
EURASIP Journal on Applied Signal Processing 2005:16, 2641–2654

c© 2005 Hindawi Publishing Corporation

SoftExplorer: Estimating and Optimizing
the Power and Energy Consumption
of a C Program for DSP Applications

Eric Senn

LESTER, University of South-Brittany, BP 92116, 56321 Lorient Cedex, France
Email: eric.senn@univ-ubs.fr

Johann Laurent

LESTER, University of South-Brittany, BP 92116, 56321 Lorient Cedex, France
Email: johann.laurent@univ-ubs.fr

Nathalie Julien

LESTER, University of South-Brittany, BP 92116, 56321 Lorient Cedex, France
Email: nathalie.julien@univ-ubs.fr

Eric Martin

LESTER, University of South-Brittany, BP 92116, 56321 Lorient Cedex, France
Email: eric.martin@univ-ubs.fr

Received 30 January 2004; Revised 20 October 2004

We present a method to estimate the power and energy consumption of an algorithm directly from the C program. Three models
are involved: a model for the targeted processor (the power model), a model for the algorithm, and a model for the compiler
(the prediction model). A functional-level power analysis is performed to obtain the power model. Five power models have been
developed so far, for different architectures, from the simple RISC ARM7 to the very complex VLIW DSP TI C64. Important
phenomena are taken into account, like cache misses, pipeline stalls, and internal/external memory accesses. The model for the
algorithm expresses the algorithm’s influence over the processor’s activity. The prediction model represents the behavior of the
compiler, and how it will allow the algorithm to use the processor’s resources. The data mapping is considered at that stage.
We have developed a tool, SoftExplorer, which performs estimation both at the C-level and the assembly level. Estimations are
performed on real-life digital signal processing applications with average errors of 4.2% at the C-level and 1.8% at the assembly
level. We present how SoftExplorer can be used to optimize the consumption of an application. We first show how to find the best
data mapping for an algorithm. Then we demonstrate a method to choose the processor and its operating frequency in order to
minimize the global energy consumption.

Keywords and phrases: power, energy, estimation, optimization, C program, DSP applications.

1. INTRODUCTION

Lowering the power consumption of today’s electronic de-
vices is more than ever a crucial challenge. Indeed, the mar-
ket of mobile devices has exploded those last years: laptop
computers, pocket PC, tablet PC, PDA, mobile phones, and
so forth. It is remarkable that there is less and less difference
between all these devices. With mobile phones, you can take
pictures, record movies, or surf the internet as easily as with
any laptop. A common point between all those new multi-
media materials is the necessity to comply with the Univer-
sal Mobile Telecommunication Systems (UMTS) norm [1].

UMTS was adopted as the international norm for mobile
telecommunication systems of the third generation (3G). It
defines a set of high-speed services: voice, image, file trans-
fer, fax, videoconference, as well as the capability to connect
to any kind of network from any kind of place. Flexibility and
reconfigurability will be necessary to achieve such a universal
mobility. But powering becomes more and more difficult as
the demand on processing power increases [2]. Battery life is
now a very strategic feature for every mobile system.

There are many approaches for dealing with this power
consumption problem. Basically, it is possible to distinguish

mailto:eric.senn@univ-ubs.fr
mailto:johann.laurent@univ-ubs.fr
mailto:nathalie.julien@univ-ubs.fr
mailto:eric.martin@univ-ubs.fr


2642 EURASIP Journal on Applied Signal Processing

methods working on the hardware, or on the software, or
methods trying to fit to both of them as well as possible.
At the hardware level, power management IC or IP are now
integrated in every system [3]. Improvements in the semi-
conductor industry are very promising. They are absolutely
necessary to counterbalance the increasing static power con-
sumption in the last VLSI chips. The two main approaches
rely on the reduction of the power voltage, and on the reduc-
tion of the transistor’s threshold voltage. In parallel, it is also
proposed to dynamically control these parameters, together
with the operating frequency, depending on the chip’s cur-
rent activity.

At the software level, a lot of optimizations can be con-
ducted, with a very strong impact on the system’s power con-
sumption [4]. A lot of loop transformations were presented
[5, 6, 7, 8], and the impact of the data organization on mem-
ory was studied [9, 10, 11]. Source code transformations
were also proposed, in parallel with the data and memory
organization [12], and the data transfer and storage explo-
ration [13, 14]. In these works, responses to the following
essential questions are sought : Which architecture to use for
the system memory ? Where to place the data in this mem-
ory ? Which transformations to the program to perform to
optimize the transfer of data in memory?

