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Abstract

We present a new approach to learn compressible representations in deep archi-
tectures with an end-to-end training strategy. Our method is based on a soft
(continuous) relaxation of quantization and entropy, which we anneal to their
discrete counterparts throughout training. We showcase this method for two chal-
lenging applications: Image compression and neural network compression. While
these tasks have typically been approached with different methods, our soft-to-hard
quantization approach gives results competitive with the state-of-the-art for both.

1 Introduction

In recent years, deep neural networks (DNNs) have led to many breakthrough results in machine
learning and computer vision [20, 28, 10], and are now widely deployed in industry. Modern DNN
models often have millions or tens of millions of parameters, leading to highly redundant structures,
both in the intermediate feature representations they generate and in the model itself. Although
overparametrization of DNN models can have a favorable effect on training, in practice it is often
desirable to compress DNN models for inference, e.g., when deploying them on mobile or embedded
devices with limited memory. The ability to learn compressible feature representations, on the other
hand, has a large potential for the development of (data-adaptive) compression algorithms for various
data types such as images, audio, video, and text, for all of which various DNN architectures are now
available.

DNN model compression and lossy image compression using DNNs have both independently attracted
a lot of attention lately. In order to compress a set of continuous model parameters or features, we
need to approximate each parameter or feature by one representative from a set of quantization
levels (or vectors, in the multi-dimensional case), each associated with a symbol, and then store the
assignments (symbols) of the parameters or features, as well as the quantization levels. Representing
each parameter of a DNN model or each feature in a feature representation by the corresponding
quantization level will come at the cost of a distortion D, i.e., a loss in performance (e.g., in
classification accuracy for a classification DNN with quantized model parameters, or in reconstruction
error in the context of autoencoders with quantized intermediate feature representations). The rate
R, i.e., the entropy of the symbol stream, determines the cost of encoding the model or features in a
bitstream.
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To learn a compressible DNN model or feature representation we need to minimize D + βR, where
β > 0 controls the rate-distortion trade-off. Including the entropy into the learning cost function can
be seen as adding a regularizer that promotes a compressible representation of the network or feature
representation. However, two major challenges arise when minimizing D + βR for DNNs: i) coping
with the non-differentiability (due to quantization operations) of the cost function D + βR, and ii)
obtaining an accurate and differentiable estimate of the entropy (i.e., R). To tackle i), various methods
have been proposed. Among the most popular ones are stochastic approximations [39, 19, 7, 32, 5]
and rounding with a smooth derivative approximation [15, 30]. To address ii) a common approach
is to assume the symbol stream to be i.i.d. and to model the marginal symbol distribution with a
parametric model, such as a Gaussian mixture model [30, 34], a piecewise linear model [5], or a
Bernoulli distribution [33] (in the case of binary symbols).

DNN model compression

x
F1( · ; w1)

x(1) x(K−1)

FK( · ; wK)
x(K)

z = [w1,w2, . . . ,wK ]

data compression

z = x(b)x x(K)

FK ◦ ... ◦ Fb+1Fb ◦ ... ◦ F1

z: vector to be compressed

In this paper, we propose a unified end-to-end learning frame-
work for learning compressible representations, jointly op-
timizing the model parameters, the quantization levels, and
the entropy of the resulting symbol stream to compress ei-
ther a subset of feature representations in the network or the
model itself (see inset figure). We address both challenges i)
and ii) above with methods that are novel in the context DNN
model and feature compression. Our main contributions are:

• We provide the first unified view on end-to-end learned compression of feature representations and
DNN models. These two problems have been studied largely independently in the literature so far.

• Our method is simple and intuitively appealing, relying on soft assignments of a given scalar
or vector to be quantized to quantization levels. A parameter controls the “hardness” of the
assignments and allows to gradually transition from soft to hard assignments during training. In
contrast to rounding-based or stochastic quantization schemes, our coding scheme is directly
differentiable, thus trainable end-to-end.

