
SOFTENING-INDUCED DYNAMIC LOCALIZATION INSTABILITY: 

SEISMIC DAMAGE IN FRAMES 

By Zdenek P. BaZant, l Fellow, ASCE, and Milan Jirasekl 

ABSTRACT: This paper analyzes dynamic localization of damage in structures with softening inelastic hinges 
and studies implications for the seismic response of reinforced concrete or steel frames of buildings or bridges. 
First, the theory of limit points and bifurcation of the symmetric eqUilibrium path due to localization of softening 
damage is reviewed. It is proven that, near the state of static bifurcation or near the static limit point, the primary 
(symmetric) path of dynamic response or periodic response temporarily develops Liapunov-type dynamic insta­
bility such that imperfections representing deviations from the primary path grow exponentially or linearly while 
damage in the frame localizes into fewer softening hinges. The implication for seismic loading is that the kinetic 
energy of the structure must be absorbed by fewer hinges, which means faster collapse. The dynamic localizations 
are demonstrated by exact analytical solutions of torsional rotation of the floor of a symmetric and symmetrically 
excited frame, and of horizontal shear excitation of a building column. Static bifurcations with localization are 
also demonstrated for a portal frame, a multibay frame, and a multibay-multistory frame. The widely used 
simplification of a structure as a single-degree-of-freedom oscillator becomes invalid after the static bifurcation 
state is passed. 

INTRODUCTION 

Softening damage causes localizations of damage which 
generally accelerate the process of collapse. If the primary 
response of the structure is in some sense symmetric, the lo­
calization represents a symmetry-breaking response, resulting 
from either a softening-induced limit point (maximum load 
point) or a softening-induced bifurcation of the eqUilibrium 
path. 

In building frames, softening damage tends to localize into 
short beam segments called inelastic hinges. The localizations 
due to softening in inelastic hinges have been demonstrated 
for the static loading of reinforced concrete and steel frames 
(Maier 1971; Maier et al. 1973; BaZant 1976; BaZant et al. 
1987; Bazant and Cedolin 1991; Hunt and Baker 1995). How­
ever, the questions of whether such localizations occur under 
dynamic loading and what the general character of the dy­
namic response of building frames with softening hinges is 
has escaped serious attention. These questions are addressed 
in this paper. 

Currently, the problem is of great interest for the earthquake 
analysis of buildings or bridge frames. They are the principal 
focus of this paper although the general analysis will apply to 
any type of dynamic damage and multiple fracture, for ex­
ample, the damage due to impact or blast. While it would be 
desirable to design building frames so that their load-deflection 
diagram would exhibit a horizontal yield plateau, in practice 
this usually appears impossible to achieve. This is so not only 
for reinforced-concrete frames, but also for steel frames. 

In reinforced-concrete frames, the large deformations that 
occur in earthquake cause strain-softening damage in the form 
of distributed cracking of the material and multiple fractures. 
When such damage occurs only on the tensile side of the cross 
section, along with tensile yielding of reinforcing bars, there 
is no significant softening and the inelastic hinge is more pre­
cisely called the plastic hinge. But when such damage occurs 

'Walter P. Murphy Prof. of Civ. Engrg. and Mat. Sci., Northwestern 
Univ., Evanston, IL 60208. 

'Res. Assoc., Swiss Fed. Inst. of Techno!. at Lausanne (EPFL), Swit­
zerland; formerly, Asst. Prof., Czech Tech. Univ. (CYUT), Prague, Czech 
Republic. 

Note. Associate Editor: Raymond D. Krieg. Discussion open until May 
1, 1997. To extend the closing date one month, a written request must 
be filed with the ASCE Manager of Journals. The manuscript for this 
paper was submitted for review and possible publication on March 20, 
1995. This paper is part of the JOUTluzl of Engineering Mecluznics, Yo!. 
122, No. 12, December, 1996. ©ASCE, ISSN 0733-9399/96/0012-
1149-1158/$4.00 + $.50 per page. Paper No. 10399. 

on the compressed side of the cross section, the inelastic hinge 
ceases to be plastic. Rather, development of compression split­
ting cracks and crushing of concrete before the yielding of 
steel in tension causes gradual flexural softening in which the 
bending moment decreases at increasing curvature [Fig. l(a)]. 
Such behavior can be especially marked in prestressed beams 
and in reinforced-concrete beams under high axial force, as in 
columns of tall buildings or wide-span frames with a high 
horizontal thrust. The phenomenon can be particularly impor­
tant for high-strength concrete, due to its extreme brittleness. 
Under seismic loading, the softening damage is intensified by 
load repetitions. 

Steel frames are often thought to be free of softening be­
cause the material exhibits no strain softening. However, as 
shown experimentally by Maier and Zavelani (1970), the mo­
ment-rotation diagram of the plastic hinges in steel frames of 
large or thin-wall cross sections can develop postpeak soft­
ening as a result of plastic buckling of the flanges and webs. 
The development and propagation of cracks, which form in 
welding zones, can have the same effect. 

This paper will first present a general analysis of the sta­
bility of motion of a symmetric statically indeterminate soft­
ening structure near the state of static bifurcation of the equi­
librium path or near the static limit-point state. The analysis 
will be generally applicable to any type of dynamic loading 
and any kind of softening structure. Subsequently, the analysis 
will be applied to the seismic behavior of building frames. 
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FIG. 1. (a) Diagram of Bending Moment versus Average Cur­
vature In Softening Segment of Beam; (b-e) Simplified Moment­
Rotation Diagrams for Softening Hinges 
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Several characteristic types of static damage localization in 
frames will be demonstrated and implications for the dynamic 
localization of damage will then be discussed. 

REVIEW OF EQUILIBRIUM PATH BIFURCATION AND 
LIMIT POINTS 

The incremental equilibrium equations of a discrete struc­
tural. syste~ may be written as Kc) = ~ where q = column 
matrix of displacement parameters; f = j1f = column matrix of 
associated applied forces; 1.1. = load parameter; f = fixed ref­
erence loading vector; and K = n X n tangential stiffness ma­
trix of the structure (which is symmetric). The overdots denote 
time differentiation. As inelasticity and damage develop during 
the progress of loading, matrix K varies as a function of q. 
First, we will assume this variation to be continuous but later 
we will consider a discontinuous change in K as the limit case 
of a rapid continuous change. 

