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Abstract

Purpose To assist the rehearsal and planning of robot-

assisted partial nephrectomy, a real-time simulation platform

is presented that allows surgeons to visualise and interact with

rapidly constructed patient-specific biomechanical models

of the anatomical regions of interest. Coupled to a frame-

work for volumetric deformation, the platform furthermore

simulates intracorporeal 2D ultrasound image acquisition,

using preoperative imaging as the data source. This not only

facilitates the planning of optimal transducer trajectories and

viewpoints, but can also act as a validation context for manu-

ally operated freehand 3D acquisitions and reconstructions.

Methods The simulation platform was implemented within

the GPU-accelerated NVIDIA FleX position-based dynam-

ics framework. In order to validate the model and determine

material properties and other simulation parameter values,

a porcine kidney with embedded fiducial beads was CT-

scanned and segmented. Acquisitions for the rest position

and three different levels of probe-induced deformation were

collected. Optimal values of the cluster stiffness coeffi-

cients were determined for a range of different particle radii,

where the objective function comprised the mean distance

error between real and simulated fiducial positions over the

sequence of deformations.

Results The mean fiducial error at each deformation stage

was found to be compatible with the level of ultrasound probe

calibration error typically observed in clinical practice. Fur-
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thermore, the simulation exhibited unconditional stability on

account of its use of clustered shape-matching constraints.

Conclusions A novel position-based dynamics implemen-

tation of soft tissue deformation has been shown to facil-

itate several desirable simulation characteristics: real-time

performance, unconditional stability, rapid model construc-

tion enabling patient-specific behaviour and accuracy with

respect to reference CT images.

Keywords Biomechanical modelling · Soft tissue

deformation · Position-based dynamics · Robot-assisted

partial nephrectomy · Ultrasound simulation

Purpose

Robot-assisted partial nephrectomy (RAPN) is a surgical

procedure that potentially benefits from organ modelling

and patient-specific simulation due to the inherent anatomi-

cal complexity, specifically, the highly variable vascular and

tumour anatomy. The rehearsal and planning of such a pro-

cedure should ultimately lead to an improved performance in

the operating room, a decrease in operating times and intra-

operative rate of errors, and to increase the ability of surgeons

to complete the procedure [1].

Isotani et al. [2] developed a simulation approach for

patient-specific planning of RAPN, but the system remains

incapable of real-time navigation, tissue interaction or defor-

mation by the user. Makiyama et al. [3] developed a patient-

specific simulator for preoperative planning and training

of renal surgery. However, this system has not focused on

modelling the relevant aspects of a partial nephrectomy, as

the system simulates radical nephrectomy. Figueroa et al.

[4] developed a biomechanical model of the kidney to pre-

dict the estimated tumour displacement with respect to the
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kidney surface in the presence of an external load. In RAPN

the surgeon loses tactile feedback through palpation and is

often forced to resort to intraoperative ultrasound in order

to discriminate between healthy and malignant tissue. This

need for ultrasound scanning has encouraged the develop-

ment of simulation-based environments [5–7], with some

focused on replicating ultrasound images in the presence

of deformation. The platform presented in this paper aims

to provide a framework for volumetric deformation, allow-

ing the visualisation and interaction with a biomechanical

model of soft tissue. A patient-specific biomechanical model

of the patient’s anatomical regions of interest is imple-

mented through a position-based dynamics (PBD) approach.

Furthermore, this allows the simulation of patient-specific

intracorporeal 2D ultrasound image acquisition, using pre-

operative imaging as the input data.

The approaches used for the simulation of deformable

bodies have been mainly focused on physically based frame-

works. Traditional examples range from finite element meth-

ods, mass–spring systems, meshless methods to particle

systems. A review of such approaches can be found in [8].

These physically based approaches model deformable bod-

ies through the manipulation of internal and external forces.

Forces are transformed via the mass of constituent parts into

accelerations, using Newton’s second law of motion. The

elements that comprise an object move to a certain position

at each time step, determined by an integration scheme that

computes the current position from the derived accelerations.