• Our method does not force the network to adapt to specific (given) quantization outputs (e.g.,
integers) but learns the quantization levels jointly with the weights, enabling application to a wider
set of problems. In particular, we explore vector quantization for the first time in the context of
learned compression and demonstrate its benefits over scalar quantization.

• Unlike essentially all previous works, we make no assumption on the marginal distribution of
the features or model parameters to be quantized by relying on a histogram of the assignment
probabilities rather than the parametric models commonly used in the literature.

• We apply our method to DNN model compression for a 32-layer ResNet model [13] and full-
resolution image compression using a variant of the compressive autoencoder proposed recently
in [30]. In both cases, we obtain performance competitive with the state-of-the-art, while making
fewer model assumptions and significantly simplifying the training procedure compared to the
original works [30, 6].

The remainder of the paper is organized as follows. Section 2 reviews related work, before our
soft-to-hard vector quantization method is introduced in Section 3. Then we apply it to a compres-
sive autoencoder for image compression and to ResNet for DNN compression in Section 4 and 5,
respectively. Section 6 concludes the paper.

2 Related Work

There has been a surge of interest in DNN models for full-resolution image compression, most
notably [32, 33, 4, 5, 30], all of which outperform JPEG [35] and some even JPEG 2000 [29]
The pioneering work [32, 33] showed that progressive image compression can be learned with
convolutional recurrent neural networks (RNNs), employing a stochastic quantization method during
training. [4, 30] both rely on convolutional autoencoder architectures. These works are discussed in
more detail in Section 4.

In the context of DNN model compression, the line of works [12, 11, 6] adopts a multi-step procedure
in which the weights of a pretrained DNN are first pruned and the remaining parameters are quantized
using a k-means like algorithm, the DNN is then retrained, and finally the quantized DNN model
is encoded using entropy coding. A notable different approach is taken by [34], where the DNN
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compression task is tackled using the minimum description length principle, which has a solid
information-theoretic foundation.

It is worth noting that many recent works target quantization of the DNN model parameters and
possibly the feature representation to speed up DNN evaluation on hardware with low-precision
arithmetic, see, e.g., [15, 23, 38, 43]. However, most of these works do not specifically train the DNN
such that the quantized parameters are compressible in an information-theoretic sense.

Gradually moving from an easy (convex or differentiable) problem to the actual harder problem during
optimization, as done in our soft-to-hard quantization framework, has been studied in various contexts
and falls under the umbrella of continuation methods (see [3] for an overview). Formally related but
motivated from a probabilistic perspective are deterministic annealing methods for maximum entropy
clustering/vector quantization, see, e.g., [24, 42]. Arguably most related to our approach is [41],
which also employs continuation for nearest neighbor assignments, but in the context of learning a
supervised prototype classifier. To the best of our knowledge, continuation methods have not been
employed before in an end-to-end learning framework for neural network-based image compression
or DNN compression.

3 Proposed Soft-to-Hard Vector Quantization

3.1 Problem Formulation

Preliminaries and Notations. We consider the standard model for DNNs, where we have an
architecture F : R

d1 7→ R
dK+1 composed of K layers F = FK ◦ · · · ◦ F1, where layer Fi

maps R
di → R

di+1 , and has parameters wi ∈ R
mi . We refer to W = [w1, · · · ,wK ] as the

parameters of the network and we denote the intermediate layer outputs of the network as x(0) :=
x and x(i) := Fi(x

(i−1)), such that F (x) = x(K) and x(i) is the feature vector produced
by layer Fi.