For each q, matrix K also depends on the unit direction 
vector v = g(cfia)-1/2 in the n-dimensional displacement rate 
space (superscript T denotes a transpose). For simple types of 
constitutive laws for damage, the dependence of K on v at 
fixed q is piecewise constant, i.e., matrix K is different in 
various sectors of the n-dimensional displacement rate space, 
but constant within each sector (Fig. 2). Let KL be the stiffness 
matrix for the loading sector L, for which every point of the 
structure undergoes loading. Adjacent to sector L, there are 
various sectors U, U ' , U", ... , in which different combina­
tions of loading and unloading occur in various parts of the 
structure. Let U be the sector with unloading to which the first 
secondary branch actually belongs, and K U the corresponding 
stiffness matrix. 

The primary response path is defined as the path for which 
the response preserves the symmetry of the structure and all 
the points in the structure undergo loading. For this path, the 
equilibrium equations are KLg(1) = f, with the direction vector 
v(l) of g(l) lying in sector L. 

We suspect that, after some state qO representing the first 
bifurcation, a second path labeled by superscript (2) and obey­
ing the equilibrium equation K Uc'j(2) = t may become possible. 
For this path to exist, the direction vector V(2) of q(2) must lie 
in sector U corresponding to K U

• Prior to the first bifurcation 
(2) l' . h ' v cannot Ie In t e sector U, or else the first bifurcation could 

not be the first. SO V(2) must lie either in L or in some of the 
other sectors U ' , U", ... , with different unloading combina­
tions. However, none of the sectors U ' , U", ... , is possible 
at the beginning of loading if we assume the stiffness matrix 
to vary continuously (or the stress-strain diagrams to be 
smooth); the reason: K U must initially be almost the same as 
KL and V(2) almost the same as v(l), since the initial difference 
between the tangential moduli for loading and unloading is 
negligible. 

When K U changes continuously, the direction of V(2) cannot 
change by jumps and so V(2) must remain in L for some du­
ration of loading before it can cross into some of the sectors 

FIG. 2. Coordinate Plane of n-Dimensional Displacement Rate 
Space, with Sector of Loading Only and Sectors of Combined 
Loading and Unloading 
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with unloading. Choosing proper notation, we may always as­
sume v(l) crosses straight into U, without passing through some 
other sector with unloading such as U'. Thus, at the first bi­
furcation, V(2) becomes coincident with the boundary between 
~ectors L and U, and so either the secondary branch must sat­
Isfy th.e equation KLq(2) = t simultaneously with KLc'j(l) = t for 
the pnmary path (the first case) or, alternatively, KLq(2) = 0 

(the second case). 
We immediately see that det KL = 0 in the second case. In 

the first case, on subtracting both equations we get 

(la,b) 

(This condition is the same as the condition of bifurcation of 
the equilibrium path of an elastic structure.) Eq. (1) represents 
a system of homogeneous linear algebraic equations for the 
eigenvector w. Obviously, for the secondary branch to exist 
i.e., w ¢ 0, it is necessary that ' 

det KL = 0 (2) 

which is the same condition as in the second case. So, in both 
cases, KL must be singUlar, i.e., the first (lowest) eigenvalue 
of matrix K L

, Af = O. After passing the first bifurcation point 
~K • al ' 
"I IS norm ly negative. 

If the constitutive law for inelastic behavior is not smooth 
which, for example, happens for a bilinear stress-strain dia~ 
gram, the tangential stiffness matrix K as a function of q varies 
by jumps. In that case, the change of the first eigenvalue Af 
from positive to nonpositive is in general discontinuous, and 
the.matrix K for the initial bifurcating secondary branch is K U

, 

~hlch. corresponds to a combination of loading and unloading 
In ~arlOus parts of the structure rather than to loading only. 
This case may be conveniently viewed as the limit case of a 
continuous change of K as a function of q in which the first 
eigen~alue crosses zero very rapidly. From this viewpoint, the 
negatlveness of the first eigenvalue is equivalent to the fore­
going case of continuous stiffness variation for which the bi­
furcation point has already been passed. Thus, if the first ei­
genvalue becomes negative, a bifurcating secondary branch 
must exist, although in general it corresponds to K U

, which is 
different from KL. 

The previous analysis shows when a bifurcation of the equi­
librium path into a secondary branch is possible, but does not 
show which branch is actually followed by the structure. How­
ever, analysis of the second energy variations and use of the 
second law of thermodynamics prove that the structure must 
follow the secondary branch. For more detail, see BaZant and 
Cedolin [(1991), sections 10.2 and 10.4]; also see de Borst 
(1989), Stoltz (1989), Borre and Maier (1989), Runesson 
et al. (1989), and Leroy and Ortiz (1989). 

A caveat should be mentioned: since the equilibrium path 
bifurcation can be detected only on the basis of the tangential 
stiffness matrix, the nonpositiveness of the first eigenvalue (or 
los.s of positive definiteness of KL) can remain unnoticed by 
fi~lte-element programs that do not work with the tangential 
stiffness matrix. After the bifurcation state, the iteration pro­
ces~ in. such programs can converge to the primary branch, 
which IS normally the unstable branch. Thus the more impor­
tant secondary branch, which is normally the stable path, is 
missed. This of course happens not only for elastic, but also 
for inelastic structures. The reason, briefly, is that the initial 
approximate solution in a loading step exhibits the same type 
of symmetry as the primary branch, while the stable secondary 
branch breaks the symmetry-it departs from the bifurcation 
point at an inclined direction that contains a nonsymmetric 
component. In numerical solution, round-off errors might be 
insufficient to provide an initial non symmetric imperfection 
which could trigger the break of symmetry. 

To detect a secondary branch, the finite-element code must 



calculate the tangential stiffness matrix and check the sign of 
its lowest eigenvalue. If the sign is not positive, the code must 
automatically seek a displacement increment for which a part 
of the structure goes into unloading. 

DYNAMIC INSTABILITY NEAR STATIC BIFURCATION 
OR LIMIT POINT 

Consider now what happens near the static bifurcation state 
under dynamic loading. A bifurcation in time, similar to the 
one we demonstrated for static response, is impossible because 
it would imply a sudden change of some components of ve­
locity. This would mean that the associated components of 
acceleration vector ij would be infinite, which is impossible 
provided that the applied forces remain finite. For a given ex­
citation and given initial conditions, the dynamic solution is 
unique and cannot exhibit bifurcations in time. 

Of course, bifurcations can be observed in dynamics if one 
studies the dependence of a periodic solution on the variation 
of a certain parameter, e.g., the period of excitation (Guck­
enheimer and Holmes 1983; Wiggins 1990). However, this is 
a different type of problem not considered here. We focus only 
on the response of a system for fixed parameter values. 