The fact is that the codesign step can lead to many so-
lutions: there are many ways of partitioning a system and
many ways of writing the software even once the hardware
is chosen, and they will give very different consumptions in
the end. To find the best solution is not obvious. Indeed, it
is not enough to know whether the application’s constraints
are met or not; it is also necessary to be able to compare sev-
eral solutions to seek the best one. So, the designer needs
fast and accurate tools to evaluate a design, and to guide him
through the design space. Without such a tool, the applica-
tion’s power consumption would only be known by physical
measurement at the very last stage of the design process. That
involves buying the targeted processor, the associated devel-
opment tools and evaluation board, together with expansive
devices to measure the supply current consumption, and that
finally expands the time-to-market.

There are several methods to estimate a processor’s
power consumption, which we find at different levels in the
modelling and analysis tool flow in microprocessor design.
Lower-level power estimation tools work at the circuit level,
like QuickPower (at the gate level) [15] and PowerMill (at the
transistor level) [16]. They are accurate but actually not us-
able for making architectural decisions. Microarchitectural
power estimators work mainly at the cycle level or at the in-
struction level. The tools Wattch [17] and SimplePower [? ]
are based on cycle-level simulations. They rely on analyti-
cal capacitance models which have to be developed for every
block in the processor (ALUs, caches, buses, registers, RAMs,
CAMs, etc.). Each model involves a large number of param-
eters sometimes difficult to determine for the microarchitect
(related to the circuit or physical design) [19]. In the tool
PowerTimer [20], the number and complexity of parameters
were reduced. Microarchitecture-level power analysis tools
are used with success in the design of microprocessors: for

example PowerTimer to determine the depth of a pipeline
[21], or Wattch to design a new issue queue for reusable in-
structions [22]. They are however not very useful for making
decisions at the algorithmic level. Indeed, at the cycle level,
the processor’s behavior is simulated cycle by cycle. This is
not a problem when only a small portion of the code (a few
instructions) is simulated, but this may be very time con-
suming for large programs. Moreover, cycle-level simulations
necessitate a low-level description of the architecture. This
could be not too difficult to obtain for simple architectures,
or for only a subpart of a more complex microarchitecture,
but such a description is often unavailable for off-the-shelf
processors. The difficulty to obtain a model increases with
the ever-growing complexity of nowadays processors. For in-
stance, the model proposed in SimplePower is limited to an
in-order 5-stage pipelined datapath, with perfect cache—the
energy consumed by the control unit and the clock genera-
tion and distribution is not considered.

Another approach is to evaluate the power consumption
with an instruction-level power analysis (ILPA) [23]. This
method relies on current measurements for each instruction
and couple of successive instructions. Even if it proved accu-
rate for simple processors, the number of measures needed to
obtain a model for a complex architecture would become un-
realistic [24]. Moreover, the instruction-level models should
be improved to take into account pipelined architectures,
large VLIW instruction sets, and internal data and instruc-
tion caches. Recent studies have introduced a functional ap-
proach [25, 26], but few works are considering VLIW pro-
cessors and the possibility for pipeline stalls [27]. All these
methods perform power estimation only at the assembly
level with an accuracy from 4% for simple cases to 10% when
both parallelism and pipeline stalls are effectively considered.
As far as we know, only one unsuccessful attempt of algorith-
mic estimation has already been made [28].

To evaluate the impact of high-level transformations, we
propose to estimate the application’s consumption at the
early stages in the design flow. We demonstrate that an accu-
rate estimation of an algorithm’s power consumption can be
conducted directly from the C program without execution.
Our estimation method relies on a power model of the tar-
geted processor, elaborated during the model definition step.
This model definition is based on the functional-level power
analysis (FLPA) of the processor’s architecture [29]. During
this analysis, functional blocks are identified, and the con-
sumption of each block is characterized by physical measure-
ments. Once the power model is elaborated, the estimation
process consists in extracting the values of a few parameters
from the code; these values are injected in the power model
to compute the power consumption. The estimation process
is very fast since it relies on a static profiling of the code. Sev-
eral targets can be evaluated as long as several power models
are available in the library.

In this paper, we will neither focus on the model defini-
tion nor on the FLPA, which have been already extensively
discussed in former publications [30, 31]. We will rather
focus on the use of these power models to actually estimate
and optimize the power and energy consumption of a code.



