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Distributed damage such as cracking in heterogeneous brittle materials may be ap­
proximately described by a strain-softening continuum. To make analytical solu­
tions feasible, the continuum is assumed to be local but localization of softening 
strain into a region of vanishing volume is precluded by requiring that the softening 
region, assumed to be in a state of homogeneous strain, must have a certain 
minimum thickness which is a material property. Exact conditions of stability of an 
initially uniform strain field against strain localization are obtained for the case of 
an infinite layer in which the strain localizes into an infinite planar band. First, the 
problem is solved for small strain. Then a linearized incremental solution is obtained 
taking into account geometrical nonlinearity of strain. The stability condition is 
shown to depend on the ratio of the layer thickness to the softening band thickness. 
It is found that if this ratio is not too large compared to J, the state of homogeneous 
strain may be stable well into the softening range. Part II of this study applies 
Eshelby's theorem to determine the conditions of localization into ellipsoidal 
regions in infinite space, and also solves localization into circular or spherical 
regions in finite bodies. 

Introduction 

Distributed damage such as cracking or void nucleation and 
growth may be macroscopically described by a constitutive 
law for a continuum that exhibits strain-softening (Bazant, 
1986). In the softening range, the matrix of incremental 
moduli of the material is not positive-definite. After 
Hadamard (1903) pointed out that such a condition implies an 
imaginary wave speed, strain-softening has been considered an 
unacceptable property for a continuum and some scholars 
have argued that strain-softening simply does not exist (Read 
and Hegemier, 1984; Sandler, 1984). 

The various mathematical arguments for the nonexistence 
of strain-softening, however, overlooked one crucial ex­
perimental fact pointed out in 1974 by Bazant (1986): A 
material in the strain-softening state also has available to it 
another matrix of incremental moduli which applies for 
unloading and is positive-definite. This fact makes an essential 
difference. It causes that the material in a strain softening­
state can propagate unloading waves, and that solutions to 
various dynamic and static problems with strain-softening 
exist, even for the classical, local continuum. Some solutions 
are unique, representing limits of finite-element discretiza­
tions, which converge quite rapidly (Bazant and Belytschko, 
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1985, 1987; Belytschko et aI., 1986). In some cases, strain­
softening apparently leads to chaos (Belytschko et aI., 1986). 
Generally, the dynamic strain-softening problems (for a local 
continuum) belong to the class of "ill-posed" initial 
boundary-value problems, which are well known and accepted 
as realistic in other branches of physics (e.g., Joseph et aI., 
1985; Joseph, 1986, Yoo, 1985). Therefore, there is nothing 
fundamentally wrong with the concept of strain-softening 
from the mathematical viewpoint. 

From the physical viewpoint, however, strain-softening in a 
classical local continuum is an unacceptable concept because 
structures are predicted to fail with zero energy dissipation. 
The reason is that the zone of softening damage often localizes 
into a line or surface while the energy dissipation per unit 
volume is finite. This difficulty, however, may be overcome by 
introducing some form of localization limiters (Bazant and 
Belytschko, 1987)-mathematical formulations that prevent 
the strain-softening damage to localize into a region of zero 
volume. Among numerous possibilities, the limitation to 
localization may be best introduced by treating the softening 
damage as nonlocal while the elastic behavior, including 
unloading, is treated as local (Pijaudier-Cabot and Bazant, 
1986; Bazant, Lin, and Pijaudier-Cabot, 1987; Bazant and 
Pijaudier-Cabot, 1987). Physical justification of this nonlocal 
formulation has been given on the basis of homogenization of 
a quasi-periodic microcrack array (Bazant, 1987). Other 
possibilities are, e.g., the use of strain gradient or higher-order 
derivatives (or gradients) of the yield function in the con­
stitutive equation (e.g., Floegl and Mang, 1981; Mang and 
Eberhardsteiner, 1985; Schreyer and Chen, 1986; Trian­
tafyllidis and Aifantis, 1986). 