The parameters of the network are learned w.r.t. training data X = {x1, · · · ,xN} ⊂ R
d1 and labels

Y = {y1, · · · ,yN} ⊂ R
dK+1 , by minimizing a real-valued loss L(X ,Y;F ). Typically, the loss can

be decomposed as a sum over the training data plus a regularization term,

L(X ,Y;F ) =
1

N

N
∑

i=1

ℓ(F (xi),yi) + λR(W), (1)

where ℓ(F (x),y) is the sample loss, λ > 0 sets the regularization strength, and R(W) is a regularizer
(e.g., R(W) =

∑

i ‖wi‖
2 for l2 regularization). In this case, the parameters of the network can be

learned using stochastic gradient descent over mini-batches. Assuming that the data X ,Y on which
the network is trained is drawn from some distribution PX,Y, the loss (1) can be thought of as an

estimator of the expected loss E[ℓ(F (X),Y) + λR(W)]. In the context of image classification, Rd1

would correspond to the input image space and R
dK+1 to the classification probabilities, and ℓ would

be the categorical cross entropy.

We say that the deep architecture is an autoencoder when the network maps back into the input space,
with the goal of reproducing the input. In this case, d1 = dK+1 and F (x) is trained to approximate x,
e.g., with a mean squared error loss ℓ(F (x),y) = ‖F (x)− y‖2. Autoencoders typically condense
the dimensionality of the input into some smaller dimensionality inside the network, i.e., the layer

with the smallest output dimension, x(b) ∈ R
db , has db ≪ d1, which we refer to as the “bottleneck”.

Compressible representations. We say that a weight parameter wi or a feature x(i) has a compress-
ible representation if it can be serialized to a binary stream using few bits. For DNN compression, we
want the entire network parameters W to be compressible. For image compression via an autoencoder,

we just need the features in the bottleneck, x(b), to be compressible.

Suppose we want to compress a feature representation z ∈ R
d in our network (e.g., x(b) of an

autoencoder) given an input x. Assuming that the data X ,Y is drawn from some distribution PX,Y, z
will be a sample from a continuous random variable Z.

To store z with a finite number of bits, we need to map it to a discrete space. Specifically, we map
z to a sequence of m symbols using a (symbol) encoder E : Rd 7→ [L]m, where each symbol is an
index ranging from 1 to L, i.e., [L] := {1, . . . , L}. The reconstruction of z is then produced by a

(symbol) decoder D : [L]m 7→ R
d, which maps the symbols back to ẑ = D(E(z)) ∈ R

d. Since z is
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a sample from Z, the symbol stream E(z) is drawn from the discrete probability distribution PE(Z).
Thus, given the encoder E, according to Shannon’s source coding theorem [8], the correct metric for
compressibility is the entropy of E(Z):

H(E(Z)) = −
∑

e∈[L]m

P (E(Z) = e) log(P (E(Z) = e)). (2)

Our generic goal is hence to optimize the rate distortion trade-off between the expected loss and the
entropy of E(Z):

min
E,D,W

EX,Y[ℓ(F̂ (X),Y) + λR(W)] + βH(E(Z)), (3)

where F̂ is the architecture where z has been replaced with ẑ, and β > 0 controls the trade-off

between compressibility of z and the distortion it imposes on F̂ .

However, we cannot optimize (3) directly. First, we do not know the distribution of X and Y.
Second, the distribution of Z depends in a complex manner on the network parameters W and the
distribution of X. Third, the encoder E is a discrete mapping and thus not differentiable. For our first
approximation we consider the sample entropy instead of H(E(Z)). That is, given the data X and
some fixed network parameters W, we can estimate the probabilities P (E(Z) = e) for e ∈ [L]m

via a histogram. For this estimate to be accurate, we however would need |X | ≫ Lm. If z is the
bottleneck of an autoencoder, this would correspond to trying to learn a single histogram for the
entire discretized data space. We relax this by assuming the entries of E(Z) are i.i.d. such that we
can instead compute the histogram over the L distinct values. More precisely, we assume that for
e = (e1, · · · , em) ∈ [L]m we can approximate P (E(Z) = e) ≈