Let q(1)(t) (where t = time) be the solution vector for given 
initial conditions qln and given load vector history f(t), called 
the primary response. Let us now examine what happens when 
these initial conditions are slightly perturbed, i.e., changed to 
qm + win. This leads to a different solution vector q(2)(t), called 
the perturbed (or secondary) response. As long as the tangen­
tial stiffness K is positive definite (i.e., all its eigenvalues are 
positive), the solution vectors q(l}(t) and q(2)(t) must remain 
very close. Thus, their difference in displacement, w = q(2} -

q(l), remains very small until time to at which the state of static 
bifurcation (or limit point) is approached. So, Wo = w(to) must 
be very small. 

Denote qo = displacement at the state of static bifurcation 
(or limit point). In the vicinity of this state, the vector of static 
forces due to the deformation of the inelastic structure can be 
tangentialJy approximated as fdef(t) = K[q(t) - qo] + fo, where 
K is the tangential stiffness matrix of the structure for loading 
only at the state of static bifurcation (or limit point) and fo is 
the static force vector in this state. On adding the force vectors 
due to inertia and damping, we obtain the following equations 
of motion near the state of static bifurcation (or limit point): 

Mij(l) + D4(\) + K[q(l} - qo] + fo = f(t) (3) 

Mij(2} + 04(2) + K[q(2) - qoJ + fo = f(t) (4) 

where superscripts (I) and (2) label the primary response and 
the perturbed (secondary) response; and M and D = mass and 
damping matrices. Because the responses 1 and 2 remain very 
close to each other up to and shortly after the static bifurcation 
(or limit) point, the same tangential stiffness matrix K and the 
same vector fo is applicable to both. According to the preced­
ing analysis of static bifurcation, K = KL. 

Subtracting (3) from (4), we obtain for the difference w in 
the displacement vectors the following equation of motion: 

(5) 

which is valid only for a short enough time interval after the 
stat!c bifurcation state. The special case of this equation for 
static response (M = D = 0) is 0). 

Consider now dynamic response (M *' 0) with no damping 
(D = 0). In the vicinity of the static bifurcation state KL can 
be considered constant and the displacement differenc~ can be 
sought in the form w = ae;"" in which i = imaginary unit; 00 

= constant; and a = amplitude vector (column matrix). Sub­
stituting this into (5) we obtain 

(6) 

This is a homogeneous linear matrix equation representing a 
generalized eigenvalue problem. Because matrix M is always 
positive definite, each eigenvalue A = 00

2 of this matrix equa­
tion has the same sign as the corresponding eigenvalue of ma­
trix K and is zero if the eigenvalue of K is zero. 

So the first eigenvalue Al of matrix equation (6) is zero at 
the first static bifurcation state if matrix KL evolves continu­
?usly, and is nonpositive if KL evolves discontinuously (which 
IS, for example, the case for softening materials with a bilinear 
constitutive law). Because, after the state of static bifurcation 
00

2 = Al :5 0, we may set 00 = :!:iA in which A =.~ ",; 

real. So we conclude that the displacement difference for a 
short enough time after the static bifurcation state must have 
the following form: 

w = q(2} - q(l} = wOt + W
O + wHet) if Al = 0 (7) 

. ° sinh At ° 
w = w -A- + w cosh At + wHet) if Al < 0 (8) 

in which W
o and WO = small differences in displacements and 

velocities between the primary response and the initially 
slightly perturbed response; and wHet) = terms corresponding 
to higher eigenvalues. 

The foregoing analysis assumes Al not to be a double root. 
If it is, terms with t 2 or t sinh At and t cosh At need to be 
added to (7) or (8), but the conclusions remain the same. 

Imperfections in structures are never zero. No matter how 
small Wo or W

O at the state of bifurcation, the difference w 
according to (7) or (8) will subsequently grow and deviate 
from the primary response. This indicates a dynamic instability 
of the primary solution, which is normally of limited duration 
(temporary). Of course, the stiffness matrix might later become 
positive definite again, in which case dynamic stability will be 
restored. But even in that case, the initial imperfections will 
have been magnified by the time the lowest eigenvalue of K 
might change its sign again. 

So we conclude that the primary (unperturbed) solution, 
~orresponding to the symmetric response, becomes temporar­
Ily unstable when the state of bifurcation of the equilibrium 
path is reach~d. The instability is the dynamic instability in 
the sense ofLlapunov [e.g., Bazant and Cedolin (1991), Chap­
ter 3]. This means that in reality the primary or symmetric 
solution beyond the static bifurcation state cannot occur. Be­
fore the state of static bifurcation is reached, any small per­
turbations of the symmetric response remain small. But after 
tI;at state, they grow approximately exponentially (because 
smh At and cosh At are linear combinations of eA' and e-A'). 

A system is defined as dynamically stable (in the sense of 
Liapunov) if, for any arbitrarily small positive number E, there 
exists a positive number 1) such that any deviation W

o and wo, 

at time to, having a magnitude not larger than I) leads to a 
solution wet) and wet) whose magnitude remains smaller than 
E fo~ all times t === to [see, e.g., BaZant and Cedolin (1991), 
SectIOn 3.5]. Otherwise, the system is dynamically unstable. 

If an exponential term with a positive exponent (or a linear 
term) is present in the solution, as in (8), the system is obvi­
ously unstable, according to this definition. It must be admitted 
that. i~ practice the expon~ntial (or linear) growth of response 
deViatIOn cannot be conSidered to go on up to infinite time, 
because the lowest eigenvalue of K will change its sign or 
because the deviation from the state of static bifurcation ceases 
to be s~all, ~aki~g our lin~arized solution invalid. One may 
emphasize thiS pomt by calling the exponential growth of re­
spon.se. devi~t~on as a "temporary" (or "time-limited") dy­
namic mstabllity. But the adjective temporary is not really nec­
essary because it is obvious. Similar limitations occur in most 
practical situations in which the term "dynamic instability" is 
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in standard use. For example, the exponential growth of vi­
bration amplitudes of a dynamically unstable elastic column 
ceases when the range of geometrically nonlinear large de­
flections is entered; the exponential growth of the vibration 
amplitudes of a dynamically unstable aircraft wing failing by 
flutter (or a dynamically unstable shaft rotating at a critical 
speed) ceases when the amplitudes become so large that the 
linearized small deflection theory becomes invalid, etc. [see 
e.g., BaZant and Cedolin (1991), Chapter 3]. 

For the secondary solution, some softening parts of the 
structure undergo unloading. The softening parts that are un­
loading and those that are not can be determined by static 
bifurcation analysis, from the eigenvector of displacement ve­
locity, w, corresponding to the first eigenvalue of the tangential 
stiffness matrix for loading only. 