In this paper we will seek analytical solutions to 
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multidimensional localization. They appear to be possible 
with the well-known approach which uses the simplest and 
earliest type of localization limiter proposed in 1974 by Baiant 
(1976) and later implemented in the finite-element crack band 
model (Baiant and Cedolin, 1979, 1980; Baiant, 1982; Baiant 
and Oh, 1983, 1984). Despite the presence of strain-softening, 
the constitutive equation is in this approach treated as local, 
but the softening damage is not allowed to localize into a 
region whose size is less than a certain characteristic length lof 
the material. This length is determined empirically by fitting 
test data and roughly corresponds to the size of the represen­
tative volume used in statistical theory of heterogeneous 
materials (Kroner, 1967). For concrete, I is of the order of the 
maximum aggregate size. Although this approach is, admit­
tedly, crude and does not permit resolving the distribution of 
damage density throughout the softening region, it has given 
some surprisingly good results for the overall structural 
response. This was confirmed by comparisons with extensive 
fracture test data (Baiant and Oh, 1983; Baiant 1982, 1984) 
and later also by comparisons with accurate nonlocal finite­
element solutions (Baiant and Pijaudier-Cabot, 1987; Baiant, 
Pijaudier-Cabot, and Pan, 1986; Baiant and Zubelewicz, 
1986; see the Appendix). 

The method of analysis of strain-localization instability due 
to softening and its thermodynamic basis were formulated in 
1974 (Baiant, 1976) and the stability conditions for one­
dimensional localization in a bar and flexural localization in a 
beam were derived. The equivalence to failure analysis on the 
basis of fracture energy was also demonstrated (Baiant, 
1982). Several other studies reanalyzed the one-dimensional 
localization from other viewpoints yielding equivalent results 
(e.g., Ottosen, 1986). 

Rudnicki and Rice (1975) and Rice (1976) made important 
pioneering studies of localization into a planar band in an in­
finite space. They focused their studies primarily on localiza­
tion caused by the geometrically nonlinear effects of finite 
strain before the peak of the stress-strain diagram (i.e., in the 
plastic hardening range), but they also obtained some critical 
states for negative values of the plastic hardening modulus. 
Rudnicki (1977) further analyzed, on the basis of Eshelby's 
theorem, an infinite space that contains a weakened zone of 
ellipsoidal shape, determined for localization into such a zone 
the critical neutral equilibrium states of homogeneous stress 
and strain, and demonstrated various cases of localization in­
stabilities in the hardening as well as softening regime. 
Although the studies of Rudnicki and Rice represented an im­
portant advance, they did not actually address the stability 
conditions but were confined to neutral equilibrium condi­
tions for the critical state. They did not consider a general in­
cremental stress-strain relation but were limited to von Mises 
plasticity (Rudnicki and Rice 1975) or Drucker-Prager plastici­
ty (Rudnicki, 1977), in some cases enhanced with a vertex 
hardening term. They also did not consider bodies of finite 
dimensions, for which the size of the localization region usual­
ly has a major influence on the critical state and, in the case of 
planar localization bands, did not consider unloading to occur 
outside the localization band, which is important for finite 
bodies. The present study attempts to take all these conditions 
and effects into account. 

The purpose of the present study is to obtain exact 
analytical solutions for some multidimensional localization 
problems with softening, using the method introduced in 1974 
by Baiant (1976, 1979), which is based on a local continuum 
with an imposed lower bound on the size h of the softening 
region. In this paper, we will analyze localization of strain into 
a planar band, both without and with geometrical nonlinearity 
of strain and, in a subsequent companion paper, we will 
analyze in a similar manner the localization of strain into ellip­
soidal regions, including the special case of spherical and cir-

518/Vol. 55, SEPTEMBER 1988 

cular regions. The solution for ellipsoidal regions will be based 
on the celebrated Eshelby's theorem for eigenstrain in an ellip­
soidal inclusion in an infinite elastic solid. 

The present study (including Part II) will deal only with 
stability of equilibrium states, and not with bifurcations of the 
equilibrium path. As is known from Shanley's column theory, 
such bifurcations can occur at increasing load and do not 
necessarily coincide with the limit of stable equilibrium. 

