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Extending the preceding study of exact solutions for finite-size strain-softening 
regions in layers and infinite space, exact solution of localization instability is ob­
tained for the localization of strain into an ellipsoidal region in an infinite solid. The 
solution exploits Eshelby's theorem for eigenstrains in elliptical inclusions in an in­
finite elastic solid. The special cases of localization of strain into a spherical region 
in three dimensions and into a circular region in two dimensions are further solved 
for finite solids-spheres in 3D and circles in 2D. The solutions show that even if the 
body is infinite the localization into finite regions of such shapes cannot take place 
at the start of strain-softening (a state corresponding to the peak of the stress-strain 
diagram) but at a finite strain-softening slope. If the size of the body relative to the 
size of the softening region is decreased and the boundary is restrained, 
homogeneous strain-softening remains stable into a larger strain. The results also 
can be used as checks for finite element programs for strain-softening. The present 
solutions determine only stability of equilibration states but not bifurcations of the 
equilibrium path. 

Introduction 

The strain-localization solutions in the preceding paper (Ba­
zant, 1987) deal with unidirectional localization of strain into 
an infinite planar band. If the body is finite, localization into 
such a band does not represent an exact solution because the 
boundary conditions cannot be satisfied. In this paper, we will 
seek exact solutions for multidirectional localization due to 
strain-softening in finite regions. In particular, we will study 
localization into ellipsoidal regions, including the special cases 
of a spherical region in three dimensions and a circular region 
in two dimensions. All definitions and notations from the 
preceding paper (Ba.zant, 1987, Part I) are retained. 

Softening Ellipsoidal Region in Infinite Solid 

This type of strain-localization instability can be solved by 
application of Eshelby's (1957) theorem for ellipsoidal inclu­
sions with uniform eigenstrain. Consider an ellipsoidal hole, 
Fig. l(a), in a homogeneous infinite medium that is elastic and 
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is characterized by elastic moduli matrix Du. We imagine fit­
ting and glueing into this hole an ellipsoidal plug of the same 
material, Fig. l(a), which must first be deformed by uniform 
strain fO (the eigenstrain) in order to fit into the hole perfectly 
(note that a uniform strain changes an ellipsoid into another 
ellipsoid). Then the strain in the plug is unfrozen, which 
causes the plug to deform with the surrounding medium to at­
tain a new equilibrium state. The famous discovery of Eshelby 
(1957) was that if the plug is ellipsoidal and the elastic medium 
is homogeneous and infinite, the strain increment fe in the 
plug which occurs during this deformation is uniform and is 
expressed as 

(1) 

S;jkm are components of a fourth-rank tensor which depend 
only on the ratios a, /a3 and a2/a3 of the principal axes of the 
ellipsoid and, and for the special case of isotropic materials, 
on Poisson ratio Vu; see, e.g., Mura (1982) and Christensen 
(1979). Due to symmetry of €~ and €~, Sijkm = Sj;km = S;jmk> 

but in general S;jkm ;t; Skmij. Coefficients S;jkm are, in general, 
expressed by elliptic integrals; see also Mura (1982). Extension 
of Eshelby's theorem to generally anisotropic materials was 
later accomplished at Northwestern University by Kinoshita 
and Mura (1971) and Lin and Mura (1973). 

It will be convenient to rewrite equation (1) in a matrix form 

(2) 

or 
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E~l S1111 Sm2 S1133 S1112 8 1123 S1131 E?1 

E~2 S2211 8 2222 8 223J S22l2 S2223 8 2231 €~2 

E~3 Sml S3322 S3333 
i S33l2 83323 8 3331 E~3 I 
I (3) ---------------------------------r------------- , 

2Ei2 2S1211 251222 2S1233 
I 2S1212 2S1223 251231 2€?2 I 
I I ------------r-------- ... --- 1 

2Eg3 2E~3 252311 282322 28m3 2S2312 
I 2S2323 

I 282331 I I 
I I -------------T------------

2€~1 283111 283122 283133 283112 283123 

in which E= (Ell' El2' E33' 2E12' 2€n, 2€31)T and superscript T 
denotes the transpose of a matrix. 

