SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION

This self-contained, comprehensive book describes the fundamental properties of soft x-rays and extreme ultraviolet (EUV) radiation and discusses their applications in a wide variety of fields, including EUV lithography for semiconductor chip manufacture and soft x-ray biomicroscopy.

The author begins by presenting the relevant basic principles such as radiation and scattering, wave propagation, diffraction, and coherence. He then goes on to examine a broad range of phenomena and applications. Each chapter begins with a simple summary of key results and concepts, followed by an introduction with little or no mathematics so as to be accessible to the widest possible audience. This is followed by a detailed mathematical development of the theoretical structure of the subject in question. The topics covered include EUV lithography, biomicroscopy, spectromicroscopy, EUV astronomy, synchrotron radiation, and soft x-ray lasers.

The author also provides a great deal of useful reference material such as electron binding energies, characteristic emission lines, and photoabsorption cross-sections. The book will be of great interest to graduate students and researchers in engineering, physics, chemistry, and the life sciences. It will also appeal to practicing engineers involved in semiconductor fabrication and materials science.

David Attwood is the Director of the Center for X-Ray Optics at the Lawrence Berkeley National Laboratory. He is also a Professor in Residence in both the Department of Electrical Engineering and Computer Science and the Graduate Group in Applied Science and Technology at the University of California, Berkeley. He is a Fellow of the Optical Society of America and has published over 100 scientific articles.

SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION

Principles and Applications

DAVID ATTWOOD

UNIVERSITY OF CALIFORNIA, BERKELEY AND LAWRENCE BERKELEY NATIONAL LABORATORY

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521652148

© Cambridge University Press 1999

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1999 This digitally printed first paperback version (with amendments) 2007

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Attwood. David T. Soft x-rays and extreme ultraviolet radiation : principles and applications / David Attwood. p. cm. Includes bibliographical references. ISBN 0-521-65214-6 (hbk.) 1. Grenz rays. 2. Ultraviolet radiation. I. Title. QC482.G68A88 1999 539.7'222 - dc21 99-21078 CIP

ISBN-13 978-0-521-65214-8 hardback ISBN-10 0-521-65214-6 hardback

ISBN-13 978-0-521-02997-1 paperback ISBN-10 0-521-02997-X paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

The colour figures referred to in this publication have been replaced with black and white images for this digital reprinting. At the time of going to press the original images were available in colour for download from <u>http://www.cambridge.org/9780521029971</u>

> To Professors Stanley Goldstein and Nathan Marcuvitz

Contents

PREFACE		<i>page</i> xiii
ACKNO	DWLEDGMENTS	XV
CHAPT	ER 1. INTRODUCTION	1
1.1	The Soft X-Ray and Extreme Ultraviolet Regions of the Electromagnetic Spectrum	1
1.2	Basic Absorption and Emission Processes	5
1.3	Atomic Energy Levels and Allowed Transitions	10
1.4	Scattering, Diffraction, and Refraction of Electromagnetic Radiation	18
References		21
Homework Problems		23
CHAPT	ER 2. RADIATION AND SCATTERING AT EUV AND SOFT X-RAY WAVELENGTHS	24
2.1	Maxwell's Equations and the Wave Equation	24
2.2	Calculating Scattered Fields	27
2.3	Radiated Power and Poynting's Theorem	33
2.4	Scattering Cross Sections	38
2.5	Scattering by a Free Electron	39
2.6	Scattering by Bound Electrons	41
2.7	Scattering by a Multi-electron Atom	44
References		53
Home	work Problems	54
CHAPT	ER 3. WAVE PROPAGATION AND REFRACTIVE INDEX AT EUV AND SOFT	
	X-RAY WAVELENGTHS	55
3.1	The Wave Equation and Refractive Index	56
3.2	Phase Variation and Absorption of Propagating Waves	61
3.3	Reflection and Refraction at an Interface	66
3.4	Total External Reflection of Soft X-Rays and EUV Radiation	69

viii

CONTENTS

Cambridge University Press 978-0-521-02997-1 - Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications David Attwood Frontmatter <u>More information</u>

