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Abstract

We discuss the graded possibilistic model. We review some clustering algorithms de-
rived from the basic c-Means and introduce a formalism to provide an alternative, uni-
fied perspective on these clustering algorithms, focused on the memberships rather
than on the cost function. An interesting case is the concept of graded possibility. Its
formulation includes as the two extreme cases the “probabilistic” assumption and the
“possibilistic” assumption. A possible formulation can be stated as an interval equality
constraint enforcing both the normality condition and the required graded possibilistic
condition. We outline a basic example of graded possibilistic clustering algorithm.

The experimental demonstrations presented aim at highlighting the different prop-
erties attainable through appropriate implementation of a suitable graded possibilistic
model.
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1 Introduction

The clustering problem is usually stated as the task of partitioning a set of data
vectors or patterns X = {xk}, k ∈ {1, . . . ,n}, xk ∈ �

n by attributing each data point xk

to a subset ω j ⊂ X , j ∈ {1, . . . ,c}, defined by its centroid y j ∈ �
n. This attribution is

made based on a given distance d(·, ·).
The most widely used clustering method is probably the Fuzzy c-Means/Fuzzy ISO-

DATA [1][2][3] (FCM) algorithm, which is a “fuzzy relative” to the simple c-Means
technique [4]. FCM defines the ω j as fuzzy partitions of the data set X . Variations
over this basic scheme try to overcome some of its well-known limitations. The Deter-
ministic Annealing (or Maximum Entropy) approach [5][6] does not minimize a simple
cost term, but a compound cost function which is the sum of a distortion term Ê and
an entropic term −H (see the next section for the mathematical definitions). The op-
timization is done by fixing a constant value for one of the two terms and minimizing
the other; then this step is iterated for decreasing values of the constant, until a global
optimum is reached. This alleviates the false minima problem of standard c-Means and
(to a lesser extent) of FCM.

In decision-making and classification applications, algorithms should feature sev-
eral desirable properties in addition to the basic discrimination or decision function.
For instance, it is normally required that in certain configurations a decision is not
made (pattern rejection). This situation typically occurs in the presence of outliers.
This problem is very well-known and well studied (see for instance [7][8][9]), and is
tackled in a convenient way within the framework of soft-computing, fuzzy, and neural
approaches [10][11][12].

However, the clustering problem as stated above implies that the outlier rejection
property cannot be achieved. This is because the membership values are constrained
to sum to 1. By giving up the requirement for strict partitioning, and by resorting to
a “mode seeking” algorithm, Krishnapuram and Keller proposed the so-called possi-
bilistic approach [13][14], where this constraint is relaxed essentially to

u jk ∈ [0,1] ∀k,∀ j (1)

With this model outlier rejection can be achieved, but at the expense of a clear
cluster attribution and other computational drawbacks. The same issue of analysing
the membership interactions on a local basis, as opposed to the global effects induced
by the probabilistic model, is considered in [15].

Finally, we should mention that there are many other popular variations involv-
ing modified distance criteria to improve robustness or to account for different cluster
geometries (such as the Gustafson-Kessel method [16] or Bezdek’s Fuzzy c-Varieties
algorithm [17]), but the issues they address are not directly related to the present study.

In the remainder of this paper, we discuss the graded possibilistic model, which
introduces notable flexibility in the clustering process, while at the same time allowing
for some behaviors (such as outlier rejection) not attainable with standard approaches.

2 Some popular clustering algorithms: a unified view

2.1 The c-Means family

We will now review some clustering algorithms derived from the basic c-Means: (“hard”)
c-Means (HCM) [4], entropy-constrained fuzzy clustering by Deterministic Annealing

2



(DA) [5], Possibilistic c-Means with an entropic cost term (PCM-II) [14], Fuzzy c-
Means (FCM) [2]. All of these techniques are based on minimizing the following cost
function:

Ê =
c

∑
j=1

n

∑
k=1

u jkd jk. (2)

(this includes also FCM, although in the usual formulation this is not evident; see the
Appendix). We will refer collectively to these algorithms as the c-Means (CM) family.

Here u jk ∈ U is the degree of membership of pattern xk to cluster ω j and Y =
{y1, . . . ,yc}. Ê can be termed approximation error in data analysis problems, distortion
or quantization error in signal processing contexts, energy in physical analogies, risk
in decision-theoretic and statistical learning frameworks.