Before embarking on our analysis, comments on several 
related aspects are in order. It has been widely believed that 
softening is properly treated by fracture mechanics, in par­
ticular, by line-crack fracture models with a cohesive zone 
characterized by a softening stress-displacement relation. One 
problem with this approach may be that the stress­
displacement relation might not be unique and might depend 
on the fracture specimen geometry. This is suggested by 
non local finite-element results as well as the difficulties in fit­
ting test data for various specimen geometries on the basis of 
the same material properties. Another problem is that this ap­
proach is limited to single fractures or noninteracting multiple 
fractures, and becomes unobjective (with regard to the choice 
of mesh) when multiple interacting cracks are present (Baiant, 
1986). The formulation could be made objective by imposing a 
certain minimum admissible spacing of cracks as a material 
property, but this runs into difficulty when the interacting 
cracks are not parallel. (Line cracks with a fixed minimum 
spacing h are, of course, macroscopically equivalent to 
distributed cracking if the cumulative cracking strain over 
distance h is made to be equal to the crack opening 
displacement. ) 

Softening Band Within a Finite Layer or Infinite Solid 

Let us analyze the stability of softening that is localized in 
an infinite layer which is called the softening band (or localiza­
tion band) and forms inside an infinite layer of thickness L (L 
~ h); see Fig. 1. The minimum possible thickness h of the 
band is assumed to be a material property, proportional to the 
characteristic length t. The layer is initially in equilibrium 
under a uniform (homogeneous) state of strain €g and stress ag 
assumed to be in the strain-softening range (Fig. 2). Latin 
lower case subscripts refer to Cartesian coordinates Xi (i = 1, 
2, 3) of material points in the initial state. The initial 
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Fig. 1 Planar localization band in a layer 
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Fig. 2 Stress·strain diagram with softening and unloading 
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equilibrium is disturbed by small incremental displacements 
OUi whose gradients OUi,j are uniform both inside and outside 
the band (subscripts preceded by a comma denote derivatives), 
The values of OUi,j inside and outside the band are denoted as 
ouf, j and ouL and are assumed to represent further loading 
and unloading, respectively, and so the increments OUi,j repre­
sent strain localization. We choose axis X2 to be normal to the 
layer (Fig. 1). As the boundary conditions, we assume that the 
surface points of the layer are fixed during the incremental 
deformation, i.e., OUi = 0 at the surfaces X2 = 0 and X2 = L 
of the layer. Assuming homogeneous strains inside and out­
side of the band, compatibility of displacements at the band 
surface requires that 

OUr,1 = oui,l = 0, OUr,3 = oub = 0 

hOui.z + (L - h)OUr,2 = 0 (i = 1,2,3). 

(1) 

(2) 

We assume that the incremental material properties are 
characterized by incremental moduli tensors Dijpq and Dijpq 
for loading and unloading (Fig. 2). These two tensors may be 
either prescribed by the given constitutive law directly as func­
tions of E~ and possibly other state variables, or they may be 
implied indirectly. The latter case occurs, e.g., for continuum 
damage mechanics. The crucial fact is that Dijpq differs from 
Dijpq and is always positive-definite, even if there is strain­
softening. Noting that Eij = (ui,j + uj,i)12 and Dijkm = Djimk , 
we may write the incremental stress-strain relations as follows 
(repetition of subscripts implies Einstein's summation rule) 

OU)i =D)ikmOEkm =D)ikmoutm for loading (3) 

out =DtkmoE~m =D'jikmOU~,m for unloading, (4) 

Stability of the initial equilibrium state may be decided on 
the basis of the work ~ W that must be done on the layer per 
unit area in the (XI' x3)-plane in order to produce the in­
crements oui • This work, which represents the Helmholtz free 
energy under isothermal conditions and the total energy under 
adiabatic conditions, may be expanded as ~ W = 0 W + 02 W 
+ ... where 0 W = first variation (first-order work done by 
u~ on OUi,) and 02 W = second variation (the second-order 
work). If the initial state is an equilibrium state, 0 W must 
vanish. We, therefore, need to calculate only 02 W. Using 
equations (3), (4), and (1), as well as the relation oui.z = 
-OUr,2 (L - h)lh which follows from equation (2), we get 

h L-h 
02 W = - OU~,OU: 2 + -- OU~iOUu" 2 2 . 2 . 