∏m
l=1 pel , where pj is the histogram

estimate

pj :=
|{el(zi)|l ∈ [m], i ∈ [N ], el(zi) = j}|

mN
, (4)

where we denote the entries of E(z) = (e1(z), · · · , em(z)) and zi is the output feature z for training
data point xi ∈ X . We then obtain an estimate of the entropy of Z by substituting the approximation
(3.1) into (2),

H(E(Z)) ≈ −
∑

e∈[L]m

(

m
∏

l=1

pel

)

log

(

m
∏

l=1

pel

)

= −m

L
∑

j=1

pj log pj = mH(p), (5)

where the first (exact) equality is due to [8], Thm. 2.6.6, and H(p) := −
∑L

j=1 pj log pj is the sample

entropy for the (i.i.d., by assumption) components of E(Z) 1.

We now can simplify the ideal objective of (3), by replacing the expected loss with the sample mean
over ℓ and the entropy using the sample entropy H(p), obtaining

1

N

N
∑

i=1

ℓ(F (xi),yi) + λR(W) + βmH(p). (6)

We note that so far we have assumed that z is a feature output in F , i.e., z = x(k) for some k ∈ [K].
However, the above treatment would stay the same if z is the concatenation of multiple feature
outputs. One can also obtain a separate sample entropy term for separate feature outputs and add
them to the objective in (6).

In case z is composed of one or more parameter vectors, such as in DNN compression where z = W,
z and ẑ cease to be random variables, since W is a parameter of the model. That is, opposed to the

case where we have a source X that produces another source Ẑ which we want to be compressible,
we want the discretization of a single parameter vector W to be compressible. This is analogous to
compressing a single document, instead of learning a model that can compress a stream of documents.
In this case, (3) is not the appropriate objective, but our simplified objective in (6) remains appropriate.
This is because a standard technique in compression is to build a statistical model of the (finite) data,
which has a small sample entropy. The only difference is that now the histogram probabilities in (4)
are taken over W instead of the dataset X , i.e., N = 1 and zi = W in (4), and they count towards
storage as well as the encoder E and decoder D.

1In fact, from [8], Thm. 2.6.6, it follows that if the histogram estimates pj are exact, (5) is an upper bound
for the true H(E(Z)) (i.e., without the i.i.d. assumption).
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Challenges. Eq. (6) gives us a unified objective that can well describe the trade-off between com-
pressible representations in a deep architecture and the original training objective of the architecture.

However, the problem of finding a good encoder E, a corresponding decoder D, and parameters W
that minimize the objective remains. First, we need to impose a form for the encoder and decoder,
and second we need an approach that can optimize (6) w.r.t. the parameters W. Independently of the
choice of E, (6) is challenging since E is a mapping to a finite set and, therefore, not differentiable.

This implies that neither H(p) is differentiable nor F̂ is differentiable w.r.t. the parameters of z and

layers that feed into z. For example, if F̂ is an autoencoder and z = x(b), the output of the network

will not be differentiable w.r.t. w1, · · · ,wb and x(0), · · · ,x(b−1).

These challenges motivate the design decisions of our soft-to-hard annealing approach, described in
the next section.

3.2 Our Method

Encoder and decoder form. For the encoder E : Rd 7→ [L]m we assume that we have L centers

vectors C = {c1, · · · , cL} ⊂ R
d/m. The encoding of z ∈ Rd is then performed by reshaping it

into a matrix Z = [z̄(1), · · · , z̄(m)] ∈ R
(d/m)×m, and assigning each column z̄(l) to the index of its

nearest neighbor in C. That is, we assume the feature z ∈ R
d can be modeled as a sequence of m

points in R
d/m, which we partition into the Voronoi tessellation over the centers C. The decoder

D : [L]m 7→ R
d then simply constructs Ẑ ∈ R

(d/m)×m from a symbol sequence (e1, · · · , em) by

picking the corresponding centers Ẑ = [ce1 , · · · , cem ], from which ẑ is formed by reshaping Ẑ back

into R
d. We will interchangeably write ẑ = D(E(z)) and Ẑ = D(E(Z)).

