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Soft three-dimensional network materials
with rational bio-mimetic designs
Dongjia Yan1,2,3, Jiahui Chang 1,2,3, Hang Zhang1,2, Jianxing Liu1,2, Honglie Song1,2, Zhaoguo Xue 1,2,

Fan Zhang 1,2 & Yihui Zhang 1,2✉

Many biological tissues offer J-shaped stress–strain responses, since their microstructures

exhibit a three-dimensional (3D) network construction of curvy filamentary structures that

lead to a bending-to-stretching transition of the deformation mode under an external tension.

The development of artificial 3D soft materials and device systems that can reproduce the

nonlinear, anisotropic mechanical properties of biological tissues remains challenging. Here

we report a class of soft 3D network materials that can offer defect-insensitive, nonlinear

mechanical responses closely matched with those of biological tissues. This material system

exploits a lattice configuration with different 3D topologies, where 3D helical microstructures

that connect the lattice nodes serve as building blocks of the network. By tailoring geometries

of helical microstructures or lattice topologies, a wide range of desired anisotropic J-shaped

stress–strain curves can be achieved. Demonstrative applications of the developed con-

ducting 3D network materials with bio-mimetic mechanical properties suggest potential uses

in flexible bio-integrated devices.
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I
nspired by the microstructure constructions of biological tis-
sues, a number of artificial soft materials have been developed
recently to offer similar, bio-mimetic physical properties1–13.

These artificially engineered materials hold promising applica-
tions in tissue engineering14–17, soft robotics18–26, biomedical
devices27–37, and other areas38–41. Existing studies show that
most biological tissues, such as skin42,43, ligaments44, cardiac
tissue45, and blood vessel46, are comprised mainly of curved and
chained microstructures (e.g., collagen triple helix, collagen fibril,
collagen fiber, and etc.). Upon uniaxial stretching, those micro-
structures in biological tissues unravel to align with the loading
direction at the initial stage of stretching, and begin to straighten
once the microstructures are fully extended at a relatively large
level of stretching. Such a deformation mechanism gives rise to a
“J-shaped” stress–strain response, in which the tangent modulus
typically increases with increasing the applied strain, due to the
transition of bending-dominated mode to stretching-dominated
mode. For two-dimensional (2D) biological tissues (e.g., skin47), a
soft network design that incorporates horseshoe microstructures
into periodic lattice constructions has been developed, which can
be tailored precisely to match the J-shaped stress–strain curves of
human skins at diverse locations48,49. However, this type of 2D
network design cannot be extended directly to three-dimensional
(3D) cases, due to the 2D nature of horseshoe microstructures.
Although some previous studies50–54 reported synthetic materials
that can reproduce the linear mechanical properties of biological
tissues at small strains, it is still very challenging to develop soft
3D architected materials that can mimic the nonlinear, aniso-
tropic mechanical responses of 3D biological tissues.

Many collagenous tissues are found to possess a type of helix-
shaped 3D microstructures2,43,55,56, some of which exhibit regular
geometric configurations. These helix-shaped 3D microstructures
are crucial to the J-shaped stress–strain responses57–60. Inspired
by this type of 3D helical microstructures, we introduce a bio-
mimetic design of soft 3D network materials based on periodic
3D lattice configurations, in which periodically arranged helical
microstructures serve as building blocks that connect the lattice
nodes. Different from metal/polymer foams that render J-shaped
stress–strain curves only under compression61–63, the soft 3D
network materials developed herein offer J-shaped stress–strain
responses under both the compression and stretching, almost
along an arbitrary loading direction. For random defects in the
form of missing microstructures, the experimental measurements
suggest a defect-insensitive behavior of soft 3D network materials
with defect densities up to 5%. Quantitative mechanics modeling
well captures the effects of key design parameters on the non-
linear mechanical responses, which provides a design tool to
achieve desired isotropic/anisotropic stress–strain curves of real
biological tissues (e.g., heart muscles), by tuning the geometry of
helical microstructures. Integration of conducting layers with soft
3D network materials allows the development of flexible pressure
sensors and stretchable conductors with J-shaped stress–strain
curves matched with that of biological tissues, indicating the
potential applications in biomedical devices.