A PBD approach, unlike the aforementioned methods,

models objects through the manipulation of position dis-

placements to solve geometrical constraints. In contrast to

force-based methods that achieve equilibrium configurations

through the integration of accelerations, this geometrically

based approach directly projects positions as a solution to a

quasi-static problem. In a PBD approach, an object is com-

posed of multiple particles and by manipulating the constraint

functions of the system, one can model different types of

material properties and behaviours. A shape-matching tech-

nique is an example of such a constraint function that can

be used to model rigid bodies, providing visually plausible

behaviours. This algorithm is efficient, stable and straight-

forward to implement. However, it can only accommodate

small deformations, and to account for larger movement, i.e.

to model soft tissue, a supplementary cluster-based deforma-

tion can be integrated [9]. The advantages of using this type

of implementation are robustness, simplicity, visual accu-

racy, real-time performance, efficiency and controllability

[10]. This geometrically motivated and mesh-free concept

has been used to model animations in computer graphics

due to their appealing performance and visual capabilities in

real time, assuring a stable simulation and maintaining low

computational times. The PBD approach has already been

applied in the medical field. Kubiak et al. [11] developed a

real-time surgical thread simulation, for an interactive and

robust simulation of knot tying. The work of Wang et al. [12]

couples a mass–spring model with a shape-matching tech-

nique to achieve a fast and stable simulation in virtual reality

systems, focusing on the deformation of a heart model. As

the scope of this research is related to the development of

a robotic surgery simulation platform, where all feedback is

visual, it is reasonable to prioritise visual fidelity over hav-

ing precise deformation accuracy. However, the recent work

developed by Bender et al. [13] demonstrates that through

modelling and optimising the simulation parameters or cou-

pling the simulation with a continuum-based formulation,

complex physical phenomena can be accurately exhibited.

The implementation developed in this paper aims to

present a framework that allows for a plausible and real-

istic deformation of soft tissue, thereby making possible the

implementation of ultrasound simulation, using preoperative

imaging as the source of anatomical data. The use of the

PBD approach with a clustered shape-matching constraint

implementation is novel in the field of soft tissue surgical

simulation environments.

Methods

Experimental set-up

CT images were acquired with a GE Innova 4100 scanner.

The hardware specifications used for performing the sim-

ulation were a HP Z820 machine and an NVIDIA K5000

GPU processor with 1536 cores. CT scan acquisitions from

a porcine kidney under different levels of deformation were

carried out to be used as the ground truth for the biome-

chanical behaviour of soft tissue. Fiducial glass beads with

a diameter of 1.5 mm was embedded within the porcine kid-

ney. A total of 45 beads was distributed in multiple nylon

threads and introduced with a needle throughout the kidney.

Knots were regularly distributed on the threads to place the

beads inside but allowing them to move freely relative to

each other. The volumetric distribution of the beads in the

simulation environment is illustrated in Fig. 1.

The kidney was placed on a plasticine support that acts

as a complex boundary condition. An object that simulates

the ultrasound transducer [14] and the user’s interaction with

the platform was mounted on a 3D printed rig and used to

generate the different levels of deformation. The set-up of

the experimental procedure is shown in Fig. 2. The entire

set-up was CT-scanned and segmented for the rest position,

where the transducer was simply touching on the kidney’s

surface, and under three different levels of probe-induced

deformation.
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Fig. 1 Volumetric distribution of the fiducials embedded within the

kidney

Fig. 2 Deformation rig with kidney and support, placed on the CT

scanner table

Parallel SOR solver

The simulation system is implemented within the GPU-

accelerated NVIDIA FleX position-based dynamics frame-

work [15]. For a collection of objects comprising n particles,

the solver receives as input a vector of particle positions

x = [x1, x2, . . . , xn]T and a set of constraints that describe

the objects to be simulated. This implementation solves a

nonlinear system of equality and inequality constraints so that

Ci (x + �x) = 0, i = 1, . . . , n (1)

C j (x + �x) ≥ 0, j = 1, . . . , n (2)

Constraints are solved using the Gauss–Seidel method. For

each iteration, through a linearisation of C around x, each

constraint can be solved sequentially

Ci (x + �x) ≈ Ci (x) + ∇Ci (x)�x = 0 (3)

The position displacement �x is restricted to lie along the

constraint gradient and is weighted by the inverse of the mass

matrix M = diag(m1, . . . , mn),

�x = M−1
∇Ci (x)Tλi (4)

where λi is a Lagrange multiplier [13] that can be computed

by combining Eqs. (3) and (4)

λi = −
Ci (x)

∇Ci (x)M−1∇Ci (x)T
(5)