It may be objected that bifurcation points are not generic. 
Real structures, strictly speaking, do not exhibit bifurcations 
because they are never perfectly symmetric, due to inevitable 
small imperfections. However, this does not mean that the bi­
furcation points would be unimportant. The analysis of bifur­
cation gives information on the entire behavior near the bi­
furcation. For example, the Euler bifurcation is actually never 
experienced by real elastic columns, because of imperfections, 
yet column buckling and its imperfection sensitivity could not 
be understood without knowing the critical load and under­
standing the Euler bifurcation. 

The foregoing solution applies to the motion near the static 
bifurcation state. The solution of motion near the static limit 
point (maximum load) is similar but its character is deduced 
more simply. It suffices to say that, because of the existence 
of a negative eigenvalue of K after the static limit point, the 
general solution of the equations of motion must contain grow­
ing exponential terms. Therefore, small deviations from the 
primary solution for the symmetric structure can grow rapidly. 
This represents again a (temporary) dynamic instability (of 
Liapunov type). It is not necessary for the unperturbed dy­
namic solution to exhibit all the symmetries of the primary 
static solution (this will become clear when we analyze the 
dynamic shearing of a column). 

Consider now the effect of damping. First, let us look at a 
system with a single degree of freedom. The equation Mij + 
Dq + Kq = O-in which constants M, D, and K represent the 
mass, damping, and stiffness-has the solution q(t) = eX. with 
A = (-D ± VD2 - 4MK)/2M. The case of negative damp­
ing, D < 0, may be excluded. Instability occurs if A has a 
positive real part, i.e., if K < 0, regardless of the value of D. 
So the damping has no influence on the question of stability. 

A similar analysis for a damped multidegree-of-freedom 
system shows that the response deviation w(t) will start to 
increase exponentially regardless of D as soon as a negative 
eigenvalue of K appears, provided that the type of damping 
is such that the degrees of freedom can be decoupled by in­
troducing as generalized coordinates the eigenvectors of K 
with respect to M. This is. true, for example, for a damping 
matrix D proportional to the mass matrix M. This is probably 
also true for the general damping of earthquake-type excitation 
because the only cases for which damping is known to affect 
stability (i.e., stabilize or destabilize a dynamic system) are the 
parametric resonance and gyroscopic loads [BaZant and Ce­
dolin (1991), p. 166 and 173]. 

SEISMIC INSTABILITIES OF FRAMES WITH 
SOFTENING HINGES 

One important application of the preceding general theory 
is the instability of symmetric response of frames with soft­
ening hinges subjected to earthquake. In slender frames, which 
respond primarily by bending with shear, the inelastic defor-
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mation concentrates into short beam segments of high average 
curvature R. The diagram of bending moment M versus R typ­
ically exhibits postpeak softening, as shown in Fig. l(a). As a 
simplifying idealization, the inelastic response can be idealized 
by lumping it into a single cross section regarded as an ine­
lastic hinge, while the rest of the beam is assumed to respond 
elastically. The relative rotation S in the inelastic hinge rep­
resents the rotation difference between the ends of the hinging 
segment caused by the inelastic part of the curvature. 

To simplify calculations, the moment-rotation diagram may 
be idealized as linear [Fig. l(b)]. It is characterized by peak 
moment Mp and fracture rotation Sf at which M is reduced to 
zero. With regard to unloading and reloading, the behavior 
may be idealized according to one of the diagrams in Figs. 
l(c-e). 

To illustrate the preceding general theory, we will now con­
sider four basic types of static bifurcation in building frames 
and the corresponding (temporary) dynamic instabilities. 

Localization due to Rotation of Building Floor 

Consider a rectangular slab (building floor) supported sym­
metrically by two rows of columns and dynamically excited 
by foundation movement q(t) in the direction of the column 
rows [Fig. 3(a)]. The problem is idealized [Fig. 3(b)] as a rigid 
block sliding on frictionless supports and excited through a 
symmetric pair of "springs" which follow the bilinear force­
displacement diagram in Fig. 3(c); C. = spring constant (elastic 
stiffness), C, = postpeak softening stiffness of spring (C, < 0), 
Fp = peak force, up = displacement at peak, and uf = fracture 
displacement at which F is reduced to zero. The springs are 
attached to another rigid block whose displacement history q(t) 

is prescribed to simulate the seismic excitation. 
Let us first look at the corresponding static problem of a 

floor symmetrically loaded by a displacement U imposed at its 
center. Any static solution must satisfy the conditions of equi­
librium 

(9a,b) 

where FI and F2 = forces transmitted by springs and 2, 
respectively; and L = half of the distance between the springs. 
For a piecewise linear force-displacement diagram, the force 
in spring i can in general be written as 

(10) 

(b) 

F 
(e) 

Uf u 

FIG. 3. (a) Dynamically Excited Building Floor; (b) Simplified 
Model; (c) Bilinear Force-Extension Diagram for Springs Mod­
eling the Columns 



where F? and Ci = constants whose values depend on the cur­
rently active branch of the force-displacement diagram. During 
virgin loading and elastic unloading, F? = 0 and C/ = C .. while 
during softening, F? = Fpui(uf - up) and C/ = C •. Substituting 
(10) into (9) and transforming to variables u = (u, + U2)12 and 
v = (U2 - u,)/2, we obtain 

(CI + C2)u + (Cz - C,)v= F - F~ - Fg 

(Cz - C,)u + (CI + Cz)v = F? - F~ 

(11) 

(12) 

During the initial elastic stage, C, = Cz = c .. F? = F~ = 0, 
and thus u = FI2C .. v = O. Note that v = 6L where 6 is the 
floor rotation. Therefore, the initial response is symmetric and 
the peak force Fp is reached simultaneously by both springs 
at u = up- After that, either the response will remain symmetric 
with both springs softening, or the symmetry will be broken 
and damage will localize into one spring while the other un­
loads elastically. 

Because the state at peak is an equilibrium state, (11) and 
(12) can be rewritten in an incremental form as 

(CI + Cz)Au + (Cz - CI)Av = AF (13) 

(Cz - CI)Au + (C, + Cz)Av = 0 (14) 

In the symmetric case, C, = C2 = C .. (13) and (14) yield au 

= aFI2C .. and a v = O. In the nonsymmetric case with, e.g., 
spring 1 unloading and spring 2 softening, we have C, = C. 
> 0, Cz = C. < 0, and (13) and (14) yield 

Au = CI + Cz AF = C, + C. AF 
4CICz 4CeC. 

(15) 

Av = CI - C2 AF = C, - C. AF 
4CICz 4C,C. 