Miyamoto and Mukaidono [18] show that these algorithms are obtained by adding
to the basic cost Ê in (2) either regularization terms or the maximum-entropy term

−H =
c

∑
j=1

n

∑
k=1

u jk logu jk (3)

which represents the (negative) entropy of the clustering defined by Y,U . We propose
an alternative perspective to interpret these techniques and to unify them with the pos-
sibilistic approach.

In clustering problems the focus is commonly placed on the analysis of data and
clusters themselves, rather than on minimization of a global error criterion. We are
often more interested in characterizing (hopefully significant) groups of data than in
representing the details of the data with a faithful approximation. As an example,
model-based clustering approaches focus on cluster modeling rather than performance
optimization, and the cluster identification technique called Alternating Cluster Esti-
mation [19] does not even assume the existence of a cost function. The key observation
is that clustering is typically an exloratory phase of data analysis, and more accurate
statistical testing should be placed in a subsequent phase.

Therefore we will introduce a formalism to provide an alternative, unified perspec-
tive on these clustering algorithms, focused on the memberships u jk rather than on the
cost function. We will show that, apart from the possible addition of an entropic term,
these algorithms are characterized by specific feasible regions for the membership val-
ues.

2.2 A unifying formalism

A CM clustering problem is defined by fixing the pair {J,ψ}, where:

• J is the cost function

• ψ is the constraint on the set of cluster memberships, such that

ψ(u1k, . . . ,uck) = 0 ∀k ∈ {1,n}

All the CM algorithms considered define either:

J = Ê (4)

or:
J = Ê−H. (5)
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Table 1: The CM family of clustering algorithms

J ψ v jk Zk Notes

DA Ê−H ∑c
j=1 u jk−1 e−d jk/β ∑c

j=1 v jk β ∈ �, β > 0 is the inverse
temperature parameter to be
increased during the “an-
nealing” process.

PCM-II Ê−H 0 e−d jk/β j 1 β j ∈ �, β j > 0 are clus-
ter width parameters to
be selected a priori before
optimization.

FCM Ê ∑c
j=1 u1/m

jk −1 1/d jk

(

∑c
j=1 v1/(m−1)

jk

)m−1
m ∈�, m > 1 is the fuzzifi-
cation parameter.

HCM Ê ∑c
j=1 u jk−1 See note See note v jk and Zk can be written

as for FCM, but their values
have to be computed in the
limit for m → 1.

Moreover, all the CM algorithms considered require that u jk ∈ [0,1] ∀ j ∈ {1,c},
∀k ∈ {1,n} (normality condition).

Let v jk be the solution of a CM problem with constraint ψ removed (formally this
can be implemented with ψ≡ 0). We propose to call v jk the free membership of pattern
xk in cluster ω j.

As a consequence of these definitions, for all the CM algorithms considered the
cluster centroids Y are computed as:

y j =
∑n

k=1 u jkxk

∑n
k=1 u jk

(6)

which characterizes the c-Means principle and therefore the CM family. The member-
ships are computed as:

u jk =
v jk

Zk
, (7)

where Zk is the (generalized) partition function.

2.3 Review of the CM family

With the above set of definitions, the CM algorithms of interest are compactly described
as in Table 1.

All algorithms are fuzzy techniques, since they adopt the concept of “partial mem-
bership” in a set. HCM itself can be cast without imposing the constraint of binary
memberships. The relationships among these algorithms are clear from the table.

A method to allow for non-extreme solutions is the maximum entropy criterion,
which is implemented in the DA and PCM-II algorithms. They are related by the use
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of the entropic term −H, implying a parameter β j. This parameter is different for each
cluster and fixed in PCM-II, while it is constant for all clusters and varying with the
algorithm progress in DA. However, these differences are not of a fundamental nature.

In the optimization perspective, the parameters β j arise from the Lagrange multi-
plier related to the entropic term in the Lagrangian. From the standpoint of the cluster
model, they are related to cluster width. In PCM-II this term is even more crucial, since
membership values are not constrained (ψ ≡ 0). Membership values are thus allowed
to be simultaneously all zero and a means of biasing the solution toward nontrivial
values is necessary.