The idea is then to relax E and D into continuous mappings via soft assignments instead of the hard
nearest neighbor assignment of E.

Soft assignments. We define the soft assignment of z̄ ∈ R
d/m to C as

φ(z̄) := softmax(−σ[‖z̄− c1‖
2, . . . , ‖z̄− cL‖

2]) ∈ R
L, (7)

where softmax(y1, · · · , yL)j := eyj

ey1+···+eyL is the standard softmax operator, such that φ(z̄) has

positive entries and ‖φ(z̄)‖1 = 1. We denote the j-th entry of φ(z̄) with φj(z̄) and note that

lim
σ→∞

φj(z̄) =

{

1 if j = arg minj′∈[L]‖z̄− cj′‖

0 otherwise

such that φ̂(z̄) := limσ→∞ φ(z̄) converges to a one-hot encoding of the nearest center to z̄ in C. We

therefore refer to φ̂(z̄) as the hard assignment of z̄ to C and the parameter σ > 0 as the hardness of
the soft assignment φ(z̄).

Using soft assignment, we define the soft quantization of z̄ as

Q̃(z̄) :=

L
∑

j=1

cjφi(z̄) = Cφ(z̄),

where we write the centers as a matrix C = [c1, · · · , cL] ∈ R
d/m×L. The corresponding hard

assignment is taken with Q̂(z̄) := limσ→∞ Q̃(z̄) = ce(z̄), where e(z̄) is the center in C nearest to z̄.
Therefore, we can now write:

Ẑ = D(E(Z)) = [Q̂(z̄(1)), · · · , Q̂(z̄(m))] = C[φ̂(z̄(1)), · · · , φ̂(z̄(m))].

Now, instead of computing Ẑ via hard nearest neighbor assignments, we can approximate it with

a smooth relaxation Z̃ := C[φ(z̄(1)), · · · , φ(z̄(m))] by using the soft assignments instead of the
hard assignments. Denoting the corresponding vector form by z̃, this gives us a differentiable

approximation F̃ of the quantized architecture F̂ , by replacing ẑ in the network with z̃.

Entropy estimation. Using the soft assignments, we can similarly define a soft histogram, by
summing up the partial assignments to each center instead of counting as in (4):

qj :=
1

mN

N
∑

i=1

m
∑

l=1

φj(z̄
(l)
i ).
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This gives us a valid probability mass function q = (q1, · · · , qL), which is differentiable but converges
to p = (p1, · · · , pL) as σ → ∞.

We can now define the “soft entropy” as the cross entropy between p and q:

H̃(φ) := H(p, q) = −

L
∑

j=1

pj log qj = H(p) +DKL(p||q)

where DKL(p||q) =
∑

j pj log(pj/qj) denotes the Kullback–Leibler divergence. Since

DKL(p||q) ≥ 0, this establishes H̃(φ) as an upper bound for H(p), where equality is obtained
when p = q.

We have therefore obtained a differentiable “soft entropy” loss (w.r.t. q), which is an upper bound on

the sample entropy H(p). Hence, we can indirectly minimize H(p) by minimizing H̃(φ), treating
the histogram probabilities of p as constants for gradient computation. However, we note that while
qj is additive over the training data and the symbol sequence, log(qj) is not. This prevents the use

of mini-batch gradient descent on H̃(φ), which can be an issue for large scale learning problems.

In this case, we can instead re-define the soft entropy H̃(φ) as H(q, p). As before, H̃(φ) → H(p)

as σ → ∞, but H̃(φ) ceases to be an upper bound for H(p). The benefit is that now H̃(φ) can be
decomposed as

H̃(φ) := H(q, p) = −

L
∑

j=1

qj log pj = −

N
∑

i=1

m
∑

l=1

L
∑

j=1

1

mN
φj(z̄

(l)
i ) log pj , (8)

such that we get an additive loss over the samples xi ∈ X and the components l ∈ [m].