(16) 

As we have shown, the equilibrium response path of the 
floor bifurcates at the peak load state, that is, at the start of 
softening. Similarly, it can be shown that there is a bifurcation 
at every point (e.g. point 4 in Fig. 4) along the symmetric 
response path (the straight line connecting the peak to point 
f), such that one spring starts to unload while the other spring 
continues softening. But what matters is the first bifurcation, 
which occurs at the peak. Now, which of the two postbifur­
cation paths will actually occur? It has been generally proven 
in Bazant and Cedolin [(1991), chapters 10 and 13] and BaZant 
(1988), on the basis of thermodynamic considerations, that the 
actual path is that which descends more to the left, i.e., that 
for which the compliance .lui aF is larger. So, the nonsym­
metric path will occur if and only if 

C, + C. 1 
>-

4C,C. 2C. 
(17) 

It can be easily verified that this is equivalent to C. < C .. which 
is for C. > 0 and C. < 0 always satisfied. This means that the 
symmetric solution is not stable and can never occur in reality. 
Damage will localize into one of the two springs depending 
on random imperfections. This process is stable under dis­
placement control assuming that C. + C. > 0, i.e., C. > - Ceo 

~P~4 ~ 2 

Fl~S;J~! 
o up Ul UJ U2 

FIG. 4. Primary and Secondary Equilibrium Response of 
Building Floor, Column, or Portal Frame 

For C. s - C .. the postpeak branch corresponding to the un­
symmetric solution has a positive (or infinite) slope, and the 
diagram exhibits snapback. 

Let us now turn attention to the dynamic problem. The 
equations of motion for the floor as a system with two degrees 
of freedom can be written as 

mii(t) + F,(t) + Fz(t) = 0 

le(t) - LF,(t) + LFz(t) = 0 

(18) 

(19) 

where m = mass of the floor; J = mass moment of inertia; u 

= (u, + uz)12 = displacement of the floor center; and e = (uz 

- u,)/2L = rotation of the floor (positive if counterclockwise). 
Eq. (10) describing the constitutive behavior must be gen­

eralized to 

Fi = F? + C/(u/ - q) (20) 

as the spring extension is now the difference between the dis­
placements Ui and q (in the static case we did not need to 
introduce q because the base did not move). On substituting 
(20) into (18) and (19) and transforming to variables u = (u, 

+ u2)/2 and v = (uz - u,)/2 = L6, we obtain 

mii(t) + (CI + Cz)u(t) + (Cz - CI)v(t) 

= (CI + Cz)q(t) - F? - Fg 

Mv(t) + (Cz - C,)u(t) + (CI + Cz)v(t) 

= (Cz - CI)q(t) + F? - Fg 

where M = JILz. 

(21) 

(22) 

During the initial elastic stage, C, = Cz = c .. F? = F~ = 0, 
and the solution of (22) is 

6 L 
60L . 

v(t) = 0 cos wzt + - sm wzt 
Wz 

(23) 

where Wz = V2C,IM; and 60 and eo = initial floor rotation and 
its initial rate, respectively. If the initial conditions are sym­
metric, i.e., 60 = eo = 0, we have vet) = 0 and the response 
remains symmetric. But even if a random disturbance causes 
a slight deviation from perfect symmetry, the deviation am­
plitude does not grow and the deviation only oscillates about 
the perfectly symmetric solution. 

After both springs reach the peak force at time tp and some 
positive velocity up, they start softening simultaneously. We 
now have C, = Cz = C. < 0, and the solution of (22) is 

v(t) = vp cosh Cltzt + vp sinh Cltzt 
Cltz 

(24) 

where Cltz = V -2CzIM; and VP' vp = floor rotation and floor 
rotation rate at t = tp (assumed to be very small perturbations). 
If Vp = vp = 0, we still have a symmetric solution with vet) = 
O. However, any small deviation from perfect symmetry now 
grows approximately exponentially. Thus the symmetric re­
sponse of the floor is for a limited time dynamically unstable. 
Even if the building is almost perfectly symmetric and the 
earthquake strikes exactly in the direction of the column rows, 
the building floor must exhibit torsional rotations during the 
earthquake. 

Seismic torsional rotations of building floors have been 
studied, for example, by DelaIIera and Chopra (1994, 1995). 
The necessity of some torsional rotations has already been 
recognized in the existing seismic building code by requiring 
that at least 5% of the displacement must be considered to be 
due to rotation. However, such a simple specification might 
not be sufficiently realistic. The magnitude of rotation that 
develops depends on the magnitude of imperfections; geom-
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etry, stiffness, and mass characteristics of the building frame; 
excitation history; and earthquake duration. 

Localization in Shear Loading of Building Column 

A column of a building frame responds to an earthquake 
principally by shear. The column may be idealized as shown 
in Fig. 5(a), in which both ends slide horizontally (horizontal 
motion of the base is prescribed) but are fixed against rotation. 

First consider the static response, for which we assume the 
bottom of the column to be fixed and the horizontal displace­
ment u on top to be prescribed. The column fails by softening 
hinges which form at the ends. The peak value of the hori­
zontal load F is Fp = 2MplL and the corresponding displace­
ment is up = MpL2/6EI. 

One possible postpeak response is symmetric [Fig. 5(b)], 
with equal magnitudes of bending moments and hinge rota­
tions at the ends. The load-deflection diagram is linear and is 
given by line pi in Fig. 4, in which u[ = 9[L where L is the 
height of the column. 

There exists another possible response, representing the bi­
furcating secondary branch. It is nonsymmetric, such that the 
bottom hinge first rotates while the top cross section (a poten­
tial hinge) unloads elastically from the maximum moment state 
[Fig. 5(c)]. The path is represented by line pI in Fig. 4. The 
terminal point 1 of this path, corresponding to M = 0 and 9 = 
9[ at the bottom end, is found by elastic deformation analysis 
to be Ul = 2L9t13 and F1 = 2EI9t1L 2. 

The requirement that the moment on top corresponding to 
point 1 must not exceed Mp yields the condition 

<: MpL 
6[ - 2EI (25) 

Otherwise, the nonsymmetric response does not exist and point 
p represents a limit point, at which >.. becomes negative. 