SoftExplorer: Power Estimation of a C Program for DSP and GPP 2643

Our method and models are integrated in our power and
energy estimation tool: SoftExplorer. There are currently 5
power models available, for the 5 following processors: the
Texas Instrument C67, C64, C62, and C55, and the ARM7.

In this list, only the C55 is a low-power processor. This
DSP is currently widely used in mobile devices, associated to
the ARM7 or ARM9 in OMAP chips. The next generation of
mobile devices however will inevitably require more power-
ful processing capabilities, which will imply more complex
processors. Indeed, the C55 is already aided by video co-
processors for 2.5 G/3G applications. More complex DSPs
will be used, like the C67/64/62, or low-power versions of
these architectures (it is remarkable the C64 has already co-
processors included in it). In this paper, we are presenting a
methodology that was successfully applied, not only on the
C55 and ARM7, but also on the more complex architectures
of the C67/64 and 62. We thereby demonstrate the applica-
bility of our methodology upon a large class of architectures,
and we also guarantee that it will still be usable with the fu-
ture generations of processors. In accordance with this idea,
we also present some interesting applications of the method-
ology not only on the C55, but also on the other processors
for which we have developed a power model.

Provided that the power model of the processor is avail-
able, there is no need for owning the processor itself to es-
timate its consumption, nor for any specific development
tool, since it is not even necessary to have the code com-
piled. Thus, given an algorithm, a fast and cheap compari-
son of different processors is possible. It is also possible to
compare different algorithms, or different ways of writing an
algorithm for a given application. The designer can locate
which parts of the program are the most consuming, and fo-
cus his/her optimization effort on these parts. Our method
takes into account another very important parameter for the
power consumption: the memory mapping. Indeed, the de-
signer can place the data in external or internal memory, and
can choose the internal bank where the data is stored. The
place of data has a very strong impact on the consumption,
and the designer is able to try and compare different data
mappings with the help of our tool.

2. MODEL DEFINITION

2.1. The functional-level power analysis

Our estimation is based on the functional-level power anal-
ysis (FLPA) of a processor. As stated before, the main advan-
tage of this method compared to the ILPA is its simplicity,
and the rapidity that it involves, both for building the model
of a target, and for the estimation of a code. We recall here
the FLPA general principle.

To perform a FLPA implies first to divide the processor
in functional blocks. Functional blocks gather hardware re-
sources that are activated together during a run. Obviously,
relatively nonconsuming parts of the processor have to be
discarded at that stage. Secondly, we have to find which fea-
tures of the application impact the functional blocks’ activity,
and thus the power consumption. These features are formal-
ized in two sets of parameters: the algorithmic parameters and

Algorithmic
parameters

Architectural
parameters

Block 1 Block 2

Block 3

Processor

P?

(a)

Scenario :
α = 0, . . . , 1

Configuration :
F=20, . . . , 200 MHz

Block 1 Block 2

Block 3

Processor

Block 1 stimulated

ITOTAL

α

(b)

Algorithmic
parameters

Architectural
parameters

ITOTAL

F1
F2

F3

α

Power model

P=f (parameters)

(c)

Figure 1: FLPA overview.

the architectural parameters. Algorithmic parameters indicate
the activity level between every functional block in the pro-
cessor (parallelism rate, cache miss rate, etc.). Architectural
parameters depend on the processor configuration which is
explicitly defined by the programmer (clock frequency, data
mapping, etc.). Then, it is necessary to find how the func-
tional blocks’ consumption varies with the parameters’ val-
ues. We make the parameters vary with the help of elemen-
tary assembly programs elaborated to stimulate each block or
subblock separately. The variations of the processor’s supply
current are measured on an evaluation board. A curve fitting
of the graphical representation of these variations finally per-
mits to determine the consumption rules by regression. The
set of consumption rules for a given processor constitutes the
so-called power model of this processor. The three main steps
of the FLPA are summarized in Figure 1.

As stated before, we have developed a power model for
five processors: the Texas Instrument C67, C64, C62, and
C55, and the ARM7; and we have integrated these power
models in our power and energy estimation tool SoftEx-
plorer.