Soft-to-hard deterministic annealing. Our soft assignment scheme gives us differentiable ap-

proximations F̃ and H̃(φ) of the discretized network F̂ and the sample entropy H(p), respectively.
However, our objective is to learn network parameters W that minimize (6) when using the encoder
and decoder with hard assignments, such that we obtain a compressible symbol stream E(z) which
we can compress using, e.g., arithmetic coding [40].

To this end, we anneal σ from some initial value σ0 to infinity during training, such that the soft
approximation gradually becomes a better approximation of the final hard quantization we will use.
Choosing the annealing schedule is crucial as annealing too slowly may allow the network to invert
the soft assignments (resulting in large weights), and annealing too fast leads to vanishing gradients
too early, thereby preventing learning. In practice, one can either parametrize σ as a function of the
iteration, or tie it to an auxiliary target such as the difference between the network losses incurred by
soft quantization and hard quantization (see Section 4 for details).

For a simple initialization of σ0 and the centers C, we can sample the centers from the set Z :=

{z̄
(l)
i |i ∈ [N ], l ∈ [m]} and then cluster Z by minimizing the cluster energy

∑

z̄∈Z
‖z̄ − Q̃(z̄)‖2

using SGD.

4 Image Compression

We now show how we can use our framework to realize a simple image compression system. For
the architecture, we use a variant of the convolutional autoencoder proposed recently in [30] (see
Appendix A.1 for details). We note that while we use the architecture of [30], we train it using our
soft-to-hard entropy minimization method, which differs significantly from their approach, see below.

Our goal is to learn a compressible representation of the features in the bottleneck of the autoencoder.
Because we do not expect the features from different bottleneck channels to be identically distributed,
we model each channel’s distribution with a different histogram and entropy loss, adding each entropy
term to the total loss using the same β parameter. To encode a channel into symbols, we separate the
channel matrix into a sequence of pw × ph-dimensional patches. These patches (vectorized) form the

columns of Z ∈ R
d/m×m, where m = d/(pwph), such that Z contains m (pwph)-dimensional points.

Having ph or pw greater than one allows symbols to capture local correlations in the bottleneck,
which is desirable since we model the symbols as i.i.d. random variables for entropy coding. At test
time, the symbol encoder E then determines the symbols in the channel by performing a nearest

neighbor assignment over a set of L centers C ⊂ R
pwph , resulting in Ẑ, as described above. During

training we instead use the soft quantized Z̃, also w.r.t. the centers C.

6
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Figure 1: Top: MS-SSIM as a function of rate for SHVQ (Ours), BPG, JPEG 2000, JPEG, for each
data set. Bottom: A visual example from the Kodak data set along with rate / MS-SSIM / SSIM /
PSNR.

We trained different models using Adam [17], see Appendix A.2. Our training set is composed
similarly to that described in [4]. We used a subset of 90,000 images from ImageNET [9], which
we downsampled by a factor 0.7 and trained on crops of 128× 128 pixels, with a batch size of 15.
To estimate the probability distribution p for optimizing (8), we maintain a histogram over 5,000
images, which we update every 10 iterations with the images from the current batch. Details about
other hyperparameters can be found in Appendix A.2.

The training of our autoencoder network takes place in two stages, where we move from an identity
function in the bottleneck to hard quantization. In the first stage, we train the autoencoder without any
quantization. Similar to [30] we gradually unfreeze the channels in the bottleneck during training (this
gives a slight improvement over learning all channels jointly from the start). This yields an efficient
weight initialization and enables us to then initialize σ0 and C as described above. In the second stage,
we minimize (6), jointly learning network weights and quantization levels. We anneal σ by letting the
gap between soft and hard quantization error go to zero as the number of iterations t goes to infinity.