After point I, the column loads elastically along path 12 
and at point 2 the moment on top reaches Mp. At point 2, U2 

= MpL2/3EI and F2 = MplL. The areas under both load-deflec­
tion diagrams must be equal to the energy dissipated in the 
softening hinges, which is W[ = M p9[. For this reason area 
OpfO = area Op12fO. So, point 2 must lie above the path for 
the symmetric response, such that area p13p = areaf32f 

Fig. 6 shows a simple dynamic model of the column. The 
inertial properties of the column are represented by three 
lumped masses with no rotational inertia so that the rotational 
degree of freedom {}2 can be eliminated from the equations of 
motion by static condensation. The remaining degrees of free­
dom U1 and U2 represent the displacement of the top and center, 
respectively, while the displacement history U3(t) at the base 

(a) 

FIG. 5. Column Loaded by Horizontal Load, Its Softening 
Hinges, and Symmetric and Nonsymmetrlc Equilibrium Deflec­
tions 

1154 / JOURNAL OF ENGINEERING MECHANICS / DECEMBER 1996 

L 

L 

V?"'P.'""""""","""A 1"-...:; 1--1-----1...1 _-,_J 
I 
I u2 
I 

u3 (t) 

(preSCribed) 

FIG. 6. Dynamic Model of Horizontally Vibrating Column 

is assumed to be prescribed. The resulting equations of motion 
read 

mlUl + k(30Ul - 48u2 + I8u3 - 9L61 + 3L63) = 0 (26) 

m2u2 + k(-48ut + 96u2 - 48u3 + I2L6 t - I2L63) = 0 (27) 

where k = 2EIIL
3
. The inelastic rotations in softening hinges 

91 and 93 must be determined by substituting the end moments 

into the moment-rotation law. Depending on which branch of 
the moment-rotation diagram is currently active, three basic 
situations can be distinguished: 

1. Both hinges "locked" (elastic loading/unloading). Dur­
ing virgin loading or elastic unloading, the hinge rota­
tions remain constant. After substituting their values and 
the given time evolution of U3(t) into (26) and (27), we 
obtain a system of two differential equations for un­
known functions U1(t), U2(t). 

2. One hinge softening, the other one locked. If one of the 
hinges, e.g., hinge I, follows the descending branch of 
the moment-rotation diagram, the relation between M t 

and 91 is given by the softening law M1 = Mp - (Mpl 
9[)6 1• This law combined with (28) can be used to ex­
press 9 t in terms of the displacements Uh U2, U3, and the 
known (constant) rotation 63, Again, substituting into 
(26) and (27), we obtain a system of two differential 
equations for Ut(t) and U2(t). 

3. Both hinges softening. As in the preceding case, we com­
bine the softening laws M t = Mp - (MpI6[)6 t and M3 = 
Mp - (MpI6[)63 with (28) and (29) to express 61 and 63 

in terms of Uh U2, U3, and substitute these expressions 
into (26) and (27). 

In each of the foregoing situations, we obtain a system of 
two linear, second-order differential equations with constant 
coefficients, which can be easily solved in a closed form. For 
each time interval in which the status (loading or unloading) 
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FIG. 7. Dynamic Solution of Column Subjected to Horizontal 
Sinusoidal Excitation: (a) Periodic (Elastic) Solution; (b) Solu­
tion with Progressive Damage 

of each hinge remains the same, we have the exact general 
solution. Based on this solution, the response of the column 
to prescribed harmonic horizontal displacement history q(t) at 
the column base is calculated. The initial conditions for each 
time intervai are the displacements and velocities at the end 
of the previous time interval. The end of the current time in­
terval is solved as the time at which the status of the hinge 
changes again, and the displacements and velocities calculated 
for that time are then used again as the initial values for the 
next interval. In this manner, the exact solution is easily con­
structed. 

Fig. 7(a) shows the calculated exact histories of the bending 
moments at the base and at the top of the column for the case 
of elastic response. The column is excited by a prescribed 
sinusoidai history of the horizontal displacement at the base. 
This must lead to a periodic dynamic solution. The question 
is whether an instability in which the motion temporarily de­
viates exponentially from this periodic solution is possible. In 
contrast to the previous example of building floor, the periodic 
excitation does not iead to a symmetric dynamic solution with 
equal moment magnitudes at the top and bottom. To obtain a 
symmetric dynamic solution, symmetric excitations at both the 
base and the top would have to be prescribed. But this would 
be unrealistic. For this reason, the dynamically loaded column 
will seldom find itself near the static bifurcation state we just 
analyzed. However, the motion of the column approaches a 

state corresponding to the limit point of the column statically 
loaded by the inertial forces, at which one of the hinges begins 
softening. In that case, temporary dynamic instability with ex­
ponential growth of deviations from a periodic solution must 
be expected. 

In Fig. 7(a), the amplitude and period of the periodic ex­
citation at base is selected so that the maximum moment ex­
actly equals the peak moment Mp. Fig. 7(b) shows the solution 
under the assumption that the amplitude of excitation is 
slightly larger, which triggers softening response in the top 
hinge while the other hinge still behaves elastically. The peaks 
of the top moment cycles deviate progressively faster from the 
periodic solution and the deviation peaks grow approximately 
exponentially. This observation agrees with our previous gen­
eral analysis of the initial dynamic response after the static 
limit point. 

While the peaks of the top moment exponentially decline, 
the peaks of the base moment grow until the maximum bend­
ing moment is reached at the base (Fig. 7). Then the peaks of 
this bending moment start declining, too, and the deviation 
from the maximum moment grows approximately exponen­
tially. This is not surprising because the start of softening at 
the base results in another negative eigenvalue of the tangen­
tial stiffness matrix. So this example clearly verifies the ex­
ponential growth of very small imperfections after softening 
has begun, and shows the growth can be quite rapid. 

There is some similarity with the static bifurcation solution. 
First one hinge undergoes softening, then the other. In this case 
the solution would have a similar character even if the column 
were considered nonsymmetric. 

Localization in Sway of Portal Frame 

As another typical situation, consider that a large horizontal 
displacement u is imposed in the portal frame in Fig. 8(a). Let 
F be the corresponding horizontal load (or reaction). The 
frame has one statically indeterminate internal force. During 
plastic collapse, the frame becomes a single-degree-of-free­
dom mechanism with two plastic hinges, as shown in Fig. 
8(b). However, when the diagram of the bending moment M 
versus hinge rotation a exhibits postpeak softening [Fig. l(b)], 
the symmetric deformation mode with identical deflection 
curves of both columns (legs) and equal rotations of both 
hinges [Fig. 8(b)] is only one possible postpeak response to 
large imposed horizontal displacement. Another possible post­
peak response is the deformation mode shown in Fig. 8(c), in 
which the softening damage localizes from two softening 
hinges into one hinge while the other hinge gradually unloads, 
behaving elastically. 