Results
Bio-mimetic design and fabrication of network materials.
Figure 1 presents the conceptual designs and excellent deform-
ability of the bio-mimetic, soft 3D network materials. Inspired by
the network constructions and helical microstructures of many
collagenous tissues, we develop a 3D network design by exploiting
a type of 3D helical microstructures as the building blocks that
are extended with different 3D lattice topologies. Figure 1a pro-
vides a schematic illustration of soft 3D network materials with
three different lattice topologies (cubic, octahedral, and octet). In

particular, the helix-shaped filamentary microstructure (Fig. 1c)
consists of three segments, including a central part that corre-
sponds to a circular helix and two connection parts that avoid
tangling of the microstructures at the nodal regions of the net-
work. The parametric equation of the central line associated with
the helical microstructure is provided in Supplementary Note 1,
which can ensure the continuity of the tangent line at the two
ends. The geometry of the helical microstructure is fully char-
acterized by four dimensionless parameters, including the
normalized diameter (d0/R0) of the fiber, the number of the coil
N0, the normalized pitch (p0/R0), and the normalized joint length
(pj/R0), where R0 is the radius of the helix. The end-to-end dis-
tance of the helical microstructure can be given by L0= 2pj+
N0p0. To avoid evident stress concentration at the nodal con-
nections, a spherical lattice node with spatial rounding is adopted
(see Supplementary Fig. 1 for details). It is noteworthy that the
total numbers of connected filaments per node are 6, 8, and 12 for
cubic, octahedral, and octet topologies, respectively, suggesting
the octet lattice topology as the most densely distributed network.

Figure 1b presents optical images of three representative
network materials fabricated using polyjet 3D printing techniques
(Object EDEN260VS, Stratasys, MN, USA), according to the
designs in Fig. 1a. Considering the resolution (layer thickness
~16 µm) of the exploited polyjet 3D printing instrument and the
circular cross section, the fiber diameter d0 is set as ~400 µm in
most of the experiments in this study. Other dimensionless
geometric parameters of the helical microstructures in Fig. 1b are
given by p0/R0= 1, d0/R0= 0.35, N0= 1, and pj/R0= 2. This type
of soft 3D network materials offers excellent deformability under
various forms of mechanical deformations. Taking the soft
octahedral network material as an example, Fig. 1d shows the
optical images before and after large levels of deformations, such
as the stretching (applied strain ε ≈ 55%), compression (applied
strain ε ≈ 33%), bending (curvature radius ≈ 15L0), and twisting
(applied twisting angle ≈ 90°). The detailed deformation process is
provided in Supplementary Movie 1.

Figure 2 presents the results of combined experimental
measurements and finite element analyses (FEA; see Methods
section for details) on the nonlinear mechanical responses of soft
3D network materials under uniaxial stretching. Figure 2a, d
shows the J-shaped stress–strain curve of the soft octahedral
network material and associated microstructure deformations. At
the first stage of stretching (ε < 200%), the helical microstructures
mainly undergo combined spatial bending and twisting deforma-
tions, as well as rotational motions to align with the loading
direction. The stress–strain curve increases relatively slowly
during this stage. With the further increase of the applied strain,
the tension of helical microstructures come into play and
gradually dominates the deformations, leading to a sharp increase
of the stress and the formation of a J-shaped stress–strain curve
similar to that of biological tissues. The critical strain (εcr) that
marks the transition of deformation mode in the network
material can be estimated by the condition when the helical
microstructure is fully extended and aligned with the loading
direction. In particular, the critical strain (εcr) of soft octahedral

network material is given by εcr Octahedralð Þ ¼
ffiffiffi

2
p

Larc�length=L0 � 1,

where Larc−length is the total arc length of a helical microstructure
and can be derived as