For isotropic materials, the only nonzero elements of matrix 
Q are those between the dashed lines marked in equation (3), 
which is the same as for the stiffness matrix. The factors 2 in 
matrix Qu in equation (3) are due to the fact that the column 
matrix of strains is (6 x 1) rather than (9 x 1) and, therefore, 
must involve shear angles 2E12' 2E23 and 2€31 rather than ten­
sorial shear strain components €IZ,€Z3 and E31' or else qTOE 

where qT = (all' a22' a3], aiZ' aZ3, (31) would not be a correct 
work expression. (The work expression aijoEij, as well as the 
sum implied in equation (1) for each fixed iJ, has 9 terms in 
the sum, not 6.) For example, writing out the terms of equa­
tion (1) we have 

E11='" +(SI1l2€?2+ 8 1121€gl)+'" 

= ... + 8 11 12 (2€?2) + 
while the factors 2 arise as follows 

2Eh = 2[ ... + 81233€~3 + (SIIl2 E?2 + 8 1121 €~I) 

+ (81223 E:33 + 81232€~2) + - .. J 
= ... (2S1233)E~3 + (2S 121z )2€?2 

+ (281223)2€~3 + ... 

(4) 

(5) 

The stress in the ellipsoidal plug, qe (which is uniform), may 
be expressed according to Hooke's law as 

qe=Du(t'-EO). (6) 

After substituting EO = Q~ 1 Ee , according to equation (2), we 
get qe = Du(Ee - Q; I tel or 

qe=Du(l-Q;l)Ee (7) 

where 1 is a unit 6 x 6 matrix. The surface tractions that the 
ellipsoidal plug exerts upon the surrounding infinite medium, 
Fig. lea), are pf = aij nj' in which nj denotes the components 
of a unit normal n of the ellipsoidal surface (pointed from the 
ellipsoid outward). 

Consider now infinitesimal variations ou, OE, OrT from the 
initial equilibrium state of uniform strain EO in an infinite 
homogeneous anisotropic solid (without any hole). The 
matrices of incremental elastic moduli corresponding to EO are 
DI for further loading and Du for unloading, Du being 
positive-definite. We imagine that the initial equilibrium state 
is disturbed by applying surface tractions OPi over the surface 
of the ellipsoid with axes ai' a2' a3, Fig. l(b). We expect OPi to 
produce loading inside the ellipsoid and unloading outside. 
We try to calculate the displacements OUi produced by trac­
tions OPi at all loading points on the ellipsoid surface. 

Let Ofij, our be the strain and displacement variations pro­
duced (by tractions opJ in the ellipsoid, and denote the net 
tractions acting on the softening ellipsoid as opi, and those on 
the rest of the infinite body, i.e., on the exterior of the ellip­
soid, as opr. As for the distributions of opi and opT over the 
ellipsoid surface, we assume them to be such that opi = oaijnj 
and apr = oaijnj where oai) and oaij are arbitrary constants; 
oaij is the stress within the softening ellipsoidal region. which 
is uniform (and represents an equilibrium field), and ouij is a 
fictitious uniform stress in this region which would equilibrate 
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Opr. Stresses oaij in reality exist only on the outside of the ellip­
soid surface. 

Equilibrium requires that OPi = op; - opr. The first-order 
work 0 W done by q~ must vanish if the initial state is an 
equilibrium state. The second-order work done by OPI may be 
calculated as 

02W= r ~poued8 Js 2 I I 

= ~a! r n ,ou· dS - ~qf. r nou~ d8 (8) 2 Ij J s J I 2 Ij J s j I 

where S = surface of the softening ellipsoidal region. Note 
that ouij are not the actual stresses in the solid but merely serve 
the purpose of characterizing the surface tractions opr. Apply­
ing Gauss' integral theorem and exploiting the symmetry of 
tensors oaij and oaij. we further obtain 