The entropic term in the cost gives rise to free memberships having the functional
form

v jk = e−d jk/β j , (8)

which characterizes both DA and PCM-II.
An alternative way to obtain non-extreme solutions is having a nonlinear, convex

Lagrangian by introducing nonlinear constraints. The memberships of the standard

FCM formulation are equivalent to our u1/m
jk , rather than u jk. Apart from this constant

transformation, our alternative formulation is equivalent and shows that the FCM prob-
lem optimizes the same cost function as HCM, but its feasible region is nonlinear (ψ is
nonlinear). This allows non-extreme solutions by acting on the membership model.

HCM can be cast as a linear programming problem, or a special case of the FCM
problem, therefore its solutions are found on the border of the feasibility region defined
by ψ. This means that the resulting memberships have extreme values within [0,1]:
either 0 or 1. This behavior, whereby the “hard” nature of this algorithm is inherent
and not a result of additional constraints, is easy to understand in the optimization
perspective, and is due to the absence of nonlinear components in the Lagrangian.

3 The graded possibilistic model

3.1 The concept of graded possibility

The classic membership model (either hard or fuzzy) implements the concept of par-
titioning a set into disjoint subsets. This is done through the so-called “probabilistic
constraint” by setting ψ(u1k, . . . ,uck) = ∑c

j=1 u jk − 1. Each membership is therefore
formally equivalent to the probability that an experimental outcome coincides with one
of c mutually exclusive events.

The possibilistic approach implies instead that each membership is formally equiv-
alent to the probability that an experimental outcome coincides with one of c mutually
independent events. This is due to the complete absence of a constraint on the set of
membership values (ψ≡ 0).

However, it is possible (and in practice it is frequent) that pairs of events are not
mutually independent, but are not completely mutually exclusive either. Instead, events
can provide partial information about other events. Of course, this is a problem-
dependent situation and accounting for it may or may not be appropriate.

An interesting case of partial information, in the context of the present research,
is the concept of graded possibility. The standard possibilistic approach to clustering
implies that all membership values are independent. In contrast, the graded possibilistic
model assumes that, when one of the c membership values is fixed, the other c− 1
values are constrained into a given interval contained in [0,1].

5



Clearly, this situation includes the possibilistic model, and also encompasses the
standard (“probabilistic”) approach.

An example of such graded possibility is given by a glass and by the fuzzy concepts
of “full” and “empty”. If the glass is full or almost full, its membership to the concept
“empty” should clearly be around zero, and similarly for the empty or almost empty
case. However, if the glass is half filled, it is much more difficult to assess the mem-
bership in the concept “empty” with similar confidence. The profile of the membership
functions in this case should be decided according to further considerations.

In summary, in these intermediate cases the membership function should not be
constrained by the cost function, but should be arbitrary to a certain degree.

3.2 Modeling graded possibility

A class of constraints ψ, which includes the probabilistic and the possibilistic cases,
can be expressed by the following unified formulation:

ψ =
c

∑
j=1

u[ξ]
jk −1, (9)

where [ξ] is an interval variable representing an arbitrary real number included in the
range [ξ,ξ ]. This interval equality should be interpreted as follows: there must exist a

scalar exponent ξ∗ ∈ [ξ,ξ ] such that the equality ψ = 0 holds.
This constraint enforces both the normality condition and the required probabilistic

or possibilistic constraints; in addition, for nontrivial finite intervals [ξ], it implements
the required graded possibilistic condition.

The constraint presented above can be implemented in various ways. A particular
implementation is as follows: the extrema of the interval are written as a function of a
running parameter α, where

ξ = α ξ =
1
α

(10)

and
α ∈ [0,1] (11)

This formulation includes as the two extreme cases:

• The “probabilistic” assumption:
α = 1

[ξ] = [1,1] = 1

c

∑
j=1

u jk = 1

• The “possibilistic” assumption:
α = 0

[ξ] = [0,∞]

c

∑
j=1

u0
jk ≥ 1

c

∑
j=1

u∞
jk ≤ 1
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Figure 1: Bounds of the feasible region for u jk for different values of α (decreasing
from 1 to 0 along the direction of the arrows)

The latter case can be better understood as the limit of the process of bringing
α → 0. The interval exponent [ξ] expands, so that the actual value can be any arbi-
trary number between α and 1/α. Therefore, each equation containing an interval is
equivalent to a set of two inequalities:

c

∑
j=1

uα
jk ≥ 1

c

∑
j=1

u1/α
jk ≤ 1.