Larc� length ¼ N0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4π2R2
0=p

2
0

q

þ 2lj=p0

� �

L0= N0 þ 2pj=p0

� �

ð1Þ
where lj is the total arc length of each joint at the end of the
helical microstructure (see Supplementary Note 1 for details). For
the network geometry shown in Fig. 2d, the critical strain is
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Fig. 1 Design and manufacture of soft 3D network materials. a Conceptual illustration of the microstructure design for soft 3D network materials with

three different lattice topologies (from left to right: cubic, octahedral, and octet). The filamentary microstructure with a 3D helical configuration serves as

the building block that connects the lattice nodes. b Optical images of the specimens fabricated using the polyjet 3D printing technique, according to the

designs in a. Each specimen consists of 8 × 8 × 8 unit cells. c Schematic illustration of the geometric parameters associated with the 3D helical

microstructure. d0, R0, N0, p0, and pj denote the diameter of the fiber, the radius of the helix, the number of the coil, the pitch, and the joint length,

respectively. d Optical images of a representative soft 3D network structure before and after large levels of deformations (stretching, compression,

bending, and twisting). This structure is composed of 4 × 4 × 10 unit cells, each with an octahedral lattice topology. Scale bars, 5 mm in b and d.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14996-5 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1180 | https://doi.org/10.1038/s41467-020-14996-5 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


a

d

fe

Strain (%)

6

5

4

3

2

0

1

5

4

3

2

0

1

12

9

6

0

3

24020016012080400 24020016012080400

0 30

1209060300

Strain (%)Strain (%)

S
tr

e
s
s
 (

k
P

a
)

S
tr

e
s
s
 (

k
P

a
)

S
tr

e
s
s
 (

k
P

a
)

�
cr

�
cr

�
cr

� = 30% 

� = 0% � = 30% 

� = 100% � = 30% 

� = 60% 
� = 200% 

� = 230% 
� = 133% 

�max

� = 100% 

� = 150% 

� = 200% 

� = 230% 

FEA-2 × 2 × 1 with PBC

FEA-2 × 2 × 5

Exp.

FEA-2 × 2 × 1 with PBC

FEA-2 × 2 × 5

Exp.

FEA-2 × 2 × 1 with PBC

FEA-2 × 2 × 5

Exp.

cb

Fig. 2 Nonlinear mechanical responses and microstructure deformations. a–c Experimental and FEA results of stress–strain curves of three soft 3D

network materials with the same helical microstructures and different lattice topologies (cubic, octahedral, and octet). The experimental results based on

samples with 2 × 2 × 5 unit cells are denoted by red rots, and the FEA results based on unit segments with 2 × 2 × 1 unit cells, and periodic boundary

conditions are denoted by black solid lines. For the octahedral lattice, the FEA results of the entire sample with 2 × 2 × 5 unit cells are included for

comparison, as denoted by the black dashed line. d Optical images (left) of a soft octahedral network structure under different levels of stretching, and the

corresponding FEA results (middle and right) based on the entire sample and the unit segment (2 × 2 × 1 unit cells) with periodic boundary conditions.

e Experimental and FEA images of the middle segment in a soft cubic network structure under different levels of stretching. f Similar results for a soft octet

network structure. All error bars in this figure and the followings are standard deviations. Scale bars, 5 mm in d–f.
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determined as ~230%, as marked by the pink dashed line in
Fig. 2a. The microstructures are fully straightened at ε= εcr

(Fig. 2d), resulting in a substantially increased tangential modulus
(Ecr= 12.65 kPa) as compared to the elastic modulus (Eelastic=
0.19 kPa) at the initial state. Both of the FEA based on the full-
scale network sample (with 2 × 2 × 5 unit cells) and the unit
segment (with 2 × 2 × 1 unit cells and periodic boundary
conditions) are performed. Here, the periodic boundary condi-
tions require the two boundary surfaces to be in the same shapes
during deformations, and do not fix those surfaces as planes. The
calculated stress–strain curves show good agreements with each
other, as well as with the experimental results (Fig. 2a). The
deformed configurations predicted by the unit segment model are
close to that of the central segment in the experiment and full-
scale FEA, although slight differences of the lateral deformations
can be observed, due to the finite boundary effect. These results
indicate that the FEA based on the unit segment model offer
accurate predictions of the mechanical responses.