02 W=~(o(l-ocn) r ouedV 2 I} IJ J v IJ 

1 1 1 = _(Oql, -ocn''--(ou~, + ou~ ,)dV v 2 Ij IJ'T IJ j.1 

(al 

(e) 

\ 

(b) / / ! / I / / / / / i / / I / i / I / \_ 
/// / / / / / / / //Jp' / / ~\ 
1/ / / //// / / 4- / / / \ 
///1/ /, \ / / / / / \ / i 
/11/1- 11//1-
/ / / /Ii r:~ / / ----~ , 66 

/
/ / /Ii ' / / / \ 
III // \ / // l'! -'- / 6ui / " \....-

; / / / / / / / / / / / / I / / / \ 60 

1;/11/;/;////11/ 

(9) 

E 

Fig. 1(11) Ellipsoidal plug (inclusion) inserted into infinite elastic solid. 
and (b) localization of strain into an elliptic region 
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where V = volume of the softening ellipsoidal region, and 
subscripts preceded by a comma denote partial derivatives. 
We changed here to matrix notation and also recognized that 
Y2(oufJ + ouJ.;) = Oft. Now we may substitute 

oul = DloEe (10) 

or oul
T = OEeT DI (assuming D; = DI). According to equation 

(7), we also have, as a key step 

or = Du(l- Q,; I)U. (11) 

In contrast to our previous consideration of the elastic ellip­
soidal plug made of the same elastic material, equations 
(2)-(7), the sole meaning of or now is to characterize the trac­
tions opr acting on the ellipsoidal surface of the infinite 
medium lying outside the ellipsoid. Noting that the integrand 
in equation (9) is constant, we thus obtain 

I T I 
02W=-OEe ZOEeV=-Z"k OE~·OEek V (12) 2 2 I,m IJ m 

in which Z denotes the following 6 x 6 matrix 

Z=Dt + Du(Q,;I -1). (13) 

Equation (12) defines a quadratic form. If the initial 
uniform strain E° is such that the associated Dt and Du give 
02 W> 0 for all possible OEij, then no localization in an ellip­
soidal region can begin from the initial state of uniform strain 
E° spontaneously, i.e., without applying loads op. If, however, 
02 Wis negative for some oft, the localization leads to a release 
of energy which is first manifested as a kinetic energy and is 
ultimately dissipated as heat. Such a localization obviously in­
creases entropy of the system, and so it will occur, as required 
by the second law of thermodynamics. Therefore, the 
necessary condition of stability of a uniform strain field in an 
infinite solid is that matrix Z given by equation (13) must be 
positive-definite. 

The expressions for Eshelby's coefficients Sijkm from which 
matrix Qu is formed (see, e.g., Mura, 1982) depend on the 
ratios a l /a3, a21a3 of the axes of the ellipsoidal localization 
region. They also depend on the ratios of the unloading 
moduli Dijkm' If, e.g., the unloading behavior is assumed to be 
isotropic, they depend on the unloading Poisson ratio "u' 

Matrix Du is determined by "u and unloading Young's 
modulus Eu' If, just for the sake of illustration, the loading 
behavior is assumed to be also isotropic, matrix Dt is deter­
mined by "t and Et (Poisson's ratio and Young's modulus for 
loading). EI' "1' Eu, "u' in turn, depend on the strain E~ at the 
start of localization. Since a division of Z by Eu does not af­
fect positive-definiteness, only the ratio EtlEu matters. Thus, 
Z is a function of the form 

A (a l a2 Et ) 
Z=EuZ -, -, "U'''I'--

a3 a3 Eu 

(14) 

where Z and Z are nondimensional matrix functions. 
Note that matrix Z, which decides the localization instabili­

ty, is independent of the size of the ellipsoidal localization 
region. This is the same conclusion as already made for a 
planar localization band in an infinite solid. No doubt, the size 
of the localization ellipsoid would matter for finite-size solids, 
same as it does for localization bands in layers. 