2.2. TI C62 and C67 power models

The TI C62 and C67 processors have complex architectures.
Indeed, they both have a VLIW instructions set, a deep
pipeline (up to 15 stages), and parallelism capabilities (up
to 8 operations in parallel). Their internal program memory
can be used like a cache in several modes, and an external
memory interface (EMIF) is used to load and store data and
program from the external memory [32]. Apart from the fact
that the C62 operates in fixed point and the C67 in floating



2644 EURASIP Journal on Applied Signal Processing

External memory

EMIF

DMAMMU

ε τ − ε

PRG. MEM. DATA MEM.

1− γ γ τ 1− τ

CTRL CTRL

DC/ALU/MPY

Multiplexers

Registers PU

βα

IMU FETCH/DP

1

1

Figure 2: FLPA for the C62 and C67.

point, they have very similar architectures. As a result, the
functional analysis is identical for both of them, and leads to
the block diagram in Figure 2.

Three blocks and five algorithmic parameters are iden-
tified. The parallelism rate α assesses the flow between the
FETCH stages and the internal program memory controller
inside the IMU (instruction management unit). The process-
ing rate β between the IMU and the PU (processing unit)
represents the utilization rate of the processing units (ALU,
MPY). The activity rate between the IMU and the MMU
(memory management unit) is expressed by the program
cache miss rate γ. The parameter τ corresponds to the ex-
ternal data memory access rate. The parameter ε stands for
the activity rate between the data memory controller and the
direct memory access (DMA). The DMA may be used for fast
transfer of bulky data blocks from the external to the internal
memory (ε = 0 if the DMA is not used).

To the former algorithmic parameters four architectural
parameters are added, that also strongly impact the proces-
sor’s consumption: the clock frequency (F), the memory
mode (MM), the data mapping (DM), and the data width
during DMA (W).

The influence of F is obvious. The C62 and C67 max-
imum frequencies are respectively 200 MHz and 167 MHz,
but the designer can tweak this parameter to adjust con-
sumption and performances.

The memory mode MM illustrates the way the internal
program memory is used. Four modes are available. All the
instructions are in the internal memory in the mapped mode
(MMM). They are in the external memory in the bypass mode
(MMB). In the cache mode, the internal memory is used like
a direct mapped cache (MMC), as well as in the freeze mode
where no writing in the cache is allowed (MMF). Internal
logic components used to fetch instructions (for instance tag
comparison in cache mode) actually depend on the memory
mode, and so the consumption.

The data mapping impacts the processor’s consumption
for two reasons. First, the logic involved to access a data in in-
ternal or in external memory is different. Secondly, whenever
a data has to be loaded or stored in the external memory, or

Table 1: Sets of parameters.

Parameters C67 C64 C62 C55 ARM7

α X X X — —

β X X X X —

γ X X X X —

τ X — X — —

ε X X X X —

µ — X — — —

σ — X — — —

δ — X — — —

PSR X X X — —

W X X X X —

F X X X X X

MM X X X X X

DM X X X — —

PM — — — X —

whenever two data in the same internal memory bank are ac-
cessed at the same time, the pipeline is stalled and that really
changes the power consumption. Pipeline stalls are counted
in the pipeline stall rate (PSR). Like τ, DM is included in the
PSR in the power model. Table 1 summarizes the set of pa-
rameters for the five considered processors.

Even if the C62 and C67 share the same set of parameters,
the consumption rules that link these parameters to their
actual power consumption are different. Indeed, the C62 is
built upon a 0.25 µm process, and the C67 upon a 0.18 µm
one. The supply voltage is 2.5 V for the C62, and 1.8 V for the
C67. They therefore do not have identical static and dynamic
power consumptions, and ought to have different consump-
tion rules and hence, power models.

For these processors, no significant difference in power
consumption was observed between an addition and a mul-
tiplication, or a read and a write in the internal memory.
Moreover, the effect of data correlation on the global power
consumption appeared lower than 2%. More details on the
consumption rules and their determination can be found in
[31].

2.3. TI C64 power model

There are significant differences between the C64 and the
C62/67 architectures. The internal program and data mem-
ories have been replaced by two level-1 caches—the former
memory modes have disappeared. A single level-2 cache is
used both for the data and program. SIMD instructions can
be used. The number of registers is doubled (2∗32 in place of
2∗16), as well as the number of DMA. Two coprocessors have
been added (Viterbi + turbo decoder), and the C64 maxi-
mum frequency goes from 600 MHz to 1 GHz. As a result, the
power model is slightly different. As shown in Table 1, three
new parameters were added. The miss rate for the level-1 data
cache is µ. Even if µ = 0, the consumption may vary with the
number of data reads or writes. In the C64, data are directly
written into the level-2 cache and the power consumption is
different for writes and reads. It is thus necessary to use two



SoftExplorer: Power Estimation of a C Program for DSP and GPP 2645

different parameters: σ for the data read rate, and δ for the
data write rate. The power consumption of the two copro-
cessors has not been included in the power model yet.