Let eS = ‖F̃ (x)−x‖2 be the soft error, eH = ‖F̂ (x)−x‖2 be the hard error. With gap(t) = eH−eS
we can denote the error between the actual the desired gap with eG(t) = gap(t)− T/(T + t) gap(0),
such that the gap is halved after T iterations. We update σ according to σ(t+1) = σ(t)+KG eG(t),
where σ(t) denotes σ at iteration t. Fig. 3 in Appendix A.4 shows the evolution of the gap, soft and
hard loss as sigma grows during training. We observed that both vector quantization and entropy loss
lead to higher compression rates at a given reconstruction MSE compared to scalar quantization and
training without entropy loss, respectively (see Appendix A.3 for details).

Evaluation. To evaluate the image compression performance of our Soft-to-Hard Vector Quantiza-
tion Autoencoder (SHVQ) method we use four datasets, namely Kodak [2], B100 [31], Urban100 [14],
ImageNET100 (100 randomly selected images from ImageNET [25]) and three standard quality
measures, namely peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) [37], and
multi-scale SSIM (MS-SSIM), see Appendix A.5 for details. We compare our SHVQ with the
standard JPEG, JPEG 2000, and BPG [1], focusing on compression rates < 1 bits per pixel (bpp) (i.e.,
the regime where traditional integral transform-based compression algorithms are most challenged).
As shown in Fig. 1, for high compression rates (< 0.4 bpp), our SHVQ outperforms JPEG and JPEG
2000 in terms of MS-SSIM and is competitive with BPG. A similar trend can be observed for SSIM
(see Fig. 4 in Appendix A.6 for plots of SSIM and PSNR as a function of bpp). SHVQ performs
best on ImageNET100 and is most challenged on Kodak when compared with JPEG 2000. Visually,
SHVQ-compressed images have fewer artifacts than those compressed by JPEG 2000 (see Fig. 1,
and Fig. 5–12 in Appendix A.7).

Related methods and discussion. JPEG 2000 [29] uses wavelet-based transformations and adap-
tive EBCOT coding. BPG [1], based on a subset of the HEVC video compression standard, is the
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ACC COMP.

METHOD [%] RATIO

ORIGINAL MODEL 92.6 1.00

PRUNING + FT. + INDEX CODING + H. CODING [12] 92.6 4.52

PRUNING + FT. + K-MEANS + FT. + I.C. + H.C. [11] 92.6 18.25

PRUNING + FT. + HESSIAN-WEIGHTED K-MEANS + FT. + I.C. + H.C. 92.7 20.51

PRUNING + FT. + UNIFORM QUANTIZATION + FT. + I.C. + H.C. 92.7 22.17

PRUNING + FT. + ITERATIVE ECSQ + FT. + I.C. + H.C. 92.7 21.01

SOFT-TO-HARD ANNEALING + FT. + H. CODING (OURS) 92.1 19.15

SOFT-TO-HARD ANNEALING + FT. + A. CODING (OURS) 92.1 20.15

Table 1: Accuracies and compression factors for different DNN compression techniques, using a
32-layer ResNet on CIFAR-10. FT. denotes fine-tuning, IC. denotes index coding and H.C. and A.C.
denote Huffman and arithmetic coding, respectively. The pruning based results are from [6].

current state-of-the art for image compression. It uses context-adaptive binary arithmetic coding
(CABAC) [21].

SHVQ (ours) Theis et al. [30]

Quantization vector quantization rounding to integers
Backpropagation grad. of soft relaxation grad. of identity mapping
Entropy estimation (soft) histogram Gaussian scale mixtures
Training material ImageNET high quality Flickr images
Operating points single model ensemble

The recent works of [30, 5]
also showed competitive perfor-
mance with JPEG 2000. While
we use the architecture of [30],
there are stark differences be-
tween the works, summarized
in the inset table. The work of [5] build a deep model using multiple generalized divisive normaliza-
tion (GDN) layers and their inverses (IGDN), which are specialized layers designed to capture local
joint statistics of natural images. Furthermore, they model marginals for entropy estimation using
linear splines and also use CABAC[21] coding. Concurrent to our work, the method of [16] builds on
the architecture proposed in [33], and shows that impressive performance in terms of the MS-SSIM
metric can be obtained by incorporating it into the optimization (instead of just minimizing the MSE).