The previously obtained solution for a planar localization 
band in an infinite solid must be a special case of the present 
solution for an ellipsoid. Localization in line cracks also must 
be obtained as a special case for a3-00; however, the present 
solution is not realistic for this case since energy dissipation 
due to strain-softening is finite per unit volume and, therefore, 
vanishes for a crack (the volume of which is zero). For this 
case, it would be necessary to include the fracture energy (sur-
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Fig. 2 Localization of strain Into spherical and circular regions 

face energy) in the energy criterion of stability, same as in 
fracture mechanics. In this study, though, we take the view 
that, due to material heterogeneity, it makes no sense to apply 
a continuum analysis to localization regions whose width is 
less than a certain length h proportional to the maximum size 
of material inhomogeneities. 

Spberical Softening Region in a Spbere or Infinite Solid 

Localization in a spherical region is a special case of the 
preceding solution for ellipsoidal regions. However, the solu­
tion may now be easily obtained even when the solid is finite. 
Consider a spherical hole of radius a inside a sphere of radius 
R, (Fig. 2(a». We assume polar symmetry of the deformation 
field and restrict our attention to materials that are isotropic 
for unloading. As shown by Lame (1852) (see, e.g., 
Timoshenko and Goodier, 1970, p. 395), the elastic solution 
for the radial displacements and the radial normal stresses at a 
point of radial coordinate r is 

u=Ar+Dr- 2 ,ur =Eu (.A-2br- 3 ) (15) 

where A = AI(I- 2"u), iJ = DI(I + "u); Eu, "u Young's 
modulus and Poisson's ratio of the sphere, and A, D = ar­
bitrary constants to be found from the boundary conditions. 

We now consider a solid sphere of radius R which is initially 
under uniform hydrostatic stress 0'0 and strain E° (0'0 = O'ZkI3, 
E° = €~kI3), and seek the conditions for which the initial strain 
may localize in an unstable manner into a spherical region of 
radius a. Such localization may be produced by applying on 
the solid sphere at r=a radial outward tractions op (i.e. 
pressure) uniformly distributed over the spherical surface of 
radius a, Fig. 2(a). To determine the work of op, we need to 
calculate the radial outward displacement oU; at r=a. We will 
distinguish several types of boundary conditions on the outer 
surface r=R. 

(a) Outer Surface Kept Under Constant Load. As the 
boundary condition during localization, we assume that the 
initial radial pressure p~ applied at outer surface r = R is held 
constant, i.e., OP2 = O. For oUr = -OPI at r=a and OUr 
-OP2 = 0 at r = R, equation (11) may be solved to yield A 
a30P I /E(R3 -a3), b=AR3/2, and from equation (IS) 
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a [ 3 1 + Pu 3] 
3 3 (1-2pu)a +--R . 

Eu(R -a) 2 
(16) 

The inner spherical softening region of radius a, Fig. 2(c), is 
assumed to remain in a state of uniform hydrostatic stress and 
strain, and its strain-softening properties to be isotropic, 
characterized by E t and Pt. Thus the strains for r<a are 
OE=ouI/a, the stresses are ou=3Kt oUI/a = CtOUI with Ct = 
3Ktla; K t = bulk modulus for further loading (softening); 3Kt 
= E/(1-2pt), with Et<O, K/<O, for softening. The surface 
tractions acting on the softening region, Fig. 2(c), are equal to 
C,OUI where C, = 3K,la. Hence, by equilibrium, the total 
distributed traction at surface r=a must be op = C/iUI + 
C/OUI and the work done by op is ~W = 411"a2(Y2opou l ) = 
211"a2(Cu + Ct)our. Thus the necessary condition of stability 
of the initial uniform strain EO in the solid sphere is 
Cu + Ct > 0, which yields the necessary condition for stability 

Et 2(1- 2pt)(R3 - a3) 
-- < (17) 

Eu 2(1- 2pu)a3 + (1 + pu)R3 

Changing < to >, we obtain the sufficient condition for 
strain-localization instability. 