This is graphically depicted in Figure 1, where the bounds of the feasible regions
are plotted, for c = 2, for values of α which decrease in the direction of the arrows.

In the first limit case, the feasible values for u jk must lie on a one-dimensional
set (a line segment). In the second limit case, the feasible values for u jk are in the
unity square, a two-dimensional set. In intermediate cases, the feasible values are on
two-dimensional sets which however do not fill the whole square, but are limited to an
eye-shaped area around the line segment.

Another implementation of the interval constraint is used in the outlier rejection
application as explained in Subsection 5.4. In this case the upper extremum of [ξ] is
fixed to 1 and the lower extremum is α.

4 Sample algorithm

In this section we outline a basic example of graded possibilistic clustering algorithm.
This is an application of the ideas in the previous section. However, it is possible to
apply many variations to this algorithm, so that appropriate properties can be obtained.
Some of these variations will be presented and demonstrated in the experimental sec-
tion.

For the proposed algorithm implementations, the free membership function has
been selected as in the DA and PCM-II algorithms:

v jk = e−d jk/β j . (12)

The generalized partition function can be defined as follows:

Zk =
c

∑
j=1

v ζ
jk (13)
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where:

ζ = 1/α if ∑c
j=1 v1/α

jk > 1

ζ = α if ∑c
j=1 vα

jk < 1

ζ = 1 else.

These definitions ensure that, for α = 1, the algorithm reduces to standard DA,
whereas in the limit case for α = 0, the algorithm is equivalent to PCM-II.

In both cases, the required value for the β j can be assessed from previous experi-
ments, possibly in an independent way for each cluster (as done in PCM), or gradually
lowered in an iterated application of the algorithm (as done in DA).

Algorithm: Graded possibilistic clustering

select c

select alphastep ∈�

randomly initialize y j

for α = 1 downto 0 by alphastep do
begin

compute v jk using (12)

compute Zk using (13)

compute u jk = v jk/Zk
if stopping criterion satisfied then stop

else compute y j using (6)

end

5 Demonstrations and applications

5.1 Experimental demonstrations

The experimental demonstrations presented here aim at highlighting the different prop-
erties attainable through appropriate implementation of a suitable graded possibilistic
model. These include: demonstration of the concept of graded possibility, use of a-
priori knowledge, outlier rejection.

5.2 Demonstration of the Graded Possibilistic approach

To show the properties of graded possibilistic clustering we use the toy training set
shown in Figure 2. It is a simple, two-dimensional data set composed of 2 Gaussian-
distributed clusters (50 points each), with centers indicated by the larger, black squares.
Centers are located at (.7,.7) for cluster 1 and (.3,.3) for cluster 2. All data lie in the
unit square.

We run the graded possibilistic clustering algorithm in 10 steps, with ξ = 1/α and
ξ = α as in the sample algorithm of Section 4, and α decreasing from 1 to 0. We
analyze the resulting memberships for different settings of the constraints.

We focus on memberships of three representative points. Point #9 in the data set
is located at (.3,.3), i.e., it coincides with one cluster center. Point #10 is at (.53,.51),
half-way from each center. Point #67 is at (.84,.34), quite far from both centers.
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Figure 2: Toy problem to evaluate the behaviour of the algorithm.

Figure 3 shows the membership of each of these three data points in cluster 1 (solid
line) and in cluster 2 (dashed line) for various steps of the clustering algorithms, corre-
sponding to decreasing values of α from 1 to 0.

Point #9 is clearly attributed to cluster 2. Its distance is so small that its membership
are “stuck” at 0 (for cluster 1) and 1 (for cluster 2), repectively.

Point #10 should be attributed to both clusters with approximately the same mem-
bership value. However, since it is on the separating boundary, it is far from any cluster,
so that, when α decreases and the model becomes more possibilistic, the memberships
also decrease from .6 and .4 to .15 and .25 (respectively for clusters 1 and 2).

Point #67 is clearly an outlier. However, in the first step of the algorithm, it is
classified as belonging in cluster 1 with high degree (almost 1). In the further steps,
with the transition to the possibilistic model, the values are reduced to about 0 and .07,
respectively.