2.4. TI C55 power model

The TI C55 is a low-power processor with a fixed-point ar-
chitecture that can only execute two instructions in parallel;
however, it only fetches one instruction at each clock cycle,
and pipeline stalls never occur. Another characteristic of this
processor is the possibility to automatically idle some parts
of its architecture if unused. This is integrated in the param-
eter PM (power management), which indicates the units in
the sleep mode. The C55 internal program memory can be
used in the same four modes as the C6x and it also contains
a DMA and an EMIF. Because the C55’s architecture is less
complex than the C6x’s, its power model has less parameters
(see Table 1).

2.5. ARM7 power model

The ARM7TDMI is the simplest processor that we have mod-
eled yet. It has a scalar architecture and its internal program
memory can be used in three modes (mapped, cache, and
bypass). Previous works on the StrongArm have established
that the power consumption essentially depends on the clock
frequency and the supply voltage [33]. Our own consump-
tion measurements on the ARM7TDMI have fully validated
this trend: the power consumption variations corresponding
to various programs are under 8% of the global consump-
tion. No algorithmic parameter is then required to model the
ARM7, as represented in Table 1.

The time necessary to complete the model of the C62 was
about 30 days, and it took 15 days for the ARM7. It went
faster for the C67 and C55 for we took benefit from the pre-
vious study of the very similar C62 architecture. The use of
an instruction-level method for such a complex architecture
would have conducted to a prohibitive number of measure-
ments. Indeed, with an ILPA approach, Bona et al. have char-
acterized a simpler VLIW processor (the Lx) in 108 days [34].

3. ESTIMATION PROCESS

3.1. Prediction models

To compute the power consumption of an application, it is
necessary to determine the parameters which are used in the
target’s power model. To get the energy consumption, we will
see later how to evaluate the execution time of the algorithm
on the target. The process of finding the values of an applica-
tion’s parameters gets difficult as the number of parameters
in the power model increases. It is very simple for the ARM7
where only the frequency and memory mode are needed, but
more difficult with the other processors. Determining the ar-
chitectural parameters is straightforward since they are fixed
by the programmer, or dependant on the architecture. To
find the value of the algorithmic parameters implies a more
precise knowledge of the processor’s behavior. However, the
parameters we have proposed are general enough to be used
for any pipeline and/or superscalar architecture when neces-
sary, and are extracted from the application according to the

following principles. We will now explain these principles on
the most complex architectures that we have studied yet, ac-
cording to Table 1, the TI C62 and C67.

Before getting to the C-level, we will first observe what
happens when an assembly program is executed on those
processors. In the C6x, eight instructions are fetched at the
same time. They form a fetch packet. In this fetch packet,
operations are gathered in execution packets depending on
the available resources and the parallelism capabilities. The
parallelism rate α can be computed by dividing the number
of fetch packets (NFP) by the number of execution packets
(NEP) counted in the assembly code. However, the effective
parallelism rate is drastically reduced whenever the pipeline
stalls. Therefore, the final value for αmust take the number of
pipeline stalls into account. Hence, a pipeline stall rate (PSR)
is defined, and α is computed as follows:

α =
NFP

NEP
× (1− PSR). (1)

Identically, the PSR is considered to compute the process-
ing rate β, with NPU the average number of processing units
used per cycle (counted in the code), and NPUMAX the max-
imum number of processing units that can be used at the
same time in the processor (NPUMAX = 8 for the C6x):

β =
1

NPUMAX
×

NPU

NEP
× (1− PSR). (2)

To determine α and β at the C-level, the three parameters
NFP, NEP, and NPU must be predicted from the algorithm
(instead of being counted in the assembly code). Indeed, even
if our tool was initially designed to estimate the power con-
sumption from an assembly code, the challenge here is to do
it from the C program. It is clear that the prediction of NFP,
NEP and NPU must rely on a model that anticipates the way
the assembly code is executed on the target. This is actually
related to the compiler behavior, and to the options chosen
for the compilation. According to the processor’s architecture
and with a little knowledge of the compiler, four prediction
models were defined.