(b) Outer Surface Kept Fixed. In this case we assume 
that during localization OU = 0 at r = R, and ou, = - op I at 
r==a. From equation (15), we may then solve D= -AR3 and 

OPI (1 2R3) -I 
A = - Eu 1 - 2pu + (1 + pu)a3 (18) 

which yields 

E a2 (1 2R3) C = u ___ + ___ .,.-
u R3- a3 1- 2pu (1 + pu)a3 . 

(19) 

The work done on the solid sphere by tractions op = CUou l + 
CIOUI applied at surface r=a is ~w = 211"a2 (Cu + C/) our 
where C/ = E tl(1- 2pt )a as before. Thus the necessary 
stability condition is Cu + C/ > 0, which can now be reduced 
to the condition 

E( 1 - 2J1( (a3 2R3 
) 

--- <:: 3 3 ---+--. 
Eu R -a 1-2pu l+pu 

(20) 

Assuming that IE/ I increases continuously after the peak of 
the stress-strain diagram as EO is increased, instability develops 
at the value a = ac, which minimizes IE/ I under the restriction 
h/2 s a s R where h is the given minimum admissible size of 
the strain-softening region, representing a material property. 
For the case of prescribed pressure at the boundary r=R, we 
find from equation (17) that acr = R, which corresponds to E/ 
= O. So the sphere becomes unstable right at the start of 
strain-softening, i.e., no strain-softening can be observed 
when the boundary is not fixed. For the case of a fixed 
(restrained) boundary at r=R, equation (20), one can verify 
that Min IE/ I is finite and occurs at acr = Min Il = h12 
(provided that Pu ~O). 

For Rla- 00, equation (20) yields the stability condition for 
the case of infinite solid fixed at infinity, Fig. 2(e, 1) 

_ ~ < 2(1- 21'/) (21) 
Eu 1 + Pu 

It is interesting that for Ria - CX1 equation (17) yields the same 
condition, but this limit case is of questionable significance 
since we found that ac, = R when the boundary is not fixed. 
Note that the stability condition in equation (21) does not de­
pend on the radius a of the softening region; yet, unlike the 
softening in a layer in infinite solid, solved before, instability 
does not begin at the peak of stress-strain diagram (where 
E/ = 0) but begins only at a certain finite negative slope of the 
stress-strain diagram. This slope can in fact be rather steep 
(- Et = 2Eu for Pt = Pu = 0). 
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Circular Softening Region in a Planar Disk or Infinite 
Plate 

Working in two dimensions, consider a circular hole of 
radius a inside a homogeneous isotropic circular disk of radius 
R Fig. 2(a,b). We assume a plane-stress state and, then, accor­
ding to Lame's solution, the radial displacement U and the 
radial normal stresses are (see, e.g., Fliigge, 1962, p. 37-13; or 
Timoshenko-Goodier, 1970, p. 70) 

I-pu a2pI-R2p2 l+pu R2a2(PI-P2) 
U=-- r+-- (22) 
. Eu R2 - a2 Eu (R2 - a2)r 

R 2a2(p2 -PI) a2pI -R2p2 
u = + -~--=-..::.. 

, (R2 -a2)r R2 -a2 

2pu (P2R2 - PI a2) 
E2 = 

Eu(R2-a2) 
(23) 

where PI and P2 are the pressures applied along the hole 
perimeter and along the outer perimeter of the disk, respec­
tively, and E2 is the transverse strain in the plate, which is in­
dependent of r. Depending on the boundary conditions, we 
distinguish three cases: 

(a) Outer Boundary Kept Under Constant Load. As the 
boundary condition during the strain localization instability, 
we now assume that the initial radial pressure P2 applied at the 
outer boundary r = R of the disk is held constant, i.e., OP2 = O. 
Equation (22) then yields for OUI = OU at r '" a, Fig. 2(b), the 
relation 

OUI = OPI, _1_=~(pu + R~ +a~ ). (24) 
Cu Cu Eu R -a 

The inner circular softening region of radius a, Fig. 2(c) , is 
assumed to remain in a uniform state of stress and strain. 
Thus the strains for r<a are OE, = oUI/a. Assuming the plate 
to be thin compared to radius a, we may assume the strain­
softening region to be also in a plane-stress state, and then OE, 
= ou,(1 - pt)/E/. Hence, 