After each constraint has been processed, positions are

updated. After a specified number of iterations, the change

in velocity is determined by the total constraint displacement

�v =
�x

�t
(6)

where �t is the time step. The solution �x is the variation in

position that attempts to satisfy the constraints. From Eq. (6),

the resulting variation in position is equivalent to applying

an impulse at the beginning of each time step. Using this for-

mulation, the problem is equivalent to finding the minimum

change in kinetic energy that satisfies the constraints, which is

consistent with Gauss’ principle of least constraints. To accel-

erate this methodology, constraints are solved in a projected

Gauss–Jacobi fashion. To assure convergence, constraints are

averaged, i.e. each constraint is processed in parallel and

position variations �x are stored for each particle. At the

end of each iteration, each particle’s total constraint varia-

tion is divided by the total number of constraints affecting

it. To assure that this averaging is not too aggressive and the

number of necessary iterations to reach a solution does not

increase, a global parameter w is introduced to control the

rate of successive over-relaxation (SOR),

�xi =
w

n

∑

n

∇C jλ j (7)

with w ∈ [1, 2]. Constraints may also be applied in groups

when precedence is desired. The reader is advised to refer

to the work of Müller et al. [10] and Macklin et al. [16] for

further details on this approach.

Algorithm 1 represents a single simulation time step in

this PBD approach. Steps (1)–(5) perform an integration

step on the velocity and position estimates for each parti-

cle and take into account any external forces (e.g. gravity).

Steps (6)–(9) handle contact detection. Position estimates

are manipulated in steps (10)–(15) such that they satisfy the

constraints. In steps (16)–(22), each constraint is processed

in parallel and each particle accumulates a position estimate.
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Algorithm 1 Single simulation time step (from [16])

1: for all particles i do

2: apply forces vi ⇐ vi + �tfext (xi )

3: predict position x∗
i ⇐ xi + �tvi

4: apply mass scaling m∗
i = mi e

−k�t (x∗
i )

5: end for

6: for all particles i do

7: find neighbouring particles Ni (x
∗
i )

8: find solid contacts

9: end for

10: while i ter < stabilisationI terations do

11: �x ⇐ 0, n ⇐ 0

12: solve contact constraints for �x, n

13: update xi ⇐ xi + �x/n

14: update x∗ ⇐ x∗ + �x/n

15: end while

16: while i ter < solver I terations do

17: for each constraint group G do

18: �x ⇐ 0, n ⇐ 0

19: solve all constraints in G for �x, n

20: update x∗ ⇐ x∗ + �x/n

21: end for

22: end while

23: for all particles i do

24: update velocity vi ⇐ 1
�t

(x∗
i − xi )

25: update positions xi ⇐ x∗
i

26: end for

After all constraints have been applied, they are averaged

amongst each position. Steps (23)–(26) update velocities and

positions before the end of each time step.

Shape matching

In order to simulate deformable objects, the PBD approach

relies on a geometrically motivated shape-matching tech-

nique. This method is based on finding the least squares

optimal rigid transformations in 3D between two point sets

with a priori known correspondence [17]. The algorithm

requires as input a set of particles with masses mi and their

respective initial positions x0
i . At each time step, the origi-

nal shape x0
i is matched to the deformed shape xi . Then, the

deformed points xi are forced towards the goal positions gi .

Given two sets of points x0
i and xi , the minimisation problem

is given by

∑

i

mi

(

R
(

x0
i − t0

)

+ t − xi

)2
(8)

where mi are the individual masses, R is the rotation matrix,

t and t0 are the translation vectors. These translation vec-

tors are defined as the centre of mass of the initial x0
cm and

actual xcm shapes, respectively. Once the optimal rotation R

and translation vector are derived, the goal positions can be

computed as

gi = R
(

x0
i − x0

cm

)

+ xcm (9)

From the goal positions, an integration scheme can be defined

vi (t + �t) = vi (t) + α
gi (t) − xi (t)

�t
+ �tfext (t)/mi (10)

xi (t + �t) = xi (t) + �tvi (t + �t) (11)

where α ∈ [0, 1] simulates stiffness. This scheme is uncon-

ditionally stable and does not introduce damping, as long as

the external forces are independent of the points’ locations

or are applied only instantaneously [17].

Cluster-based deformation

The implementation of the algorithm described in the pre-

vious section allows only for small deformations from the

initial shape. For larger deformations, i.e. to model soft tis-

sue, the set of particles that comprise an object can be divided

into overlapping clusters. Having a surface mesh as input, the

space around it is divided into overlapping cubical regions.