3.5	Reflection Coefficients at an Interface	71
	 3.5.1 E₀ Perpendicular to the Plane of Incidence 3.5.2 E₀ Parallel to the Plane of Incidence 	71 77
3.6	Brewster's Angle	80
3.7	Field Penetration into a Lossy Medium Near the Critical Angle	82
3.8	Determination of δ and β : The Kramers–Kronig Relations	90
3.9	Applications to Glancing Incidence Optics	94
3.10	Enhanced Reflectivity from Periodic Structures	95
Refer	ences	96
Home	work Problems	97
CHAPT	ER 4. MULTILAYER INTERFERENCE COATINGS	98
4.1	Introduction	98
4.2	Constructive Interference of Scattered Radiation	99
4.3	Computational Model for Calculating Reflection from a Multilayer Mirror	103
4.4	Multilayer Fabrication	106
4.5	Applications of Multilayer Coated Optics	107
	4.5.1 Soft X-Ray and Extreme Ultraviolet Photoemission Microscopy	
	for Surface Science	108
	4.5.2 Extreme Ultraviolet and Soft X-Ray Astronomy4.5.3 Extreme Ultraviolet Lithography	108 110
	4.5.4 Plasma Diagnostics	110
	4.5.5 Polarization Studies of Magnetic Materials	113
	4.5.6 The X-Ray Microprobe	116
Refer	ences	119
Home	work Problems	122
CHAPT	ER 5. SYNCHROTRON RADIATION	123
5.1	Introduction	124
5.2	Characteristics of Bending Magnet Radiation	126
5.3	Characteristics of Undulator Radiation	135
	5.3.1 Undulator Radiation Pattern	137
	5.3.2 The Central Radiation Cone	139
5.4	Undulator Radiation: Calculations of Radiated Power, Brightness,	
	and Harmonics	141
	5.4.1 The Undulator Equation	141
	5.4.2 Comments on Undulator Harmonics5.4.3 Power Radiated in the Central Radiation Cone	146 147
	5.4.4 Power as a Function of Angle and Total Radiated Power	147
	5.4.5 Spectral Bandwidth of Undulator Radiation	161
	5.4.6 Spectral Brightness of Undulator Radiation	165
	5.4.7 Time Structure	168
	5.4.8 Polarization Properties of Undulator Radiation	170
5.5	The Scale of Harmonic Motion	172

Cambridge University Press	
978-0-521-02997-1 - Soft X-Rays and Ext	reme Ultraviolet Radiation: Principles and Applications
David Attwood	
Frontmatter	
More information	

		CONTENTS	ix
5.6	The Transition from Undulator to Wiggler Radiation	177	
5.7		182	
5.7 5.8	Wiggler Power and Flux Femtosecond Pulse Generation	182	
	prences	186	
Hom	nework Problems	188	
CHAF	PTER 6. PHYSICS OF HOT DENSE PLASMAS	189	
6.1	Introduction	190	
6.2	Short and Long Range Interactions in Plasmas	191	
6.3	Basic Parameters for Describing a Plasma	195	
6.4	Microscopic, Kinetic, and Fluid Descriptions of a Plasma	197	
	6.4.1 The Microscopic Description	197	
	6.4.2 The Kinetic Description	200	
	6.4.3 The Fluid Description	202	
	6.4.4 Plasma Expansion	211	
	6.4.5 Electron-Acoustic Waves6.4.6 Ion-Acoustic Waves	213 217	
	6.4.7 Transverse Electromagnetic Waves in a Plasma	217	
	6.4.8 Resonance Absorption	227	
	6.4.9 Waves in a Magnetized Plasma	227	
	6.4.10 Non-linear Processes in a Plasma	227	
	6.4.11 Threshold for Non-linear Processes	232	
6.5	Numerical Simulations	234	
	6.5.1 Particle in Cell Simulations	234	
	6.5.2 Langrangian Zonal Calculations of Plasma Mass and Energy Transport	236	
6.6	Density Gradients: UV and EUV Probing	238	
6.7	X-Ray Emission from a Hot Dense Plasma	241	
	6.7.1 Continuum Radiation and Blackbody Spectra	242	
	6.7.2 Line Emission and Ionization Bottlenecks	246	
	6.7.3 Sub-kilovolt Line and Continuum Emissions	248	
	6.7.4 Multi-kilovolt Line Emission	254	
	6.7.5 Suprathermal X-Rays	256	
60	6.7.6 Laser Wavelength Trends	257	
6.8 Pofe	High Harmonic Generation with Femtosecond Laser Pulses prences	259 261	
	nework Problems	266	
11011		200	
	PTER 7. EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS	267	
7.1	Basic Processes	268	
7.2	Gain	274	
7.3	Recombination Lasing with Hydrogen-like Carbon Ions	279	
7.4	Collisionally Pumped Neon-like and Nickel-like Lasers	283	
7.5	Compact EUV Lasers	291	