1 E/ 
ou, = Ctou l , C/ =- --. (25) 

a 1- Pt 

Now, we consider uniformly distributed outward tractions op 
to be applied along the circle r = a on the solid disk (without 
the hole). By equilibrium, op = CuOUI + CtOUI and the work 
done by op is ~ W = 211"a(Y2 opou l ) = 1I"a( Cu + C t )out. Thus 
the necessary condition of stability of the initial state of 
uniform strain is Cu + Ct > O. According to equations (24) 
and (25), the stability condition for plane stress becomes 

E/ 1-1'/ 
---<-----

Eu R2 +a2 
(thin plate). (26) 

Pu+ R2-a2 

As another limiting case, we may consider a long cylinder of 
radius R (and length > > R), in which case the softening 
region is forced to have along the cylinder axis the same strain 
Ez as the unloading region. However, the softening region is 
not in a plane-strain state either. Assuming that the planes 
normal to the cylinder axis remain plane, consider now that, 
unlike before, the axial stresses Uz are nonzero. We must im­
pose the equilibrium condition that the resultants of u~ in the 
softening region and of ui in the unloading region cancel each 
other, i.e., 1I"(R2 - a2)ui = -1I"a2u~. We leave it to a possible 
user to work out the solution in detail and we now restrict our 
attention to the case a< <R, for which, according to equation 
(20) (OP2 = 0), we have OEz = 2PuoPI a2 /(a2 - R2)Eu "" 0 (for 
r~a), while also oUz = O. Therefore, we may assume for the 
incremental deformation in the strain-softening region a state 
of plane strain. The solution may then be obtained simply by 
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replacing EI with E; = EI/(1 - 117), and III with II; = 111 /(1 -
III) (the unloading region remains in plane stress in this case). 
Equation (26) thus transforms to 

EI (1 + 111)(1- 2111) 

-- < (long cylinder, a< <R). (27) 
Eu R2 +a2 

lIu+ R2-a2 

When aiR is not very small, the solution may be expected to 

0.5~----------------------------------~ 

0.4 

0.2 

Elliptic cylinder 
a2 = 1, a3 = .. 
v u = 0.18 

lie between equations (26) and (27). 0.1 

(b) Outer Boundary Kept Fixed. In this case, we have 
during localization ou=O at r=R and OUr = -OPI at r = a. 
Taking the variations of equations (22) at r = Rand r = a, we 
get 

1 - lIu a20PI - R20P2 1 + lIu R 2a2(oPI - 0P2) 
-- R+-- 0 (28) 

Eu R2 -a2 Eu (R2 -a2)R 

1 + lIu R 2a2(opl - 0P2) 
+~ (R2 -a2)a . (29) 

Eliminating OP2 from these two equations, we get the relation 
OPI = CUou 1 with 

1 1 [ -C = 2 2 a[(1- lIu)a2 + (1 + lIu)R2] 
u Eu (R -a) 

(30) 

By the same reasoning as before, the necessary condition for 
the stability of the initial uniform strain EO is Cu + CI > 0 
where CI is again given by equation (25). This condition yields 

EI (1 - II I )(R2 - a2) 
----<---------------------------------

Eu 4R2a2 

R2 + a2 + II (R2 - a2) -....,.,..--,...,,----,-,,_______.,.__:;__ 
u (1 - lIu)R2 + (1 + lIu)a2 

(thin plate). (31) 

For the case of a long cylinder of length > > R and with a 
< < R, we may obtain the solution again by replacing Eo III 
with E;, II;. This yields 

EI (1 + 11/)(1 - 2111)(R2 - a2) 
--<-----------------

Eu 4R2a2 

R2 + a2 + II (R2 - a2) - -:-:----:-:~---,-,,_______.,.__:;__ 
u (1- lIu)R2 + (1 + lIu)a2 

(long cylinder, a< <R). (32) 