In contrast to the domain-specific techniques adopted by these state-of-the-art methods, our framework
for learning compressible representation can realize a competitive image compression system, only
using a convolutional autoencoder and simple entropy coding.

5 DNN Compression

For DNN compression, we investigate the ResNet [13] architecture for image classification. We adopt
the same setting as [6] and consider a 32-layer architecture trained for CIFAR-10 [18]. As in [6], our
goal is to learn a compressible representation for all 464,154 trainable parameters of the model.

We concatenate the parameters into a vector W ∈ R
464,154 and employ scalar quantization (m = d),

such that ZT = z = W. We started from the pre-trained original model, which obtains a 92.6%
accuracy on the test set. We implemented the entropy minimization by using L = 75 centers and
chose β = 0.1 such that the converged entropy would give a compression factor ≈ 20, i.e., giving
≈ 32/20 = 1.6 bits per weight. The training was performed with the same learning parameters as
the original model was trained with (SGD with momentum 0.9). The annealing schedule used was a
simple exponential one, σ(t+ 1) = 1.001 · σ(t) with σ(0) = 0.4. After 4 epochs of training, when
σ(t) has increased by a factor ≈ 20, we switched to hard assignments and continued fine-tuning at
a 10× lower learning rate. 2 Adhering to the benchmark of [6, 12, 11], we obtain the compression
factor by dividing the bit cost of storing the uncompressed weights as floats (464, 154× 32 bits) with
the total encoding cost of compressed weights (i.e., L× 32 bits for the centers plus the size of the
compressed index stream).

Our compressible model achieves a comparable test accuracy of 92.1% while compressing the DNN
by a factor 19.15 with Huffman and 20.15 using arithmetic coding. Table 1 compares our results with
state-of-the-art approaches reported by [6]. We note that while the top methods from the literature
also achieve accuracies above 92% and compression factors above 20×, they employ a considerable
amount of hand-designed steps, such as pruning, retraining, various types of weight clustering, special
encoding of the sparse weight matrices into an index-difference based format and then finally use

2 We switch to hard assignments since we can get large gradients for weights that are equally close to two

centers as Q̃ converges to hard nearest neighbor assignments. One could also employ simple gradient clipping.
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entropy coding. In contrast, we directly minimize the entropy of the weights in the training, obtaining
a highly compressible representation using standard entropy coding.

In Fig. 13 in Appendix A.8, we show how the sample entropy H(p) decays and the index histograms
develop during training, as the network learns to condense most of the weights to a couple of centers
when optimizing (6). In contrast, the methods of [12, 11, 6] manually impose 0 as the most frequent
center by pruning ≈ 80% of the network weights. We note that the recent works by [34] also manages
to tackle the problem in a single training procedure, using the minimum description length principle.
In contrast to our framework, they take a Bayesian perspective and rely on a parametric assumption
on the symbol distribution.

6 Conclusions

In this paper we proposed a unified framework for end-to-end learning of compressed representations
for deep architectures. By training with a soft-to-hard annealing scheme, gradually transferring
from a soft relaxation of the sample entropy and network discretization process to the actual non-
differentiable quantization process, we manage to optimize the rate distortion trade-off between the
original network loss and the entropy. Our framework can elegantly capture diverse compression
tasks, obtaining results competitive with state-of-the-art for both image compression as well as DNN
compression. The simplicity of our approach opens up various directions for future work, since our
framework can be easily adapted for other tasks where a compressible representation is desired.
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