For the sake of simple illustration, consider the moment­
rotation diagram to be linear, characterized by the peak bend­
ing moment Mp and by rotation at at which the bending mo­
ment is reduced to zero; see Fig. l(b). By elastic analysis 
according to the principle of virtual work, the horizontal de­
flection and force at the limit of static elastic response (peak 
of the load-deflection diagram) are 

u = 2 + A MpH2. 
P 6 Elc, 

F _ 2Mp 
P- H (30a,b) 

FIG. 8. Portal Frame, Softening Hinges, Symmetric and Non­
symmetric Deflections, and Load-Deflection Diagrams 
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where}.. = LlJHlb = a nondimensional parameter character­
izing the ratio between the bending stiffness of the column 
and the beam; H = height of the frame; L = its span; and Ib , 

Ie = centroidal moments of inertia of the cross sections of the 
beam and the columns (legs) in the frame. At the limit of 
elastic response, moment Mp is reached simultaneously at both 
corners. 

For the symmetric deformation mode with two softening 
hinges [Fig. 8(b)], the postpeak segment of the load-deflection 
diagram (Fig. 4) must be linear (because the moment-rotation 
diagram is linear) and must terminate with a state at which the 
rotations of both hinges are at, F = 0, and the bending mo­
ments are zero everywhere. At that state, the displacement is 

Ut = atH. 
For the nonsymmetric postpeak deformation mode. in which 

the left corner of the frame undergoes softening and the mo­
ment at the right comer decreases elastically from its peak 
value Mp , the terminal state (point 1 in Fig. 4) of the initial 
postpeak linear segment corresponds to the bending moment 
Ma = 0 and hinge rotation aa = at at the left comer of the 
frame, while the rest of the frame is elastic. By elastic analysis 
according to the principle of virtual work, the deflection and 
the load at this terminal state (point 1 in Fig. 4) are 

(31a,b) 

At point I, the horizontal reaction at the right support is equal 
to FI (because at the left support the reaction is zero). So the 
bending moment at the right comer of the frame is Mb = FIH 
= 6EleaAH(2 + 3}")], which must not be larger than Mp- From 
this we conclude that the nonsymmetric response path exists 
only if 

e <: 2 + 3X HMp 
f - 6 Ele 

(32) 

Beyond point I, the frame behaves elastically as if there 
were a real hinge at the left comer. The load increases linearly 
up to point 2 (Fig. 4) for which elastic analysis according to 
the principle of virtual work gives 

I + X MpH2 
U -----. 

2 - 3 E1e' 
(33a,b) 

Then a softening hinge forms at the right comer and, as this 
hinge softens, the load decreases linearly to point f in Fig. 4. 
The slope of the path from point 2 to pointf can be positive 
or negative (Fig. 4 shows the case of negative slope, repre­
senting snapback instability). The energy dissipated by each 
softening hinge up to total failure is Mpa/2. and so the energy 
dissipated by the whole frame during failure is Wt = Mpa,. This 
energy is also represented by the area under the complete load­
deflection diagram. Therefore, the areas OpfO and Op12jO in 
Fig. 4 must each equal W,. So, the triangles p13p and 32f3 
must have equal areas, which means that point 2 for nonsym­
metric response must lie above the line pf for the symmetric 
response. 

The initial postpeak tangential stiffnesses of the frame, 
which represent the initial postpeak slopes, are obtained as K 
= aFt au where a refers to the change from the peak state to 
point 1 or f. The stiffnesses for the symmetric and nonsym­
metric responses are thus calculated as 

K(I)-.....::.!..e...· 
- u, - up' 

K(2) = FI - Fp 

UI - Up 

(34a,b) 

These stiffnesses can be either negative (as shown in Fig. 4) 
or positive. For a positive postpeak stiffness, there is snapback 
instability, which means the structure is unstable even under 
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displacement control. For a negative postpeak stiffness, the 
structure is stable under displacement control. 

As in the preceding problems, the actual postbifurcation 
path is that for which the compliance 11K is larger. So, the 
nonsymmetric path, labeled by superscript (2), will occur if and 
only if 

1 I 
K(2) > K(1) 

(35) 

If we substitute here the foregoing expressions and rearrange 
them, we obtain the same inequality as (32), as might have 
been expected. Thus the hinge rotation at which the bending 
moment is reduced to zero [Fig. 2(b)] must be sufficiently 
small for the nonsymmetric response path to exist and to occur. 
It appears that condition (32) is often met in practice. 

As might be expected. the dynamic response near the bi­
furcation state has a character similar to that calculated for the 
building floor. For identical sinusoidal excitations at the base 
of both columns, the static bifurcation state, with moments at 
both comers equal to the peak moment, can be approached by 
the dynamic solution. 

The localization of softening damage into one hinge in the 
portal frame is. for example, relevant to the seismic analysis 
of bridge support bents. Because the same kinetic energy of 
earthquake is being absorbed by one instead of two plastic 
hinges, the dynamic collapse occurs faster. 

Localization In Multlbay and Multistory Frames 

Earthquake damage in multi bay frames with rows of iden­
tical columns often shows that only some of the columns in 
the row suffer serious damage. One reason for this phenom­
enon may again be dynamic localization of damage into fewer 
softening hinges. To illustrate this type of behavior. consider 
the one-story frame with infinitely many identical bays, as 
shown in Fig. 9(a). We analyze two basic simple cases: 

1. Interior columns: For columns remote from the ends of 
the row, one may idealize the row of columns as infinite and 
assume the response to be periodic. When the peak moment 
Mp is reached at the top of every column. the peak horizontal 
force per bay is Fp = MptH and the horizontal displacement is 

u = MpH2 4 + X 

p E1e 12 
(36) 

One possible mode of collapse is symmetric. with all the 
hinges softening simultaneously. For this mode, the final force 
F = 0 and the final displacement u, = Ha,. Another possible 
mode is that in which softening hinges alternate with unload­
ing ones. It can be shown by elastic analysis that the moment 
in the softening hinges vanishes at 

(a) 

(2) 

(b) -II 

1 
FIG. 9. <a) Symmetric and Nonsymmetrlc Deflections of Mul­
tlbay Frame with Softening Hinges; (b) Damage Suffered 



4 + 2>" 
UI =---HOf 4 + 3>" 

(37a,b) 

This solution exists if the final moment MI = 2FIH at the top 
of the unloading columns does not exceed Mp so that these 
columns can really unload. Substituting (37a) for Flo we can 
derive a localization condition 

(38) 

similar to (32). If UI :5 uP' there is snapback and the postpeak 
response is unstable even under displacement control. Com­
paring (37b) and (36) we conclude that the collapse mode with 
alternating hinges exhibits snapback for 

o -< ..:....(4_+--:.3.:...>..;;.,:;)(4_+_>..~) HMp 

'J - 24(2 + >..) EIe 
(39) 