h h 
02 W = - (D2/ "2 + -- D2u .. 2)Ou/ 20U! 2 2 IJ L-h I) ). I,' 

(6) 

We may denote 

(7) 

or 

lu,m, D~I22' D~132 

j Z=[Zij]= D~212' D~222' D~232 

D~312' D~322' D~332 

lD1m, D~I22' D~132 

j h 
+-- D~212' D~222' D~232 L-h 

D~312' D~322' D~332 

(8) 
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Matrix Z is symmetric (Zij = zji) II ana VWJ U ~2ij2 - - .)1. 

and D~ij2 = D~ji2' This is assured if Dkijm as well as D~ijm has a 
symmetric matrix. Our derivation, however, is valid in general 
for nonsymmetric Zij or Dkijm' The necessary stability condi­
tion may be stated according to equation (6) as follows 

h 
02W=- OU!2Z .. 0U/2>0 for any OU/2' (9) 2 I. I) ). I, 

The expression in equation (9) is a quadratic form. If 02 W is 
positive for all possible variations oul.2 , no change of the in­
itial state can occur if no work is done on the body, and so the 
initial state of uniform strain is stable. On the other hand, if 
02 W is negative for some variation oul.2 , the change of the in­
itial state releases energy, which is ultimately dissipated as 
heat, thus increasing the entropy S of the system by ~S = 
- 02 WIT where T = absolute temperature. Hence, due to the 
second law of thermodynamics, such a change of initial state 
must happen spontaneously. Therefore, we must conclude 
that the intial state of homogeneous strain is unstable if 02 W 
(or Zij) ceases to be positive-definite. Positive-definiteness of 
the 3 x 3 matrix Zij is a necessary condition of stability. (We 
cannot claim equation (9) to be sufficient for stability since we 
have not analyzed all possible localization modes. However, 
changing> to < yields a sufficient condition for instability.) 

Positive-definiteness of the 6 x 6 matrix Z' = D/ + 
Duhl(L - h) (where D/ and Du are the 6 x 6 matrices of in­
cremental moduli for loading and unloading) implies stability. 
However, the body can be stable even if Z' is not positive­
definite. 

If the softening band is infinitely thin (hiL - 0), or the 
layer is infinitely thick (Llh - 00), we have Zij = D~ij2' and so 
matrix Z loses positive-definiteness when the (3 x 3) matrix of 
Db ceases to be positive-definite. This condition, whose 
special case for von Mises plasticity was obtained by Rudnicki 
and Rice (1975) and Rice (1976), indicates that instability may 
occur right at the peak of the stress-strain diagram. However, 
for a continuum approximation of a heterogeneous material, 
for which h must be finite, the loss of stability can occur only 
after the strain undergoes a finite increment beyond the peak 
of the stress-strain diagram. For L - h, the softening band is 
always stable. 

Strain-localization instability in a uniaxially stressed bar 
represents a one-dimensional problem. It also may be ob­
tained from the present three-dimensional solution as the 
special case for which the softening material is incrementally 
orthotropic, with D~222 = E/ « 0) and D~222 = Eu (> 0) as 
the only nonzero incremental moduli. Equations (7) and (9) 
then yield the stability condition presented in 1974 (Bazant, 
1976) 

E/ h 
---<-- or 

Eu L-h 
(10) 

E E _/ + __ u_>O. 
h L-h 

This simple condition clearly illustrates that for finite Llh the 
localization instability can occur only at a finite slope I E t I , 
i.e., some finite distance beyond the peak of the stress-strain 
diagram. 

If the end of the bar at X = L is not fixed but has an elastic 
support with spring constant Cs ' one may obtain the solution 
by imagining the bar length to be augmented to length L ' , the 
additional length L' having the same stiffness as the spring; 
i.e., L' - L = CslEu' Therefore, the stability condition is 
- E/lEu < hi (L' - h), which yields the condition given 
before (Bazant, 1976). 