(i) The sequential model (SEQ) is the simplest one since
it assumes that all the operations are executed sequentially.
This model is only realistic for nonparallel processors. How-
ever, it provides the absolute minimum bound of the algo-
rithm’s power consumption.

(ii) The maximum model (MAX) corresponds to the case
where the compiler fully exploits all the architecture possibil-
ities. With this model, we assume that the maximum number
of operations executable in parallel in a superscalar processor
are indeed executed in parallel. In the C6x, 8 operations can
be done in parallel; for example 2 loads, 4 additions, and 2
multiplications, in one clock cycle. This model gives a max-
imum bound of the consumption. It will be also referred to
as the “FULL parallel” model.

(iii) The minimum model (MIN) is more restrictive than
the previous model since it assumes that load instructions,



2646 EURASIP Journal on Applied Signal Processing

Table 2: Prediction models for the example.

Model EP1 EP2 EP3 EP4 α = β

MAX 2LD 2LD, 4OP — — 0.5

MIN 1LD 1LD 1LD 1LD, 4OP 0.25

DATA 2LD 1LD 1LD, 4OP — 0.33

or store instructions, are never executed at the same time—
indeed, it was noticed on the compiled code that all paral-
lelism capabilities were not always fully exploited for these
instructions, depending on the compilation options. This
is especially the case when the compiler is settled to min-
imize the size of the assembly code. The data mapping is
analyzed in this case only to assess the right value for the
PSR (see Section 3.2). This model will be also referred to as
the “SIZE optimal” model. It will give a more realistic lower
bound for the algorithm’s power consumption than the se-
quential model.

(iv) At last, the data model (DATA) refines the prediction
for load and store instructions. The only difference from the
MAX model is that it allows parallel loads and stores only if
they involve data from different memory banks. In the C6x,
for instance, there are two banks in the internal data memory
which can be accessed in one clock cycle. It is thus possible
to load two data in one cycle if one data is in the first bank,
and the other data in the second one. The place of a data
in the memory is found in the data mapping file, which, as
before, will be also used to determine the PSR (Section 3.2).
Such a behavior is observed when the compiler is settled to
minimize the execution time of the code. This model will be
also referred to as the “TIME optimal” model.

The prediction is performed by applying those models on
all the program. As illustration, we present below a simple
example:

For (i=0; i<512; i++)

{Y=X[i]*(H[i]+H[i+1]+H[i-1])+Y;}

In this loop nest, there are 4 loads (LD) and 4 other op-
erations (OP): 1 multiplication and 3 additions. In our ex-
ample, Y is stored in a register inside the processor. Here,
our 8 operations will always be gathered in one single fetch
packet, so NFP = 1. Because no NOP operation is involved,
NPU = 8 and α and β parameters have the same value. In
the SEQ model, instructions are assumed to be executed se-
quentially. Then NEP = 8, and α = β = 0.125. Results for
the other models are summarized in Table 2. X and H are
supposed to be in distinct memory banks.

Of course, realistic cases are more elaborated: the param-
eters prediction is done for each part of the program (loops,
subroutines, etc.) for which local values are obtained. The
global parameters values, for the complete C source, are com-
puted by a weighted averaging of all the local values. Along
with the global consumption, we indicate in SoftExplorer the
consumption of every loop in the code (Section 4). Such an
approach permits to spot “hot points” in the program. In the
case of data-dependent algorithms, a statistic analysis may be
performed to get those values (see Section 3.4).

3.2. Pipeline stalls

As stated before, the pipeline stall rate PSR is needed to com-
pute the values of the parameters α and β. To determine
the PSR, we must evaluate the number of cycles where the
pipeline is stalled (NPS) and divide it by the total number of
cycles for the program to be executed (NTC):

PSR =
NPS

NTC
. (3)

Pipeline stalls have several causes:

(i) a delayed data memory access: if the data is fetched in
external memory (related to ε) or if two data are ac-
cessed in the same internal memory bank (related to
the data mapping DM);

(ii) a delayed program memory access: in case of a cache
miss for instance (related to the cache miss rate γ), or if
the cache is bypassed or freezed (related to the memory
mode MM);

(iii) a control hazard, due to branches in the code: we
choose to neglect this contribution because only data-
intensive applications are considered.