2. Boundary columns: In real frames, even if the number 
of bays is very large, the moment distribution always differs 
from the ideally periodic one in the first and last few bays. 
Denoting by M, the moment at the top of column number i in 
a semi-infinite frame, the values of moments in the "boundary 
range" derived by elastic analysis are given by 

( 
3>" 1-1) 

Mi = 1 - 8 + 6>" + 4'Y 'Y FH (40) 

where i = 1, 2, 3, ... ; "( = Y/3 + 3>" + 9>..2/16 - 3A14 - 2; 
and F = average vertical force per column. As an example, 
the first five moments for a frame with>.. = 1 (equal stiffness 
of beams and columns) can be listed as follows: 

MI = 0.77353FH; M2 = 1.04263FH; M3 = 0.99197FH; 

M4 = l.OOI51FH; Ms = 0.99972FH (41a-e) 

Note that -1 < "( < 0 for any positive stiffness ratio >.., and 
so the maximum moment is always reached at the top of the 
second column. It might be expected that, in some situations, 
damage can localize into a single column, and the second col­
umn is the best candidate. Analysis of this assumed collapse 
mode indicates that snapback occurs if 

o -< [1. + ___ >....:.,(4_+_3_>"....:.) __ J HMp 

'J - 3 28 + 24>" + 8"( + 6>",,( EIe 
(42) 

A stable solution with damage localized into one hinge can be 
expected for Of slightly larger than the right-hand side of the 
foregoing inequality. 

The general conditions derived for an idealized frame with 
an infinite number of bays can be confirmed by numerical 
analysis of frames with a large but finite number of bays. As 
an example, consider a frame with 20 bays (21 columns), L = 
H and Ib = Ie' from which >.. = LIJHIb = 1 and "( = 
y3 + 3>" + 9>..2116 - 3A14 - 2 = -0.18826. Let us state the 
results in terms of a nondimensional ductility parameter 13 = 
OfEIJHMp. According to (38) and (39), a solution with alternating 
softening hinges is predicted for 0.486 < 13 < 0.583, and according 
to (42), a solution with one softening hinge is predicted for 13 
slightly above 0.475. Indeed, the numerical results show that: for 
13 :$ 0.4751 snapback occurs after the simultaneous occurrence 
of the first two softening hinges in the second and penultimate 
column; for 0.4752 :$ 13 :$ 0.487 damage localizes in the two 
most critical hinges under increasing floor displacement; for 0.488 
:5 13 :$ 0.583 damage localizes in every other hinge (starting from 
the second and penultimate one and progressing from both sides 
into the interior of the frame); for 0.584 :$ 13 :$ 0.589 the final 
failure pattern shows 17 softening hinges; for 0.59 :$ 13 :$ 0.69 
the final failure pattern shows 19 softening hinges (all except the 

first and last one); and finally for 0.7 :5 13 all the hinges undergo 
softening. We observe a very close agreement between the ana­
lytical prediction and the numerical results. 

A similar localization of damage into fewer softening hinges 
can occur in multistory frames at any floor. The symmetric mode 
of collapse, in which hinges form simultaneously on the top and 
bottom of each column and rotate equally, is similar to elastic 
deformation and is exhibited in plastic (nonsoftening) response. 
If the hinges are softening, however, various collapse patterns 
with damage localized into fewer hinges are possible. 

COMMENTS ON SIMPLIFIED EARTHQUAKE 
ANALYSIS 

Aside from the need to check the singularity of the tangen­
tial stiffness matrix and analyze a possible breakdown of sym­
metry of dynamic response in finite-element programs, we 
should also realize the consequences of the present results for 
practical simplified analysis of earthquake response (Chopra 
1995). Such analysis is normally based on approximating the 
entire structure by an equivalent single-degree-of-freedom os­
cillator whose stiffness and mass are chosen so as to approx­
imate the first vibration mode of the structure taking into ac­
count the stiffness reduction due to damage ("Seismic" 1986). 

In light of the present results, however, such an approach 
can be applicable only for moderate damage occurring when 
the softening hinges begin to form. It cannot be applicable to 
the analysis of complete collapse, because the exponential 
growth of the deviation from the symmetric mode of response 
represents a mode that is very different from the initial re­
sponse mode approximated by the single-degree-of-freedom 
oscillator. 

Perhaps a simplified method based on an oscillator with two 
degrees of freedom, one representing an equivalent system for 
the initial first mode of vibration and the second representing 
an equivalent system for the deviation from the symmetric 
response after the static bifurcation state, could be developed. 

CONCLUSIONS 

1. Under monotonic static loading, softening damage in 
frame structures causes bifurcations of the equilibrium 
path in which the symmetry of response breaks down 
and the damage localizes into fewer hinges which soften 
faster. Although the dynamic response of a structure with 
softening damage (and with fixed parameters) cannot ex­
hibit bifurcation in time, it becomes (for a limited time, 
temporarily) dynamically unstable (in the sense of Lia­
punov) after the static bifurcation state has been passed. 
Small imperfections cause deviations from the primary 
(symmetric) response mode to grow exponentially (at 
least temporarily), causing dynamic localization of dam­
age into fewer softening hinges. Because the same ki­
netic energy must be absorbed by fewer inelastic hinges, 
the collapse then progresses faster. 

2. An exponentially growing deviation from a periodic so­
lution, causing a similar behavior, also occurs in the dy­
namic response near the static limit point. (The bifurca­
tion point may, but need not, coincide with the limit 
point.) 

3. The softening-induced (time-limited) dynamic instability 
due to formation of softening hinges may have serious 
implications for the seismic resistance of building frames 
and bridges. The inelastic hinges in reinforced-concrete 
columns or prestressed beams exhibit postpeak softening, 
caused by compression failure of concrete. Steel beams 
can also exhibit postpeak softening, caused by elasto­
plastic buckling of flanges and webs or by growth of 
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cracks during earthquake. Such behavior generally leads 
to the aforementioned type of damage localization. 

4. Localizations of damage into fewer softening hinges 
which lead to exponentially growing deviation from a 
symmetric or periodic solution have been demonstrated 
for the following typical examples: torsional rotation of 
a building floor, horizontal shear of a building column, 
shear loading of a portal frame, shear loading of a mul­
tibay frame, and shear loading of a multibay-multistory 
frame. 

5. Dynamic localizations due to softening hinges cannot be 
captured by analyzing the structure as a single-degree­
of-freedom oscillator, because the deviation from sym­
metric response represents a very different mode of re­
sponse. 
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