Figure 2b, e and Supplementary Fig. 2a show the J-shaped
stress–strain curve of the soft cubic network material and
associated microstructure deformations. The helical microstruc-
tures are exactly the same as those in the soft octahedral network
material discussed above. In this case, a set of helical
microstructures are aligned with the loading direction at the
initial state, such that those microstructures undergo only
bending and twisting deformations to achieve the full unraveling,
without the need to experience rotational motions. The resulting
critical strain is identical to that of helical microstructures, as
given by εcr Cubicð Þ ¼ εcr Helixð Þ ¼ Larc�length=L0 � 1, with the arc

length shown in Eq. (1). There is almost no lateral shrinkage as
the applied strain reaches the critical strain (~133%), due to the
essentially decoupled deformations of the helical microstructures
along different directions. Note that the uniaxial stretching of a
single helical microstructure yields a quite similar J-shaped
stress–strain curve (see Supplementary Figs. 3 and 4 for details).
Figure 2c, f and Supplementary Fig. 2b show the results for
the soft octet network material with the same helical micro-
structures in the octahedral and cubic network materials.
Because of the similar alignment of helical microstructures, the
critical strain is the same as that of the octahedral network, i.e.,

εcr Octetð Þ ¼ εcr Octahedralð Þ ¼
ffiffiffi

2
p

Larc�length=L0 � 1. In comparison to

the octahedral network, the addition of tetragonal components
and associated microstructures in the octet network increases the
stiffness substantially, as evidenced by the critical stress (~10.32
kPa vs. 3.45 kPa) at εcr. Additionally, the cross-sectional shrinkage
is also substantially reduced, as shown by the deformed
configurations at ε= 230% (Fig. 2c, f). In all of those cases, the
FEA results almost agree very well with the experimental results,
indicating the FEA as a reliable tool of design optimization to
achieve desired mechanical responses.

Figure 3a–f elucidates the microstructure–property relationship
and illustrates the influences of key geometric parameters on the
J-shaped stress–strain curves. Here, we focus on soft octahedral
network materials constructed with a range of different helical
geometries, as characterized by three dimensionless parameters
(N0, d0/R0, and p0/R0), noting that the normalized joint length pj/
R0 plays a relative minor effect on the mechanical response.
Figure 3a presents J-shaped stress–strain curves calculated by
FEA for five different coil numbers (N0), by fixing the normalized
pitch (p0/R0= 3) and the normalized fiber diameter (d0/R0= 0.3),
where the critical strain (εcr(Octahedral)) is marked by dashed lines.
The stress–strain curve shifts downward and rightward gradually
with increasing the coil number (N0), because the helical
microstructures become more slender. The critical strain
gradually approaches a stable value with the further increase of

N0, in accordance with Eq. (1). Figure 3b, c shows the effects of
the normalized pitch (p0/R0) (by fixing N0= 1 and d0/R0= 0.3)
and the normalized fiber diameter (d0/R0) (by fixing N0= 1 and
p0/R0= 3), respectively. Both of the critical strain and the critical
stress decrease with the increase of p0/R0. Differently, the
normalized fiber diameter (d0/R0) mainly affects the critical
stress and the sharpness of transition across the critical strain,
and the variation can be observed more clearly in Supplementary
Fig. 5.