For each region, a cluster is defined containing all the ver-

tices that lie within it. For each time step, the original shape

of each cluster is matched with the current shape. Using this

formulation, each cluster assures that the following term is

added to all particles that lie within it

�vi = α
gc

i (t) − xi (t)

�t
(12)

where gc
i (t) is the goal position of the particle i in relation to

the cluster c.

Collision and data preparation

The FleX engine supports several collision primitives,

including static triangular meshes, dynamic convex meshes

(specified as the intersection of half-spaces), signed distance

fields (SDFs) and static planes. The support structure is rep-

resented as a static triangular mesh. The original 3D CT

scan was first segmented in ITK-SNAP [18], exported as an

STL mesh into MeshLab [19], where it was smoothed using

the volume-preserving Humphrey’s Classes (HC) Lapla-

cian smoothing algorithm, and then underwent quadric edge

collapse decimation (quality threshold 0.99), producing a

collision mesh with some 5000 faces [20].

The geometry for the initial configuration of the kid-

ney was prepared in a similar manner. The algorithm that

computes the kidney particles generates a high-resolution

voxelisation of the mesh, places temporary samples at each

occupied voxel and also optionally distributes sample points

randomly on the mesh surface. Particles are then introduced

one at a time at sample points, and the process greedily

removes any samples that fall within the bounds of the for-

mer, until no samples remain. The particles are then clustered
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Fig. 3 Virtual kidney model. Representation of the local coordinate systems of each cluster and tetrahedra vertices (left); representation of particle

distribution with a radius of 2.7 mm and wireframe surface (right)

together using the same method into shape-matching clus-

ters. The result of this procedure is illustrated in Fig. 3. The

ultrasound transducer [14] was approximated as a cuboid and

realised in FleX as a dynamic convex mesh, i.e. the intersec-

tion of three parallel pairs of orthogonal half-spaces.

Weighted matrix blending

Both the vertices of the triangular mesh representing the kid-

ney surface and the initial fiducial positions are expressed

in terms of local particle positions through weighted matrix

blending, sometimes referred to as ‘skinning’ [21]. This way,

the surface and subsurface geometries attached to the particle

system deform in accordance with the manipulated kidney

parenchyma. Each ‘skinned’ vertex can be associated with

up to four local cluster coordinate frames. Weights fall off

inversely with the square of the distance from vertex to local

cluster origin. The same technique is used to embed a course

tetrahedral mesh within the particle system (see white ver-

tices in the left side of Fig. 3), such that a planar discretisation

of the ultrasound scanning plane can be expressed barycentri-

cally in terms of those embedded vertices, and then mapped

back (i.e. undeformed) to voxels within the coordinate frame

of the initial 3D CT acquisition. In this manner, ultrasound

simulation scanning of a deformable kidney, or organs more

generally, is realised.

Calibration

In this work, a simple one-dimensional exhaustive search

was used to determine the optimal cluster stiffness coeffi-

cient (α) for a given particle radius. The quantity undergoing

minimisation was the mean fiducial error over all of the defor-

mation stages, that is, the mean of the Euclidean distances

between the segmented and simulated fiducial positions at

each stage. The simulation was sufficiently fast so as not

to require a more efficient search strategy. Each evaluation

began with 120 time steps of simulation ‘warm-up’—that

is, a conservative period during which the particles adopt

Table 1 Simulation settings for the calibration process

Time step 1/60 s

Simulation substeps 3 (collision detection is performed

once per substep)

Substep iterations 9 (each substep performs this many

solve passes over the constraints)

Cluster spacing factor 3.33 (applied to particle radius,

controls cluster overlap)

Volume sampling factor 4 (controls particle density)

Relaxation type Local (relaxation factor = 1.0)

Acceleration due to gravity 9.81 m/s2

Tissue density 1.05 g/cm3 [22]

Shape friction coefficient 0.35

Particle friction coefficient 0.25

Damping factor 12.0

their initial equilibrium positions with respect to the pre-

vailing collision constraints. Subsequently, the ultrasound

transducer position was interpolated linearly over a sequence

of 90 time steps at each deformation stage, in accor-

dance with its relative position in the corresponding 3D CT

acquisition. For more complex particle behaviours with addi-

tional parameters, the calibration scheme generalises natu-

rally to a multi-dimensional optimisation problem. Table 1

shows the FleX settings [15] used during the calibration

process.