The stability condition for a layer whose surface points are 
supported by an elastic foundation (Fig. 3) may be treated 
similarly, i.e., by adding to the layer of thickness L another 
layer of thickness L' - L such that its stiffness is equivalent 
to the given foundation modulus. 

The case when the outer surfaces of the layer are kept at 
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Fig. 3 Layer with localization band and an elastic foundation 

constant load p? = a~ nj during localization is equivalent to 
adding a layer of inifinite thickness L' - L. Therefore, the 
necessary stability condition is that the 3 x 3 matrix of D~ij2 
be positive-definite, i.e., no softening can occur. 

Another simple type of localization may be caused by 
softening in pure shear, Fig. 2(c). In this case, au I 2 ~ 0, OU2 2 

= OU3.2 = 0, and D~ll2 = G t , D~ll2 = Gu are the shear 
moduli. According to equations (7) and (9), the necessary 
stability condition is 

Gt h 
---<--. 

Gu L-h 
(11) 

Consider now the limiting case of an infinite space. While in 
a layer an infinitely long softening band must be parallel to the 
layer surface, for an infinite space, the softening band can 
have any orientation. Since L - 00, we have Zij = D~ij2' and if 
the band is normal to axis X2' stability requires that 02 W = 
oubD~ij20U).2h12 = positive-definite. To generalize this condi­
tion to a band of arbitrary orientation, we may carry out an 
arbitrary rotation transformation of coordinates from Xi to xi. 
The transformation relations are Xi = cijx; where cij are the 
direction cosines of the old coordinate base vectors in the new 
coordinates. According to the rules of transformation of ten­
sors, we now have 202 W = h (CikC2mOUk,m) (C2pCiqCjrC2sD~rs) 
(CjuC2vOU~,v) where the primes refer to the new coordinates x;. 
Noting that CikCiq = Okq, CjrCju = oru' we obtain 

202 W = hOapqD~~sroasr with oapq = C2pOUq,mC2m' (12) 

For arbitrary rotations, oapq can have any values. Thus the 6 
x 6 matrix of moduli D~qs" and also Dijkm' must be positive­
definite in order to insure that the strain cannot localize into 
an infinite planar band of any orientation. The same require­
ment was stated by Hadamard (1903), who derived it from the 
condition that the wave speed would not become imaginary. 
Hadamard's analysis, however, implied that DU = Dt. 

Finally, consider another case of boundary conditions: The 
case when the plane surfaces of an infinite layer slide freely 
over rigid bodies during the localization. The boundary condi­
tions at X2 = 0 and X2 = L now are 00'21 = 00'23 = O. Similar 
to equation (6), we now have 

h h 
02W=-(D~222 +-- D~222)OU~20U~2 + Y2(oNll ou II 2 L-h " , 

(13) 

in which oNll , oN33 , oNl3 are homogeneously distributed in­
plane incremental normal and shear force resultants over the 
whole thickness of the layer. Overall equilibrium now requires 
that aNI I = oN33 = oNl3 = O. Hence, the necessary condition 
of stability against localization is 

t h 
D2222 + --h- D~222 > O. L-

(14) 
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Extension to Geometrically Nonlinear Effects in Finite 
Strain 

Strain localization in an infinite planar band can be also 
easily solved even when the geometrically nonlinear effects are 
taken into account. The geometrical nonlinearity we consider 
is due to finite strains or finite rotations, not to changes in the 
geometrical configuration of the structure. The deviations oUi 

and OEij from the initial state, characterized by homogeneous 
stresses alj, are again considered to be infinitely small, and the 
energy expression .:1 W that governs stability is second-order 
small. However, the contribution to 02 W, which arises from 
the geometrically nonlinear finite-strain expression, is also 
second-order small, and so it must be included. This may be 
done if the material stress increment oaij in the work expres­
sion is replaced by the mixed (first) Piola-Kirchhoff stress in­
crement OTij' which is referred to the initial state and is non­
symmetric (Malvern, 1969). As is well known, OTij = oTij -
a?k OUj.k + a~ oUk,k where oTij = material increment of the 
true (Cauchy) stress. Since neither oaij nor OTij is invariant at 
coordinate rotations, one must use in the incremental stress­
strain relation the objective stress increment oaij (representing 
the objective stress rate times the increment of time); oaij is 
symmetric. 