Figure 4 shows a 3-d plot of membership values to each cluster for every point in
the plane, for the two extreme values α = 1 and α = 0. The different shape of the
memberships, especially for points far from the separating line, is apparent. However
Figure 5 clarifies further this result, by detailing the profile (intersection of the mem-
bership functions with the diagonal plane x1 = x2) for three values of α, two extreme
and one intermediate (1, .5, and 0).

A similar analysis is presented in Figure 6. This experiment is performed on the
usual Iris dataset [20] obtained from the UCI Machine Learning Repository [21]. (The
Iris problem is a 4-dimensional, 150-pattern data set with 3 classes represented by 50
patterns each.)

Here the profiles of memberships are plotted for 2 of the 3 clusters and for 2 of
the 4 input dimensions, so that two-dimensional analysis is again possible. The figure
shows membership profiles for α = 1.0, α = 0.5, and α = 0.0. It is possible to tune
the desired trade-off between the possibilistic clustering and the partitioning behavior,
by deciding to what extent the algorithm should be forced to make a decision on data
points on the decision border or on the exterior part of the data distribution.
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Figure 3: Memberships of points #9, #10, and #67 in each cluster.
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Figure 4: Plot of memberships for α = 1 (above) and for α = 0 (below).

5.3 Using a-priori knowledge

This experimental demonstration illustrates the use of a suitable value for α to improve
the results with respect to the extreme cases (probabilistic and pure possibilistic). In
this case the optimum value is inferred from the results but not used (for lack of a test
set); in real applications it can be estimated on the training set prior to use on new data.

We show sample results from the following unsupervised classification experiment.
First, the graded possibilistic clustering procedure was applied to the Iris data set. Only
one cluster center per class was used (c = 3). Then the cluster memberships were
“defuzzified” by setting the maximum to 1 and the other two to 0. Subsequently, the
hard memberships were used to associate class labels to each cluster (by majority).
Finally, the classification error was evaluated.

The classification error percentages as a function of α are shown in Figure 7.
Although these are only a sample of the results, which may have been different in
other runs, the profile of the graph was qualitatively almost constant in all trials. The
best classification performance with c = 3 was 7.3% error, which means 11 mistaken
points.

In all experiments this value was obtained for intermediate values of α, between 0.3
and 0.7. In other words, the graded possibilistic model was able to catch the true distri-
butions of data better than either the probabilistic or the possibilistic approaches. The
pure possibilistic case gave rise (as in the results presented in the figure) to a percent-
age of cases with overlapping cluster centers, in accordance with previous experimental
observations [14].

The error levels can be categorized into three classes. The first is around the op-
timum (11 or 12 or occasionally 13 wrong classifications). The second, sometimes
observed in the pure possibilistic case, is the case of overlapping clusters, with about
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Figure 5: Projection of the same memberships as in Figure 4 on the diagonal of the
square area. Above: α = 1; middle: α = 0.5; below: α = 0.
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Figure 6: Two-dimensional plot of memberships for α = 1.0 (above), for α = 0.5
(middle), and for α = 0.0 (below) for the Iris dataset (same analysis as in Figure 5).
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33% error rate. The third, above 10%, is typical of the probabilistic case, where com-
petition among clusters does not allow optimal placement of the cluster centers.

5.4 Outlier rejection

To implement the outlier rejection functionality, the feasible region should be made
asymmetric:

c

∑
j=1

u jk ≤ 1 and
c

∑
j=1

uα
jk ≥ 1. (14)

This ensures that the clustering model is as follows. When there is competition
among the clusters, i.e., many memberships tend to be close to 1, the membership
values are normalized to sum to 1 (first constraint). When memberships are all low,
there is no clear attribution to any cluster, so they are free to take on low values (second
constraint).

Rejection is then done by selecting a membership threshold, which could be dif-
ferent for each cluster and obtained for instance by statistical analysis of the individual
cluster distribution. Patterns for which no membership in any cluster exceeds the ap-
propriate threshold are rejected.

However, even without explicit outlier analysis, the algorithm becomes very robust
with respect to the presence of outliers.

The experiments involve a set of three Gaussian clusters, plus a very wide back-
ground data distribution (see Figure 8). Data are in the unit square; there are 600 data
points of which a given percentage is clustered in 3 Gaussian clusters (again centers are
marked with black squares), and the others are spread in the background, with higher
density in the proximity of the unit square corners and perimeter. The proportion of
outliers to clustered points was varied from 10% to 90%.