Results

The graph presented in Fig. 4 represents the mean fidu-

cial error as a function of the cluster stiffness coefficient,

for different values of particle radius. The different solid

lines represent the quartic polynomials fitted to smooth

results.

Tables 2, 3 and 4 show the fiducial mean errors, standard

deviation and maximum error, respectively, for the initial
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Fig. 4 Mean fiducial error as a function of cluster stiffness, for different values of the particle radius

Table 2 Fiducial mean error (mm)

Particle radius (mm) 2.2 2.5 2.7 3.0 3.3

Stiffness α 0.95 0.60 0.50 0.45 0.35

0th deformation (0.00 mm) 0.62 0.65 0.72 0.79 0.93

1st deformation (5.95 mm) 1.41 (24 %) 1.49 (25 %) 1.55 (26 %) 1.51 (25 %) 1.46 (24 %)

2nd deformation (9.48 mm) 1.46 (15 %) 1.61 (17 %) 1.70 (18 %) 1.74 (18 %) 1.67 (18 %)

3rd deformation (12.38 mm) 2.26 (18 %) 2.30 (19 %) 2.41 (19 %) 2.39 (19 %) 2.32 (19 %)

Overall mean deformation 1.44 1.51 1.60 1.61 1.60

Table 3 Fiducial error standard deviation (mm)

Particle radius (mm) 2.2 2.5 2.7 3.0 3.3

Stiffness α 0.95 0.60 0.50 0.45 0.35

0th deformation (0.00 mm) 0.34 0.36 0.41 0.43 0.41

1st deformation (5.95 mm) 0.59 0.65 0.64 0.61 0.58

2nd deformation (9.48 mm) 0.80 0.96 0.95 1.03 0.79

3rd deformation (12.38 mm) 1.02 1.16 1.14 1.15 1.00

Table 4 Fiducial maximum error (mm)

Particle radius (mm) 2.2 2.5 2.7 3.0 3.3

Stiffness α 0.95 0.60 0.50 0.45 0.35

0th deformation (0.00 mm) 1.24 1.37 1.42 1.57 1.76

1st deformation (5.95 mm) 2.92 2.93 2.88 2.91 2.89

2nd deformation (9.48 mm) 3.16 3.97 3.80 4.21 3.33

3rd deformation (12.38 mm) 4.54 4.76 4.73 5.29 4.55

position and the different levels of deformation per particle

radius. Optimal stiffness coefficients, within the permitted

range [0, 1], are also tabulated. An observation of Table 2

reveals intuitive behaviour: as the deformation of the model

increases, the mean fiducial error increases in kind. More-

over, this is independent of the stiffness value. The values

displayed in brackets represent the percentage error with

respect to the cumulative deformation and allow one to infer

that the mean fiducial error is approximately proportional to

the induced level of deformation. The mean fiducial error

displacements are acceptable values in the context of the

12.38 mm overall displacement reached by the probe. The

remaining information in this table shows that as a gen-

eral trend, when the radius increases and optimal stiffness

decreases, the fiducial mean error gradually increases with

a range of approximately 0.15 mm. Tables 3 and 4 support

the aforementioned results and illustrate a distribution of low
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Fig. 5 Particle count as a function of the particle radius (Left); cluster count as a function of the particle radius (right)

Fig. 6 From left to right—representation of the rest position and the three increasing levels of deformation in the simulation framework (top) and

in the CT images of the experimental set-up (bottom)

standard deviations over all fiducials. Further analysis of the

mean fiducial error as a function of the distance to the probe,

across all levels of deformation, indicates that these variables

are weakly correlated.

Figure 5 illustrates the number of clusters (right) and num-

ber of particles (left) as a function of the particle radius. As

the particle radius increases, a decrease in the particle and

cluster counts is observed. The cluster allocation algorithm

results in a number of clusters proportional to the number of

particles.

Figure 6 shows a representation of the deformation applied

on the kidney in the CT images (bottom) and the correspond-

ing deformation in the simulation framework (top). One can

also observe the fiducial displacements as the deformation is

induced.

Regarding the simulation performance, Fig. 7 shows the

total simulation time as a function of the elapsed time. Two

series of data are analysed—the total simulation time and the

particle collision times. A ‘warm-up’ period of 2s is observed

with no transducer displacement, during which both data

series present a noisy but static mean performance time. As

the transducer starts moving and induces deformation on the

kidney model, an increase in the total simulation times is

experienced in both data series. This is an expected result as

more contacts are made.