x CONTENTS

References		295
Homework Problems		
	ER 8. COHERENCE AT SHORT WAVELENGTHS	300
8.1	Concepts of Spatial and Temporal Coherence	301
8.2	Examples of Experiments that Require Coherence	306
8.3	Spatial and Spectral Filtering	309
8.4	Spatial and Spectral Filtering of Undulator Radiation	310
8.5	Spatially Coherent EUV and Soft X-Ray Lasers	318
8.6	The Van Cittert–Zernike Theorem	321
8.7	Examples of High Contrast Fringes Formed at Short Wavelengths	330
Refer	ences	333
Home	ework Problems	336
снарт	FER 9. SOFT X-RAY MICROSCOPY WITH DIFFRACTIVE OPTICS	337
9.1	Introduction	338
9.1 9.2	The Fresnel Zone Plate Lens	338 342
9.2 9.3		342 349
9.5	Diffraction of Radiation by Pinhole Apertures and Zone Plates 9.3.1 Pinhole Aperture	349 351
	9.3.2 Zone Plate	353
9.4	Spatial Resolution of a Zone Plate Lens	357
9.5	Depth of Focus and Spectral Bandwidth	361
9.6	Spatial Resolution Beyond the Rayleigh Limit: The Effective Angular	
	Illumination Profile	363
9.7	High Resolution Soft X-Ray Microscopy	365
	9.7.1 The Soft X-Ray Microscope	366 367
0.0	9.7.2 The Scanning Soft X-Ray Microscope	
9.8	Applications to the Life Sciences 9.8.1 Biological Applications of the Soft X-Ray Microscope	369 372
	9.8.2 Biological Applications of the Scanning Soft X-Ray Microscope	372
9.9	Applications to the Physical Sciences: Analytic Tools for Materials and	
	Surface Science at Spatial Resolutions Below 100 Nanometers	379
9.10	Zone Plate Fabrication	385
Refer	ences	388
Home	ework Problems	394
СНАРТ	ER 10. EXTREME ULTRAVIOLET AND X-RAY LITHOGRAPHY	395
10.1	Deep Ultraviolet (DUV) Lithography and Beyond	396
10.1	Extreme Ultraviolet (EUV) Lithography	404
10.2	X-Ray Proximity Lithography	408
		400
References Homework Problems		416
numework r100lems		110

		CONTENTS	xi
	DIX A. UNITS AND PHYSICAL CONSTANTS	417	
A.1	The International System of Units (SI)	417	
A.2	Physical Constants	419	
Refere	ences	419	
APPEN	DIX B. ELECTRON BINDING ENERGIES, PRINCIPAL K- AND L-SHELL EMISSION LI		
DC	AND AUGER ELECTRON ENERGIES	420	
Refere	ences	427	
APPEN	DIX C. ATOMIC SCATTERING FACTORS, ATOMIC ABSORPTION COEFFICIENTS,		
	AND SUBSHELL PHOTOIONIZATION CROSS-SECTIONS	428	
Refere	ences	439	
APPEN	IDIX D. MATHEMATICAL AND VECTOR RELATIONSHIPS	440	
D.1	Vector and Tensor Formulas	440	
D.2	Series Expansions	441	
D.3	Trigonometric Relationships	442	
D.4	Definite Integrals	443	
D.5	Functions of a Complex Variable	444	
D.6	Fourier Transforms	447	
D.7	The Dirac Delta Function	447	
D.8	The Cauchy Principal Value Theorem	447	
Refer	ences	448	
APPEN	DIX E. SOME INTEGRATIONS IN k , ω -SPACE	449	
APPEN	IDIX F. LORENTZ SPACE-TIME TRANSFORMATIONS	454	
F.1	Frequency and Wavenumber Relations	456	
F.2	Angular Transformations	458	
F.3	The Lorentz Contraction of Length	460	
F.4	Time Dilation	460	
F.5	Transforming $dP'/d\Omega'$ to $dP/d\Omega$	461	
References		464	
INDEX		465	

Preface

This book is intended to provide an introduction to the physics and applications of soft xrays and extreme ultraviolet (EUV) radiation. These short wavelengths are located within the electromagnetic spectrum between the ultraviolet, which we commonly associate with sunburn, and harder x-rays, which we often associate with medical and dental imaging. The soft x-ray/EUV region of the spectrum has been slow to develop because of the myriad atomic resonances and concomitant short absorption lengths in all materials, typically of order one micrometer or less. This spectral region, however, offers great opportunities for both science and technology. Here the wavelengths are considerably shorter than visible or ultraviolet radiation, thus permitting one to see smaller features in microscopy, and to write finer patterns in lithography. Furthermore, optical techniques such as high spatial resolution lenses and high reflectivity mirrors have been developed that enable these applications to a degree not possible at still shorter wavelengths. Photon energies in the soft x-ray/EUV spectral region are well matched to primary resonances of essentially all elements. While this leads to very short absorption lengths, typically one micrometer or less, it provides a very accurate means for elemental and chemical speciation, which is essential, for instance, in the surface and environmental sciences. Interestingly, water is relatively transparent in the spectral region below the oxygen absorption edge, providing a natural contrast mechanism for imaging carbon-containing material in the spectral window extending from 284 to 543 eV. This provides interesting new opportunities for both the life and the environmental sciences.