The J-shaped stress–strain curve is mainly characterized by
three key quantities, including the critical strain (εcr) that marks
the transition point in the stress–strain response, the critical stress
(σcr) at εcr that is of relevance to the strength of the network
material, and the ratio (Ecr / Eelastic) of tangential modulus at εcr to
the initial elastic modulus that measures the sharpness of
transition. According to Eq. (1), the critical strain (εcr) depends
highly on the normalized pitch (p0/R0) and the number (N0) of
coil, when the joint length (pj/R0) is fixed. Figure 3d shows such a
dependence, where εcr increases at a decreased p0/R0 or an
increased N0. Generally, the elastic moduli of the stretching-
dominated and bending-dominated 3D lattice materials scale
with the relative density (�ρ) and its square (�ρ2), respectively64.
Therefore, the modulus ratio (Ecr/Eelastic) follows approximately

the scaling of Ecr=Eelastic / d0=R0ð Þ�2, noting that �ρ / d0=R0ð Þ2,
Ecr / d0=R0ð Þ2, and Eelastic / d0=R0ð Þ4, for small relative densities
(e.g., �ρ<20%). This scaling suggests a sharper transition in the J-
shaped stress–strain curve for network materials with a smaller
normalized diameter (d0/R0). In the representative case of a single
coil in the helical microstructure (i.e., N0= 1), the critical stress
(σcr) and the modulus ratio (Ecr/Eelastic) are plotted against the
normalized pitch (p0/R0) for a range of fiber diameters (d0/R0), as
presented in Fig. 3e, f. The increase of p0/R0 or decrease of d0/R0
leads to a more slender and flexible helical microstructure,
thereby resulting in a reduction of the critical stress (σcr) and an
enhancement of the modulus ratio (Ecr/Eelastic). Additional results
of J-shaped stress–strain curves with different geometric para-
meters appear in Supplementary Figs. 6 and 7.

Effects of loading angles and randomly distributed defects.
Many 3D biological tissues display anisotropic mechanical
responses under large levels of stretching65–67. Figure 3g–j pre-
sents the anisotropic mechanical behavior in the soft 3D network
materials developed in this work. Taking the octahedral network
material as an example, we investigate the nonlinear mechanical
responses under uniaxial stretching along the face-diagonal
(B–B′) and body-diagonal (C–C′) directions (Fig. 3g and Sup-
plementary Fig. 8), in addition to the principal direction (i.e., edge
direction (A–A′)) studied in Fig. 2a, d. These three directions
represent the most characteristic loading directions for the
octahedral lattice topology with cubic symmetry. Figure 3h shows
the measured and predicted stress–strain curves along these
directions, where the initial alignment of the microstructures
plays a critical role. For the uniaxial stretching along the face-
diagonal (B–B′) direction, a set of helical microstructures are
aligned with the loading direction at the initial state, such that
these microstructures accommodate a majority of the applied
load, as evidenced by the microstructure deformations (Fig. 3i).
In this case, the critical strain (~133%) is equal to that of helical
microstructures. For the uniaxial stretching along the body-
diagonal (C–C′) direction, a half portion of helical micro-
structures shows the same angle (~35.3°) with respect to the
loading direction, while the other half stays in a plane perpen-
dicular to the loading direction (Fig. 3j). In this case, the critical

strain can be calculated by
ffiffi

6
p

2 εcr Helixð Þ þ 1
� �

� 1, and is
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determined as 185% for εcr(Helix)= 133%. In all of the three dif-
ferent loading conditions, the J-shaped stress–strain curves and
deformed configurations predicted by FEA always agree reason-
ably well with experimental results.