The relationship between oaij and OTij may be written 
(Baiant, 1971) in the general form 

OTij = oaij + Rij km rSa~Souk,m = HijkmOUk.m (15) 

Hijkm = Dijkm + Rij km rsa~s (16) 

where we substituted Oaij = DijkmOUk,m' Coefficients Rij pq rs 
are certain constants which take into account the geometrical 
nonlinearity of finite strain. The values of Rij km pq are dif­
ferent for various possible choices of the objective stress rate 
and the associated type of the finite-strain tensor. The expres­
sions which are admissible according to the requirements of 
tensorial invariance and objectivity are (Baiant 1971) 

Rij pq rsa~s = oipa~ - a (oipa~ + Oiqa~j + Ojpa~i + Ojqa~i) (17) 

where a can be an arbitrary constant. The case a = 0 cor­
responds to Truesdell's objective stress rate and Green's 
(Lagrangian) finite-strain tensor; the case a = 114 to the 
finite-strain theory of Biot; the case a = 112 to the Jaumann's 
objective stress rate and the finite strain theory of Southwell, 
Biezeno-Hencky, and Neuber (and to the logarithmic strain); 
and the case a = 3/4 to Cotter-Rivlin's convected stress rate 
(see, equations (14a), (15), (17a), and (22) in Baiant, 1971). In 
general, a can be any real number. For each different a-value, 
however, different values of incremental moduli D ijpq must be 
used so as to obtain physically equivalent results; generally [cf. 
Baiant, 1971, equation (19)] 

Dijpq = [Dijpq],,~o + a(oiP~ + Oiqa~j + OjP~i + Ojqa~i)' (IS) 

From equation (5), in which oaij must now be replaced by 
OTij' the necessary stability condition is 

202 W = hOT~iOub + (L - h ) OT~iOU~2 

= h (OT~i - Or~i) ub = h (Mij20U),2 - mij20U'!.2)oub 

=hOubZijouh>O for any OU;.2 (19) 

in which 

h 
Z = }{!2''2 + -- ffi2 "2 IJ IJ L-h IJ 

-Dt h u L 0 
- 2ij2 + L-h D 2ij2 + L-h R2ij2rsars' (20) 

In particular, if we use the Lagrangian (Green's) finite strain 
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which is associated with Truesdell's objective stress rate (ex = 
0), we have 

Zoo = [ D2t 02 + _h_ D2U0'2] + _L_ a0'202j. (21) 
IJ IJ L-h Ij ",=0 L-h I 

If we use Jaumann's objective stress rate (ex = 112), we have 

Zu= [Diu2+ L~h D~ij2]"'=V2 

+ 2(L~ h) (a?zo2j - aJz02i - a~2oij - a~). (22) 

It must be emphasized that the conditions of positive­
definiteness of matrix [Zij] for various possible values of ex are 
all physically equivalent [even though for each different ex­
value the incremental moduli D~ij2 and D~iJ'2 are different, as 
dictated by equation (18)]. This fact often has been forgotten. 
The use of various types of objective stress rates often has 
been discussed in the literature on the basis of some imagined 
numerical convenience, and the fact that the incremental 
moduli cannot be the same for different objective stress rates 
has been overlooked (despite the analysis in Bazant, 1971). 
These practices, widespread in the finite-element literature, 
are of course incorrect. 

As for the identification of the incremental moduli from test 
data, it can be done only in reference to a certain chosen ob­
jective stress rate. Different values of the moduli must result 
for different choices although the results are equivalent 
physically (see, Bazant, 1971). 