Exploitation of this region of the spectrum is relatively recent. Indeed the names and spectral limits of soft x-rays and extreme ultraviolet radiation are not yet uniformly accepted. We have chosen here to follow the lead of astronomers, the lithography community, and much of the synchrotron and plasma physics communities in taking extreme ultraviolet as extending from photon energies of about 30 eV to 250 eV (wavelengths from about 40 nm to 5 nm) and soft x-rays as extending from about 250 eV (just below the carbon K edge) to several thousand eV (wavelengths from 5 nm to about 0.3 nm). The overlaps with ultraviolet radiation on the low photon energy side and with x-rays on the high photon energy side of the spectrum are not well defined. For comparison, green light has a photon energy in the vicinity of 2.3 eV and a wavelength of 530 nm. Recent developments involve advances in both science and technology, moving forward in a symbiotic relationship. Of particular importance is the development of nanofabrication techniques by the electronics industry. These provide well-defined structures with feature sizes similar to the wavelengths of interest here. The development of thin film multilayer coating capabilities by the materials science community has also been of great importance.

xiv PREFACE

This book is intended for use by graduate students and researchers from physics, chemistry, engineering, and the life sciences. It is an outgrowth of classes I have taught during the past 14 years at the University of California at Berkeley. Typically the students in these classes were from the Ph.D. programs in Applied Science and Technology, Electrical Engineering and Computer Science, Physics, Chemistry, Materials Science, Nuclear Engineering, and Bioengineering. In some cases there were undergraduate students. This diversity of academic backgrounds has led to a text well suited for interdisciplinary pursuits. The text is intended to be comprehensive, covering basic knowledge of electromagnetic theory, sources, optics, and applications. It is designed to bring readers from these backgrounds to a common understanding with reviews of relevant atomic physics and electromagnetic theory in the first chapters. The remaining chapters develop understanding of multilayer coated optics with applications to materials science and EUV astronomy; synchrotron and undulator radiation; laser-produced plasmas; EUV and soft-x-ray lasers; coherence at short wavelengths; zone plate lenses and other diffractive structures with applications to biomicroscopy, materials microscopy and inspection of nanostructure patterns; and, finally, a chapter on the application of EUV and soft x-ray lithography to future high-volume production of sub-100 nm feature size electronic devices.

While the book is comprehensive in nature, it is meant to be accessible to the widest possible audience. Each chapter begins with a short summary of the important points in the material, illustrations that capture the main subject matter, and a few selected equations to whet the academic appetite. Most chapters have introductory sections designed for readers new to the field that include heuristic arguments and illustrations meant to clarify basic concepts. Each chapter also contains a mathematical development of equations for graduate students and specialists with particular interest in the chapter subject matter. To follow these mathematical developments, an undergraduate training in vector calculus and Fourier transforms is required. Descriptions of current applications in the physical and life sciences are incorporated. While there is a rigorous mathematical development, it is possible to absorb important concepts in the introductory material and then skip directly to the applications. Homework problems, which may be found at the website http://www.coe.berkeley.edu/AST/sxreuv, are designed to strengthen understanding of the material, to familiarize the reader with units and magnitudes, and to illustrate application of various formulas to current applications.

Over 600 references are provided to serve as an entry point to current research and applications. To facilitate use as a reference work many of the more important equations are boxed. In some cases the equations are repeated in numerical form, with common units, for more convenient use in a handbook fashion. Reference appendicies include tables of electron binding energies, characteristic emission lines, tables and graphs of real and imaginary scattering factors for many elements, graphs of calculated photo-absorption cross-sections, updated physical constants, and a convenient list of vector and mathematical relations. The International System of Units (SI) is also summarized, with lists of derived units and conversion factors commonly used in this field.

