output
is utilized and the noise intensity estimation mechanism is accomplished through
the similarity function, which can be viewed as kernel function, known from the
nonparametric probability density estimation, (Tab. 1a).
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In this way, the proposed technique is a compromise between the VMF
and the identity operation. When an impulse is present, then it is detected by
the kernel K = f(‖x1 − x(1)‖), which is a function of the distance between the
central pixel xi = x1 and the vector median x(1), and the output yi is close
to the VMF. If the central pixel is not disturbed by the noise process then the
kernel function is close to 1 and the output is near to the original value x1. If
the central pixel in W xi is denoted as x1 and the vector norm as ‖ · ‖, then

yi = x(1) + K (
x1,x(1)

) · (x1 − x(1)

)
= Kx1 + (1 −K)x(1) , (5)

where K = f
(‖x1 − x(1)‖

)
, which is quite similar to (1).

If
{
x(1),x(2), . . . ,xi, . . . ,x(n)

}
denotes the ordered set of pixels in W , then

the weighted structure corresponding to (4) is
{
(1 −K)x(1), . . . ,Kx1, . . . ,x(n)

}
.

It is interesting to observe that the filter output yi lies on the line joining
the vectors xi (x1) and x(1) and depending on the value of the kernel K it slides
from the identity operation and the vector median, (Fig. 1).

The proposed structure can be seen as a modification of the known tech-
niques used for the suppression of the Gaussian noise. In the proposed technique
we replace the mean of the pixels in W with the vector median and such an ap-
proach proves to be capable of removing strong impulsive noise while preserving
important image features like edges, corners and texture.

4 Experimental Results

The noise modelling and evaluation of the efficiency of noise removal methods
using the widely used test images allows the objective comparison of the noisy,
restored and original images.

In this paper we assume a simple salt & pepper noise model, [3,6,14]

xi =

⎧
⎨

⎩

{vi1 , oi2 , oi3}, with probability p,
{oi1 , vi2 , oi3}, with probability p,
{oi1 , oi2 , vi3}, with probability p,

(6)

where xi represents the pixel in the corrupted image, oi = {oi1 , oi2 , oi3} rep-
resents the original sample and vi1 , vi2 , vi3 are random, uncorrelated variables
taking the value 0 or 250, with equal probability. The impulsive noise suppression
efficiency was measured using the commonly used PSNR image quality measure

PSNR = 20 log10

(
255√
MSE

)

, MSE =
∑N

i=1

∑m
k=1 (xik − oik)2

Nm
. (7)

The efficiency of the proposed filtering approach is summarized in Tab. 1
and also presented in Fig. 2. As can be seen the dependence on the kind of the
kernel function is not, as expected, very strong. However, the main problem is
to find an adaptive optimal bandwidth parameter h, as the proper setting of the
bandwidth guarantees good performance of the proposed filtering design.
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The experimentally found rule of thumb for the value of h called hest is:
hest = γ1/

√
σ̂, where σ̂ is the mean value of the approximation of variance,

[15] calculated using the whole image: σ̂2 =
∑N

i=1(xi − x̂i)2
/
8N2 or randomly

selected image pixels and γ1 is the coefficient taken from Tab. 1.
The comparison of the efficiency of the proposed scheme in terms of PSNR

for the optimal values of h and estimated by the developed rule of thumb is
shown in Tab. 1 and Fig. 4. In the corner of the Fig. 4 the magnified part of the
plot shows the excellent performance of the proposed bandwidth estimator. The
dotted lines represent the best possible PSNR values and the continuous line
show the PSNR obtained with the proposed estimation of the kernel bandwidth.
Practically the hest yields the best possible impulsive noise attenuation, (see also
the comparison in Tab. 1).

Fig. 2. Dependence of the PSNR on the h parameter for the KVMF with the L and T

kernels in comparison with the VMV for p ranging from 1% to 5%, (LENA image)

Fig. 3. Comparison of the estimated, (dashed line) and optimal bandwidth, (solid line)

as functions of the noise intensity expressed through σ for the LENA image

The illustrative examples depicted in Fig. 6 show that the proposed filter
efficiently removes the impulses and preserves edges and small image details.
Additionally due to its smoothing nature it is also able to suppress slightly the
Gaussian noise present in natural images, (see Fig. 5).
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Fig. 4. Dependence of the PSNR on the h parameter of the L kernel, for p = 1 − 5%

in comparison with the standard VMF, (LENA image). The dotted lines indicate the

optimal, (best possible) values of PSNR achievable by the KVMF filter and the VMF

and the continuous line presents the achieved PSNR using the hest bandwidth.

Fig. 5. Dependence of PSNR on the h parameter of the L kernel, for the Gaussian

noise of σ = 10 − 50, (solid line) in comparison with the VMF, (dotted line)
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TEST p = 3% VMF

KVMF-L BDF DDF

TEST p = 3% VMF

KVMF-L BDF DDF

Fig. 6. Comparison of the filtering efficiency of the proposed filter with the Laplace

kernel (KVMF-L) with the VMF, BDF and DDF methods
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5 Conclusion

In the paper an adaptive soft-switching scheme based on the vector median and
similarity function has been presented. The proposed filtering structure is su-
perior to the standard filtering schemes and can be applied for the removal of
impulsive noise in natural images. It is relatively fast and the proposed band-
width estimator enables automatic filtering independent of noise intensity.
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