A breakdown of the simulation performance times can

be observed in Fig. 8. The total simulation time is split into

the individual timings necessary in the various steps of the

PBD approach. Table 5 shows the average, standard devia-

tion, maximum and minimum performance simulation times
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Fig. 7 Total simulation time for one time step as a function of the simulation elapsed time, for a particle radius of 2.2 mm and cluster stiffness

coefficient of 0.5

Fig. 8 Distribution of the performance timings for the various steps of the PBD approach. A cluster stiffness coefficient of 0.5 and a particle radius

of 2.7 mm were used as simulation parameters

within the simulation calibration as a function of the particle

radius. As the particle radius increases, the total simulation

time gradually increases. This is a counter-intuitive result,

as one would expect to observe a better performance as the

number of particles decreases. An inefficient underutilisation

of the GPU might be an explanation for this performance

behaviour. However, real-time operation is evident in gen-

eral. Even in the worst-case scenario (15.68 ms), an execution

rate of approximately 64 simulation steps-per-second is

achieved.
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Table 5 Time taken to simulate one time step over a single calibration

evaluation (ms)

Particle radius (mm) 2.2 2.5 2.7 3.0 3.3

Mean 12.10 12.10 12.37 12.66 14.16

Standard deviation 0.33 0.33 0.21 0.29 0.29

Minimum 11.68 11.68 11.96 12.28 13.67

Maximum 12.77 12.77 12.84 13.37 15.68

Conclusions

A novel PBD implementation [16] coupled with a clustered

shape-matching constraints methodology has been shown

to be capable of modelling soft tissue deformation, in the

context of RAPN simulation. Coupled to this framework,

the platform furthermore simulates intracorporeal 2D ultra-

sound image acquisition, using the preoperative CT images

as the data source. Simulation stiffness and particle radius

parameters were varied through the computation of multi-

ple simulations to understand the optimal trade-off between

accuracy and performance.

Results show real-time performance, accuracy and inher-

ent unconditional stability as a result of using a shape-

matching technique. The methodology developed in this

framework can be applied in various other surgical simu-

lation applications. This system requires as input a set of

preoperative images and segmented structures of anatomical

interest and outputs a 3D model capable of soft tissue defor-

mation and interaction. This straightforward data preparation

makes patient-specific simulation possible on a broad scale.

The overall mean fiducial error was found to be compatible

with the level of ultrasound probe calibration error typically

observed in clinical practice [14]. The nonzero mean fidu-

cial error measured for the 0th level of deformation might

be a cause for a higher fiducial error across all deforma-

tions due to overlapping support segmentations or an absence

of initial gravity compensation. These characteristics will

be accounted for in future work. The exhaustive search for

optimal stiffness parameter allowed an accurate and stable

simulation of deformation.

Regarding the simulation performance analysis, results

reveal that this implementation runs in real time while

accurately maintaining complex soft tissue behaviour and

boundary conditions. A PBD implementation, despite pre-

senting the previously mentioned advantages over other

approaches [16], has some limitations. The model’s realised

stiffness does not depend only on the defined stiffness para-

meter, as it is dependent also on the time step, the number

of solver iterations and the adopted number of clusters and

shape-matching constraints. As a result, stiffness must be set

in the context of these chosen values.

Focusing on the applicability of this simulation to patient-

specific scenarios, two issues should be made clear. Previous

research has been conducted in order to assess the suit-

ability of using porcine renal tissue as a surrogate for the

human kidney. Tests employing dynamic mechanical load

were carried out on renal parenchyma [23] and the kidney

capsule [24] to assess their behavioural response. Regard-

ing tissue properties, the work developed by Miller et al.

[25] concludes that, since kidneys and similar organs are

considered almost incompressible, the dependence on the

volumetric response is of minor consequence for soft organ

biomechanics. Such problems are considered in light of pure-

displacement or displacement-zero traction (deformation is

modelled as forced motion in response to changing boundary

conditions), and therefore, it is possible to model deformation

without full knowledge of patient-specific tissue properties.

As future work, effort will be focused on developing the

planning of optimal transducer trajectories and viewpoints.

Furthermore, the simulation will act as a validation context

for manually operated freehand 3D acquisitions and recon-

structions.
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