Instability develops at the value a = acr which minimizes 
lEI I under the restriction that hl2:5a:5R. For the case of 

prescribed load at outer boundary, we find from equation (26) 
or (27) that acr = R, which corresponds to EI = O. Thus the 
disk becomes unstable right at the start of strain·softening, 
i.e., no strain·softening can be observed. For the case of a fix­
ed (restrained) boundary at r=R, we find that, for a-R, lim 
( - EllEn) = 00 (to verify it one needs to substitute a = R - 0 
and consider 0-0); consequently Min lEI I is finite, and it is 
found to occur at acr = Min a = hl2. 

For Ria - 00, equation (31) or (32) yields the stability con­
dition for the case of infinite plate fixed at infinity, Fig. 2(e,1) 

for thin plate (33) 

EI (1 + 11/)(1 - 2111) 
----< for massive solid. (34) 

Eu 1 + lIu 

It is interesting that for Ria - 00 equations (26) and (27) 
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Fig. 3 Tangential modulus Et at the limit of stability against localiza· 
tion into ellipsoidal region as a function of ratio 81/82 of principal axes 
of ellipsoid 

yield the same conditions, but these limits are of questionable 
significance since we found that acr = R when the boundary is 
not fixed. Note that the stability conditions in equations (33) 
and (34) are independent of the size of the localization region, 
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same as we found it for spherical localization regions and 
layers. 

Softening Annulus or Sbell 

Solution on the basis of equations (22) and (23) or (25) is 
also possible for curved softening bands limited by two circles 
(an annulus) or by two spherical surfaces (a shell). In this case, 
the softening layer is not in a homogeneous state of strain and 
stress. The resulting formulas are more complicated. They 
represent a transition between the solution for a softening cir­
cle (or cylinder, sphere) and a softening band. 

Numerical Examples and Discussion of Results 

Figure 3 shows some numerical results for localization of 
strain into ellipsoidal domains in infinite space. The results 
were calculated for domains in the shape of infinitely long 
elliptic cylinder (a3 - 00 and various a11a2) as well as prolate 
spheroid (a1 > a2 = a3' various ratios a/a2). The material 
was assumed to be incrementally isotropic, with matrices Dt 

and Du characterized by Young's moduli Et and Eu , and 
Poisson ratios "u = 0.18 with various values of "t. The 
assumption of incremental isotropy is here made for the sake 
of simplicity. In reality, the incremental moduli at strain­
softening must be expected to be anisotropic, except when the 
initial state is a purely volumetric strain. A subsequent paper 
(Bazant and Lin, 1987) gives numerical results for incremen­
tally anisotropic moduli corresponding to von Mises plasticity 
and nonassociated Drucker-Prager plasticity with a negative 
plastic modulus. 
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Matrix Z, equation (13), was evaluated by computer on the 
basis of Sijkm taken from Mura (1982, equations (11.22) and 
(11.29». The smallest eigenvalue of matrix Z was calculated 
by a computer library subroutine. Iterative search by Newton 
method was made to find the value of EtlEu for which the 
smallest eigenvalue is zero and is about to become negative, 
which indicates loss of positive-definiteness. 

The results are plotted in Figs. 3(a-d). For the infinite 
cylinder, Fig. 3(a,b), as a11a2 increases, the localization in­
stability occurs at smaller lEt lEu I. The case a11a2 - 00 cor­
responds to an infinite planar band, and the results are iden­
tical to those obtained before for this case. In particular, lEt I 
tends to 0 as a11a2 - 00; i.e., instability Occurs right at the 
peak of the stress-strain diagram. 

For the prolate spheroid, Fig. 3(c, d), the instability also oc­
curs at decreasing I EtlEu I as a11a2 increases, but for lEt I -
00, which corresponds to an infinite circular tube, a finite 
value of lEt I, depending on Poisson's ratio, is still required 
for instability. This limiting case is equivalent to two­
dimensional localization in a circular region, equation (34). 
On the other hand, the case a11a2 = 1, Fig. 3(c,d), is 
equivalent to localization into a spherical region, equation 
(21). 