The condition det [Zij] = 0 obviously represents the critical 
state. The special case of this condition for which the con­
stitutive law consists of von Mises plasticity enhanced by 
vertex hardening, Llh - 00 (infinite space), ex = 112 
(laumann's rate), and the initial stress a~ is pure shear a?2' 
was derived by Rudnicki and Rice (1975). Their analysis was 
concerned only with the critical state of neutral equilibrium, 
rather than with stability. The values of the unloading moduli 
Dijkm and the fact that they are different from Dijkm and 
positive-definite were irrelevant for their analysis. 

Rudnicki and Rice (1975) showed that, due to geometrical 
nonlinearity, the critical state of strain localization can 
develop in plastic materials while the matrix of Dljkm is still 
positive-definite, i.e., before the final yield plateau of the 
stress-strain diagram is reached. This may explain the forma­
tion of shear bands in plastic (nonsoftening) materials. The 
destabilizing effect is then due exclusively to geometrical 
nonlinearity. According to a geometrically linear analysis 
(small strain theory), strain localization could develop in 
plastic (nonsoftening) materials only upon reaching the yield 
plateau but not earlier. 

From equation (20), it appears that the geometrical 
nonlinearity can have a significant effect on strain localization 
only if the incremental moduli for loading are of the same 
order of magnitude as the initial stresses a~; precisely, if max 
IDhm I and max I a~ I are of the same order of magnitude. 
(Tlie unloading moduli Dijkm of structural materials are always 
several orders of magnitude larger.) Thus the importance of 
geometrical nonlinearity depends on D!jkm' For strain­
softening type of localization, the geometrical nonlinearity 
can be important only if the instability develops at a very small 
negative slope of the stress-strain diagram, which occurs very 
close to the peak stress point. This can occur only if the layer 
thickness L is much larger than I. If L - h « I, instability oc­
curs when the downward slope of the stress-strain diagram 
(Fig. 2) is of the same order of magnitude as the initial elastic 
modulus E, and this is inevitably orders of magnitude larger 
than the initial stresses a~. 

Therefore, we must conclude that the role of geometrical 
nonlinearity in localization due to strain-softening cannot be 
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significant except if the localization occurs immediately after 
the peak point of the stress-strain diagram (Fig. 2). Then the 
values of the strains at localization instability obtained by 
geometrically nonlinear and linear analyses cannot differ 
significantly since they must both be close to the peak point of 
the stress-strain diagram. For the post critical large deforma­
tions, however, geometrical nonlinearity is no doubt always 
important. 

Conclusions 

The condition of stability of a layer against localization of 
strain into a band reduces to the condition of positive­
definiteness of a certain matrix which represents a weighted 
average of the matrices of loading and unloading moduli of 
the material. The weight of the loading (softening) moduli in­
creases with the ratio of the band thickness to the layer 
thickness. If this ratio tends to zero (infinite space), the in­
stability is determined solely by the loading moduli and occurs 
as soon as this matrix ceases to be positive-definite. When the 
band thickness is finite, instability does not occur until the in­
itial strain exceeds the strain at peak stress by a finite amount. 
Geometrical nonlinearity of strain has a significant effect only 
for a very small band-to-Iayer thickness ratio, and unstable 
localization then occurs near the peak stress state. 

Extension to localization that is not unidirectional and 
numerical examples are relegated to a subsequent companion 
paper. 
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APPENDIX 

In the crack band model, the minimum possible size h of the 
softening zone in a local continuum is considered to be a 
material constant. The degree to which this approach can cap­
ture nonlocal behavior is illustrated by the comparison in Fig. 
4, taken from Baiant and Pijaudier-Cabot (1987). The data 
points show the length h of the strain-softening segment in a 
bar of length L > h, made of a nonlocal strain-softening 
material with characteristic length I. Nonlocal is only the frac­
turing (or damage) strain while the elastic strain, including 
unloading, is local. The results represent accurate solutions of 
an integral equation for the static uniaxial localization in­
stability in a bar that is initially strained uniformly, with a 
strain in the strain-softening range. In contrast to the present 
analysis, the length h of the localization segment is unknown 
and is solved as a function of the assumed characteristic length 
I. The results show that approximately h = a where a "'" con­
stant (a "" 1.88). Since I is a material constant, h may also be 
approximately considered to be a constant, as assumed in the 
crack band model. 
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