Figure 4a–c illustrates the influence of defects on the J-shaped
stress–strain response of soft 3D network materials. Here, we
focus on an extreme type of defects in the form of missing
microstructures that are randomly distributed in the network
material with prescribed densities. Figure 4a and Supplementary
Fig. 9 provide two representative samples of imperfect octahedral
network materials with defect densities of 1% and 5%, where the
randomly distributed defects are visualized (in red). Figure 4b
shows the J-shaped stress–strain curves of octahedral network
materials along the principal directions, in the case of 0%, 1%,
and 5% random defects. For each prescribed defect density, three
samples with different defect distributions are fabricated and
tested. Slight reduction of the stress response at small and
moderate levels of applied strains (e.g., <140%) is observed for
defect density up to 5%, indicating that the octahedral network
material is not very sensitive to the appearance of missing
microstructures. As an evidence, the effective stresses at ε= 0.3εcr
and 0.6εcr decrease by ~3% and 7%, respectively, for the defect
density of 5%, as shown in Fig. 4c. In the case of 1% defect

density, the relative reductions (~1% and 3%) of the effective
stresses at ε= 0.3εcr and 0.6εcr are even smaller.

Figure 4d, e illustrates the compressive mechanical responses of
soft 3D network materials with cubic, octahedral, and octet
topologies. Here, we exploited the samples consisting of 2 × 2 × 2
unit cells, instead of those with 2 × 2 × 5 unit cells that tend to
occur global buckling during uniaxial compression (Supplemen-
tary Fig. 10). At the initial stage of uniaxial compression, the
stress increases slowly with the increase of strain, as the helical
microstructures are governed by bending and twisting deforma-
tions. With the further increase of compressive strain, the helical
microstructures begin to contact with the neighboring micro-
structures, leading to the stiffening of the material. Such a
densification process can proceed until almost all of helical
microstructures are flattened (ε ≈ 80%). As a result, the soft 3D
network materials also show the J-shaped stress–strain response
under uniaxial compression, although the deformation mechan-
ism is different from of uniaxial stretching. It is noteworthy that
the octet network material also offers the highest stiffness under
compression, due to the most densely arranged microstructures.

Demonstrative applications of soft 3D network materials. The
rational 3D network design introduced above allows the
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development of artificial materials that can reproduce nonlinear
stress–strain curves of 3D biologic tissues. For example, Fig. 5a, b
presents a cubic network material whose J-shaped stress–strain
curve is very close to that of the human heart muscle68,69. Note
that the source data in Nagueh et al 68 is given as stress vs.
sarcomere length (LS), where the sarcomere length can be con-
verted into the engineering strain by ε= (LS− Linitial)/Linitial, with
Linitial denoting the initial length. Considering the relative low
transition strain (i.e., critical strain εcr ≈ 14%) of the stress–strain
curve, we exploit the cubic lattice to construct the artificial net-
work material. Utilizing the FEA as a tool to predict the
stress–strain curves, we follow a design procedure outlined in
Supplementary Fig. 11 and Supplementary Note 2 to determine
the geometric parameters (p0/R0= 8.5, d0/R0= 1.05, N0= 1, and
pj/R0= 5) of the 3D network material. The artificial material with
these microstructure parameters is fabricated (Fig. 5b) and tested
under uniaxial stretching. The J-shaped stress–strain curve
measured based on the artificial material matches well with the
target one of the human heart muscle, as well as the FEA
predictions.