As a result, NPS is expressed as the sum of the number of
cycles for stalls due to an external data access NPSτ , for stalls
due to an internal data bank conflict NPSBC , and for stalls
due to cache misses NPSγ:

NPS = NPSγ + NPSτ + NPSBC . (4)

Whenever a cache miss occurs, the cache controller, via
the EMIF, fetches a full instruction frame (containing 8 in-
structions) from the external memory. The number of cy-
cles needed depends on the memory access time Taccess. As
a result, where NFRAME is the number of frames causing a
cache miss,

NPSγ = NFRAME × Taccess. (5)

Similarly, the pipeline is stalled during Taccess for each
data access in the external memory. That gives, with NEXT
being the number of data accesses in external memory,

NPSτ = NEXT × Taccess. (6)

A conflict in an internal data bank is resolved in only one
clock cycle. So, NPSBC is merely the number of bank conflicts
NCONFLICT :

NPSBC = NCONFLICT. (7)

So, to calculate the PSR, we need the number of external
data accesses NEXT , the number of internal data bank con-
flicts NCONFLICT , and the number of instruction frames
that involve cache misses NFRAME ((3), (4), (5), (6), and
(7)). Those three numbers are directly extracted from the



SoftExplorer: Power Estimation of a C Program for DSP and GPP 2647

Table 3: Relative error at the assembly level.

C64 C62 C67 C55 ARM7

Maximal error 4.3% 4% 6% 2.5% 8%

Average error 2.6% 2.5% 2.4% 1.4% —

assembly code when the estimation is performed at the as-
sembly level. It is however remarkable that the two numbers
NEXT and NCONFLICT can also be determined directly
from the C program. Indeed, they are related to the data
mapping which is actually fixed by the programmer by means
of explicit compilation directives associated to the C sources,
and only taken into account by the compiler during the link-
age. The data mapping is integrated in the power model
through the configuration parameter DM, which stands for
the data mapping file.

External data accesses are fully taken into account
through NEXT which participates in the calculation of the
PSR. This is why the external data access parameter τ is said
to be “included in the PSR” in the sets of parameters given in
Table 1.

The number of instruction frames that involve cache
misses NFRAME, as well as the cache miss rate γ, can be de-
termined statically if the memory mode MM is mapped, by-
pass, and freeze, or dynamically in cache mode. The assem-
bly code size (with the total number of instruction frames) is
needed for comparison with the cache size; a compilation is
necessary. In this case, it is not possible to predict NFRAME
at the C-level. However, since the assembly code for digital
signal processing applications generally fits in the program
memory of the processors, γ is most of the time equal to zero
(as well as NFRAME). Whenever NFRAME and γ are not
known in the early step of the design process, SoftExplorer
will provide the designer with consumption maps to guide
him through the code writing, as shown in Section 4.1 [35].

The number of DMA accesses can be determined from
the assembly code or from the C program. Indeed, accesses
to the DMA are explicitly programmed. The programmer
knows exactly the number of DMA accesses; it is therefore
easy to calculate the DMA access rate ε without compilation.
It is computed by dividing the number of DMA accesses by
the total number of data accesses in the program.

3.3. Estimation versus measures

The accuracy of our power and energy estimation at the as-
sembly level has already been investigated [30]. For each of
the five processors in our library of models, the power esti-
mation was performed on a set of various algorithms—FIR
filter, LMS filter, discrete wavelet transform (DWT) with dif-
ferent image sizes, fast Fourier transform (FFT) 1024 points,
enhanced full-rate (EFR) Vocoder for GSM, and MPEG-1
decoder. The power consumption was also measured for all
these algorithms and processors. The relative errors between
measures and estimations are reported Table 3.

Our aim in this section is to demonstrate the precision of
power estimation at the C-level. We first perform some com-
parisons with the values for α, β, and PSR that were extracted

from the assembly code to obtain the former results at the as-
sembly level, and the values that we can predict from the C
program, according to our prediction models. In Table 4, the
values of the power model parameters extracted from the as-
sembly code, and from the C code assuming the DATA pre-
diction model, are presented. We did not include the pre-
dictions for the other prediction models since they provide
higher and lower bounds that are naturally farther from the
extracted value. For these applications, γ = 0 since the whole
code is contained in the internal program memory, and ε = 0
since the DMA is not used. The PSR measured value (PSRm),
obtained with the help of the TI development tool, is used
for estimation at the assembly level (but the calculated value
could be used as well). The average error between the pre-
dicted (PSR) and the measured (PSRm) pipeline stall rates is
3.2%. It never exceeds 5.5% which indicates the PSR predic-
tion accuracy.