> Berkeley, California June 1999

Acknowledgments

It is my pleasure to acknowledge the sustained efforts, over several years, of Rudolf (Bob) Barton and Linda Geniesse. Bob typed and edited several versions of the text, carefully setting all the equations and showing great patience as I constantly revised the text and references. Linda, my wife, was responsible for all of the figures and created all of the original artwork, which I believe will benefit readers. She too showed patience far beyond reasonable expectations as we fine-tuned the artwork many times over for maximum clarity.

This book is a direct descendant of notes used at UC Berkeley in classes taught in thirteen of the past fourteen years. As such its content, method of presentation, and level of detail have been greatly influenced by Cal students. Their probing questions, discussions in class, occasional puzzled looks, contributions to homeworks, critical advice, and suggestions at semesters end have affected every paragraph of this book. I greatly appreciate their contributions. In particular I wish to acknowledge specific contributions by Kostas Adam, Junwei Bao, H. Raul Beguiristain, Kevin Bowers, Matt Brukman, Chang Chang, Gregory Denbeaux (Duke University), Eric DeVries, Daniel Finkenthal, Andrea Franke, Qian Fu, Ernie Glover, Kenneth Goldberg, Susanna Gordon, Joseph Heanue, Ronald Haff (UC Davis), John Heck, W.R. (Tony) Huff, Nasif Iskander, Ishtak Karim, Chih-wei Lai, Luke Lee, Sang Hun Lee, Yanwei Liu, Martin Magnuson (Uppsala University), Edward Moler, Vladimir Nikitin, Khanh Nguyen, Tai Nguyen, Tom Pistor, Nen-Wen Pu, Richard Schenker, Robert Socha, Regina Soufli, Alan Sullivan, Edita Tejnil, Akira Villar, Max Wei, Yan Wu, and Andrew Zenk.

The book has also benefited substantially from colleagues near and far. In preparing lectures I have sought advice and clarification from members of the Center for X-Ray Optics at Lawrence Berkeley National Laboratory. James Underwood provided original material and helpful insights on many occasions, Eric Gullikson modified many tables and graphs for use in the text, and Kwang-Je Kim, now at Argonne National Laboratory and the University of Chicago, patiently tutored me on the subject of synchrotron radiation. Werner Meyer-IIse, Stanley Mrowka, Erik Anderson, Jeffrey Bokor (also of UC Berkeley), Patrick Naulleau, and Kenneth Goldberg each made contributions in their areas of expertise. Several of them also read particular chapters of the text and provided critical feedback. Michael Lieberman of UC Berkeley also read several early chapters and provided feedback. Portions of Chapters 2 and 6 follow lectures by Nathan Marcuvitz, then at New York University.

From a greater distance many other colleagues helped to improve the text by reading specific chapters and suggesting a wide range of improvements, corrections, and additions. For this I am grateful to Ingolf Lindau (Stanford and Lund Universities), Bernd Crasemann (University of Oregon), Joseph Nordgren (Uppsala University), David Windt (Lucent

xvi ACKNOWLEDGMENTS

Technologies), Claude Montcalm (LLNL), Eric Ziegler (ESRF), Alexandre Vinogradov (Lebedev Physical Institute), Albert Hofmann (CERN), R. Paul Drake (University of Michigan), R. Kauffman (LLNL), Andrei Shikanov (Lebedev Physical Institute), Luiz DaSilva (LLNL), Syzmon Suckewer (Princeton University), Jorge Rocca (Colorado State University), Emil Wolf (University of Rochester), Günter Schmahl (Göttingen University), Janos Kirz (SUNY, Stony Brook), Alexei Popov (Instit. Terr. Magn. Iono. Rad. Prop., Troitsk), Franco Cerrina (University of Wisconsin), Donald Sweeney (LLNL), Richard Stulen (Sandia), Hiroo Kinoshita (Himeji University), Victor Pol (Motorola), David Williamson (SVGL), and Frits Zernike.

Finally I am grateful to those who contributed to the atmosphere of support for research and teaching in Berkeley. These include Louis Ianiello, Iran Thomas, William Oosterhuis, and Jerry Smith at the Department of Energy's Office of Basic Energy Sciences; Howard Schlossberg at the Air Force Office of Scientific Research, who supported student research activities in our group over many years; David Patterson, who heads DARPA's Advanced Lithography Program; and the Intel, Motorola, and Advanced Micro Devices Corporations. A special note of gratitude goes to John Carruthers of Intel for his continual support of these activities and of this book in particular. Daniel Chemla is warmly acknowledged for his support and encouragement, without which it would not have been possible to maintain a vibrant research group while teaching, advising, and writing a lengthy text.

> Berkeley, California June 1999