Some biological tissues exhibit anisotropic mechanical proper-
ties, posing more difficulties to the development of artificial
materials with similar stress–strain responses. Figure 5c shows an
octet network material, whose microstructure geometries can be
tailored to reproduce the stress–strain curves of an adult rat right
ventricular myocardium67, along both the circumferential
and longitudinal directions. In this case, we exploited two
different types of helical microstructures within the representative
unit cell (marked as blue and green in the inset of Fig. 5d),
such that the different critical strains (εcr(Circumferential) ≈ 58% and
εcr(Longitudinal) ≈ 118%) along the circumferential and longitudinal
directions can be reproduced simultaneously. Considering the
partially decoupled mechanical responses along the two perpen-
dicular directions, the design procedure consists of a two-stage
process that firstly focuses on matching the target stress–strain
curve along the circumferential direction by adjusting the
geometric parameters of an octet network with a single type of
helical microstructures. The second stage involves the replace-
ment of certain helical microstructures (marked in blue in the
unit cell, as in Fig. 5d) with other optimized geometries, in order
to match the target stress–strain curve along the longitudinal
direction. The optimal parameters are given by (p0/R0= 3,
d0/R0= 0.9, N0= 1, and pj/R0= 3) for the green helical micro-
structures, and (p0/R0= 8, d0/R0= 2.9, N0= 1, and pj/R0= 7) for
the blue helical microstructures in the inset of Fig. 5d. Figure 5c
shows that the anisotropic stress–strain curves measured based
on the artificial sample indeed match well with those of real rat
right ventricular myocardium, for strains to ~65% (circumfer-
ential direction) and ~108% (longitudinal direction). To match
the stress–strain curves over the entire strain ranges (~100 and
170% for the two directions, as in Engelmayr et al. 67), the base
material of the 3D network should have a much higher elastic
modulus and a sufficiently large strength, but this is unachievable
based on the 3D printer (Object EDEN260VS, Stratasys, MN,
USA) used in the current study.

The soft 3D network materials developed in this work hold
promise for applications in bio-integrated devices. Figure 5e–g
provides a demonstration of the conducting soft 3D network
materials for potential uses as flexible pressure sensors and
conductors. The magnetron sputtering allows the coating of
metallic layers (10 nm Cr, 500 nm Cu, and 100 nm Au, from
inside to outside) on all of the helical microstructures in the 3D
network. Figure 5e presents optical images of an octahedral
network sample before and after the magnetron sputtering, where
the geometric parameters include L0= 2 mm, d0= 200 µm,
p0/R0= 3, d0/R0= 0.7, N0= 1, and pj/R0= 2. To fabricate even

smaller 3D network materials, other advanced manufacture
techniques (e.g., two-photon lithography9,70) should be exploited.
Under uniaxial compression, the relative resistance change and
average pressure (i.e., uniaxial stress applied to the sample) are
measured at different compressive strains, along with the
deformed configurations, as shown in Fig. 5f. For the average
pressure <5 kPa, the electrical resistance shows a high sensitivity
to the pressure change, mainly due to the densification process
that leads to a rapid increase of contact areas between the helical
microstructures. When the average pressure is >20 kPa, most of
the helical microstructures are in contact with each other, and
thereby the resistance becomes insensitive to the pressure change.
It is also interesting to note that the relative resistance change
shows an approximately linear dependence on the compressive
strain. These results suggest that the presented bio-mimetic
network material is suitable for the detection of a small pressure
(<5 kPa). Figure 5g (left and middle) presents the relative
resistance change as a function of the tensile stress and tensile
strain respectively, during the unaxial stretching of a relatively
large conducting network (with L0= 7.5 mm, d0= 536 µm,
p0/R0= 3, d0/R0= 0.5, N0= 1, and pj/R0= 2). The experimental
results show a slight resistance change (<20% relatively) for the
tensile strain up to ~40%, which can meet the requirements of
certain practical applications. When connected with a comme-
rical green light-emitting diode (LED), the light keeps turning on
for tensile strain up to ~100% (the right panel of Fig. 5g and
Supplementary Figs. 12–14).

Discussion
In summary, this work reports a class of rational bio-mimetic 3D
network designs for soft architected materials consisting of per-
iodically arranged helical microstructures, with abilities to
reproduce accurately the anisotropic, nonlinear stress–strain
responses of 3D biological tissues. The developed soft 3D network
materials exhibit a defect-insensitive mechanical behavior, and
can offer tunable J-shaped stress–strain curves under both the
tensile and compressive loadings. A comprehensive study based
on experimental measurements and validated FEA elucidates the
influences of geometrical parameters of helical microstructures
and the lattice topology on the J-shaped stress–strain curves.
When integrated with metallic layers through magnetic sputter-
ing or atomic-layer deposition, the conducting 3D network
materials can be potentially used as flexible pressure sensors and
stretchable conductors, while offering bio-mimetic mechanical
properties. When the base material of the 3D network is replaced
by an even softer material (e.g., a mixture of elastomer and
polymer), the resulting 3D network material can also offer a J-
shaped stress–strain response (Supplementary Fig. 15). Collec-
tively, these findings provide systematic guidelines for the 3D
network design of architected materials and functional systems,
with many application opportunities in bio-integrated electronic
devices.