Figures 4(a-d) shows the plots for various incremental 
Poisson's ratios of IEtIEu I at incipient localization instability 
as a function of Ria for the following cases: (1) sphere, 
displacement fixed, equation (20); (2) localization in planar 
band in uniaxial extension (Equation (12) of Bazant, 1987, 
Ria = Llh); (3) localization in planar shear band (Bazant, 
1987, equation (13), Ria = Llh). 
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Fig. 4 Tangential modulus E, at the limit of stability against localiza· 
tion into spherical and circular regions of radius r within a sphere or disk 
01 radius R 
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We see from Fig. 4 that the value of Et at instability depends 
strongly on the relative size R (a) of the body as well as the 
Poisson's ratios. For infinite body size (Ria - 00), instability 
of planar bands occurs at Et = 0, i.e., at the peak of stress­
strain diagram. The same happens under load-controlled con­
ditions for the cases of spherical or circular regions with Ria 
- 1 (Le., the smallest possible body size for which the body 
remains at homogeneous strain). For Ria> 1, the spherical 
or circular regions generally require a finite slope lEI I to pro­
duce localization instability, provided the boundary is under 
prescribed displacement during the localization. 

The results show that a localization instability in the form of 
a planar band always develops at a smaller lEI I, and thus at a 
smaller initial strain, than the localization instability in the 
form of an ellipsoidal softening region. That does not mean, 
however, that the planar band would always occur in practice. 
A planar localization band cannot accommodate the bound­
ary conditions of a finite solid restrained on its boundary, and 
a localization region similar to an ellipsoid may then be ex­
pected to form. It is remarkable how slowly the slope lEI I at 
instability decreases as a function of al la2' The value of the 
aspect ratio that is required to reduce lEI I at instability from 
about 0.4 to about 0.04 of Eu is al / a2 = e3 = 20. This means 
that if a very long planar softening band cannot be accom­
modated within a given solid, the deformation at softening in­
stability is considerably increased. 

The present solutions represent upper bounds on lEt I at ac­
tual localization. When the stability condition for some of the 
previously considered softening regions is violated, instability 
with such a region is possible and must occur since it leads to 
an increase of entropy. However, it is possible that localiza­
tion into some form of region that we could not solve would 
occur earlier, at a smaller initial strain. For this reason, the 
present stability conditions are only necessary rather than suf­
ficient. However, their opposites (Le., < changed to » 
represent sufficient conditions for instability. 

In the preceding analysis of ellipsoidal softening regions, we 
solved only the case of infinite solids and were unable to ex­
amine the effect of the boundary conditions at infinity. Now, 
from the fact that spherical and circular softening regions are 
special cases of ellipsoidal ones, we must conclude that our 
solution for ellipsoidal region is applicable only if the ellip­
soidal region is of finite size, which is guaranteed only if the 
infinite body is fixed at infinity rather than having prescribed 
loads at infinity. Otherwise the limit cases acr = R for 
spherical or circular softening regions discussed after (equa­
tions (20) and (32» would not be satisfied. 

Journal of Applied Mechanics 

Conclusion 

The solutions to multidirectional localization problems with 
ellipsoidal, spherical and circular localization regions indicate 
that, in general, a loss of positive-definiteness of matrix 0t of 
tangential moduli for loading does not necessarily produce iT'­
stability. Rather, the stability criterion requires positiv 
definiteness of a certain weighted average of the incrementu> 
moduli matrices 01 and Ou for loading and unloading. The 
weights depend on the relative size of the body. Not only for 
finite but also for infinite bodies restrained at the boundary, 
unstable strain localization into finite-size ellipsoidal regions 
cannot take place for a certain range of nonpositive-definite 
tangential moduli matrices. By contrast, unstable strain 
localization into an infinitely long planar band of finite 
thickness occurs in an infinite space as soon as 01 loses 
positive-definiteness. 

The present results can be used to check the correctness of 
finite-element programs for strain-softening. 
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