From the experimental results in Figure 9, obtained with an outlier-to-clustered
ratio of 90%-10%, it is possible to compare the behavior of the graded possibilistic
model with the behavior of standard “probabilistic” clustering. Centers found with the
proposed model are clearly much closer to true cluster centers than those found with
the “probabilistic” model (the residual error being due mostly to the random sampling,
so that the barycenter of the data points in a given cluster does not coincide with the
true cluster center). By inspection of the membership values, we have verified that this
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Figure 8: Dataset for the outlier rejection demonstration.

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1

Figure 9: Results for the outlier rejection demonstration. Black circles: true cluster
centers; triangles: centers found with α = 0 (maximum rejection); squares: centers
found with α = 1 (no rejection).
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is not a true possibilistic case: no two memberships ever approach 1 simultaneously.
Therefore, either a pattern is rejected, or it is uniquely labeled.

6 Conclusion

The concept of graded possibility applied to clustering, which has been presented in
this paper, allows the implementation of specific properties in the c-Means family
of clustering techniques. With appropriate selection of some parameters, an entropy-
constrained version of c-Means can implement partitioning, mode-seeking, constrain-
ing by prior knowledge, outlier rejection.

We expect that this flexible behavior will be proficently exploited in the currently
active research areas of Web content analysis, document data mining, preprocessing
of space mission data, DNA microarray data analysis, since they allow the clustering
algorithm to be tailored on the specific demands of a given applicative problem.

Appendix

We prove here that the proposed formulation of the FCM algorithm is equivalent to
the standard formulation, in the sense that solutions of the necessary conditions for
extrema of the Lagrangian for the two methods are coincident apart from a constant
(fixed) transformation.

Let L̂ be the Lagrangian of the standard Fuzzy c-Means problem:

L̂ =
n

∑
k=1

c

∑
j=1

ûm
jkd jk +

n

∑
k=1

λk

(

c

∑
j=1

û jk−1

)

(15)

(where λk is the Lagrange multiplier for the probabilistic constraint on the set of mem-
berships of the k-th data point).

Let now L be the Lagrangian of the proposed Fuzzy c-Means problem formulation.
In this case the error term of the Lagrangian is Ê as in HCM, and the feasible region
for the memberships is modified. Therefore:

L =
n

∑
k=1

c

∑
j=1

u jkd jk +
n

∑
k=1

λk

(

c

∑
j=1

u1/m
jk −1

)

(16)

The proof of the following proposition is straightforward, but for completeness we
provide it with some algebraic details.

Theorem 1 Solving the FCM problem in the standard formulation is equivalent to
solving the FCM problem in the proposed alternative formulation with the substitution
ûm

jk = u jk

Proof: It is well known that, in the standard problem setting for FCM, cluster
centers and memberships are given respectively by

y j =
n

∑
k=1

um
jkxk

um
jk

and u jk =

[

c

∑
l=1

(

d jk

d jl

)1/(m−1)
]−1

(17)

in the hypothesis of Euclidean distance measure (which we assume for simplicity of
exposition, but in this context this does not affect the results in any significant way).
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The solution of ∇L = 0 is worked out as follows. From the condition ∂L
∂y j

= 0 we

have:

∂L
∂y j

= u jk
∂d jk

∂y j
= 2u jk(y j− xk) = 0 (18)

so that

y j =
∑n

k=1 u jky j

∑n
k=1 u jk

, (19)

that is, the HCM centroid formula.
From the condition ∂L

∂u jk
= 0 we have:

∂L
∂u jk

= d jk +λk
1
m

u
1−m

m
jk (20)

u jk =

(

λk/m
d jk

)m/(m−1)

(21)

From the condition ∂L
∂λk

= 0 we have:

c

∑
j=1

u1/m
jk =

c

∑
j=1

(

λk/m
d jk

)1/(m−1)

= 1, (22)

therefore

λk

m
=

[

c

∑
j=1

(

1
d jk

)1/(m−1)
]1−m

(23)

Substituting (23) into (21) yields

u jk =
(λk/m)m/(m−1)

dm/(m−1)
jk

=

=

[

c

∑
l=1

(

dlk

d jk

)1/(m−1)
]−m

(24)

The expressions in (19) and (24) differ from those in (17) only by a constant expo-
nent m in the memberships (that is, ûm

jk = u jk), which proves the assertion.
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