Methods
Fabrication of soft 3D network materials. Soft 3D network materials are fabri-
cated using the polyjet 3D printing technique (Object EDEN260VS, Stratasys, MN,
USA), which offers a minimum layer thickness of 16 μm during the 3D printing.
The fabrication exploits two commerically available materials (VeroBlue and
SUP707), in which the SUP707 is a water-soluble supporting material, while the
VeroBlue is a digital polymeric material (as shown in Supplementary Fig. 16). The
polyjet 3D printing allows the formation of predefined soft 3D network materials
that are embedded in the support materials after the priniting. Immersing the
printed hybrid structure into water dissolves the supporting materials, and com-
pletes the fabrication of network materials with desired 3D geometric
configurations.

Measurements of the stress–strain curve and resistance. The force–
displacement curves were measured by a commercial mechanical testing machine,
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from which the stress–strain curves were obtained. A very low loading rate (~0.3
mm per minute) was adopted to ensure that the deformations are nearly quasi-
static and the viscoelastic effect can be neglected. All the experiments of uniaxial
tension and compression were performed by immersing the samples in a water box
(300 mm × 400 mm × 380 mm) at a fixed temperature of 25 °C (except for that in
Fig. 5c), considering that the mechanical properties of VeroBlue material is sen-
sitive to the temperature change in the range of 20−30 °C. The experiments in
Fig. 5c were performed at ~23 °C, such that the elastic modulus can be increased by
approximately three times as compared to that at ~25 °C, and that the critical stress
of the target stress–strain curve can be achieved based on the proposed network
design. The electrical resistance of conducting 3D network materials (Fig. 5e–g)
were measured at ~50 oC at the different levels of applied strains in a thermostat
mechanical testing machine. All of the experimental results were obtained based on
the averages of at least three different individual samples. The photographs and
video of soft 3D network materials at different deformations were recorded
employing a digital camera (760D, Canon, Japan).

Finite element analyses. The finite element analyses (FEA) were performed
employing commercial software ABAQUS (SIMULIA, Providence RI) to calculate
the deformations and stress–strain curves. Ten-node quadratic tetrahedron hybrid
brick were adopted, and the meshes were refined to ensure the computational
accuracy. For the polymeric material (VeroBlue) produced by the 3D printing, a
hyperelastic constitutive relation following an incompressible Mooney–Rivlin law
was adopted in the FEA. The two material parameters (C10= 0.578 MPa and C01=

1.364 MPa, following the denotations of commercial software ABAQUS) are
determined by fitting the uniaxial stress–strain curve measured in experiments
(Supplementary Fig. 16). Both full-scale models and periodic unit segments were
exploited in the FEA. In order to save the computational cost based on the periodic
unit segments, the displacement components along the uniaxial stretching direc-
tion are prescribed, and the boundaries are allowed to deform freely along the
transverse direction. As shown in Fig. 2d and Supplementary Fig. 2, the unit
segments in the middle of the network samples are approximately under periodic
boundary conditions along the axial direction, as evidenced by the agreement of
deformation results between the full-scale FEA and the FEA based on periodic unit
segments. The effective stress (i.e., engineering stress) of the lattice material is
defined as the total reaction force at the boundary divided by the initial cross-
sectional area.

Data availability
The data that support the findings of this study are available within the article and

its Supplementary Information, and from the corresponding authors upon reasonable

request.
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