The power consumption of the algorithm is then esti-
mated from the parameters that we have predicted from the
C program. The relative error between the estimation and
the measured consumption for the TI C62 at F = 200 MHz
is given in Table 5. Results are given for the four prediction
models at the C-level. We recall in the ASM column the pre-
cision obtained at the assembly level.

Of course, the SEQ model gives the worst results since it
does not take into account the architecture possibilities (par-
allelism, several memory banks, etc.). In fact, this model was
developed to explore the estimation possibilities without any
knowledge about the architecture of the targeted processor.
It seems that such an approach cannot provide enough accu-
racy to be satisfying.

It is remarkable that, for the LMS in the bypass mode, ev-
ery model overestimates the power consumption with close
results. This exception can be explained by the fact that,
in this marginal memory mode, every instruction is loaded
from the external memory and thus pipeline stalls are dom-
inant. As the SEQ model assumes sequential operations, it is
the most accurate in this mode.

For all the other algorithms, theMAX and the MIN mod-
els always respectively overestimate and underestimate the
application power consumption. Hence, the proposed mod-
els need a restricted knowledge of the processor’s architec-
ture; but they guaranty to bound the power consumption of
a C algorithm with reasonable errors.

The DATA model is the most accurate since it provides a
maximum error of 8% against measurements. After compi-
lation, the estimation can be performed at the assembly level
where the maximum error is decreased to 3.5%.

Eventually, the estimation possibilities at the C-level are
summarized. According to the results obtained with the
SEQ model, it seems unrealistic to determine precisely the
power consumption without any knowledge about the tar-
geted processor. A coarse grain prediction model, includ-
ing only the architecture possibilities in terms of parallelism,
number of processing units, and so forth, provides the max-
imum and minimum bounds of the algorithm’s power con-
sumption with an average error of 7.3% and 15.2%, respec-
tively. The fine grain prediction model, with both elementary



2648 EURASIP Journal on Applied Signal Processing

Table 4: C-level parameters prediction versus ASM-level parameters extraction.

Application
Configuration Assembly level C-level

MM DM α β PSRm α β PSR

FIR MMM INT 0.492 0.454 0 0.5 0.5 0

FFT MMM INT 0.099 0.08 0.64 0.119 0.113 0.604

LMS-1 MMB INT — 0.029 0.93 — 0.0312 0.95

LMS-2 MMC INT 0.625 0.483 0.25 0.76 0.475 0.24

DWT-1 (64∗ 64) MMM INT 0.362 0.287 0.027 0.365 0.324 0.0269

DWT-2 (64∗ 64) MMM EXT 0.0915 0.0723 0.755 0.105 0.0932 0.713

DWT-3 (512∗ 512) MMM EXT 0.088 0.0695 0.765 0.1 0.089 0.726

EFR MMM INT 0.594 0.472 0.225 0.669 0.479 0.219

MPEG MMM INT 0.706 0.715 0.108 0.682 0.568 0.09

Table 5: C-level power estimation versus measurements.

Application
Measurements Estimation vs. measure. (%)

P(W) ASM SEQ MAX MIN DATA

FIR 4.5 2.3 −38 5.5 −24.3 5.5

FFT 2.65 2.5 −10 28.5 −1 2.87

LMS-1 4.97 3.5 1.4 2.8 2 2.8

LMS-2 5.66 −1.8 −50 6.4 −15.2 6.4

DWT-1 3.75 1.9 −27 4.7 −13.2 4.7

DWT-2 2.55 −0.2 −10 3.4 −4.2 3.4

DWT-3 2.55 −1 −10.4 2.4 −4.7 2.4

EFR 5.07 −2.8 −50 11.1 −24 1.5

MPEG 5.83 0.7 −54 10 −33 −8

Average errors 1.8 27.8 8.3 13.5 4.2

information on the architecture and the data placement, of-
fers a very accurate estimation with a maximum error of 8%
against measurements.

3.4. Execution time prediction

A great part of the job for determining the execution time
was already done for the PSR. In the previous section, we
have indeed determined the number of pipeline stalls to-
gether with their duration. The only remaining thing to do is
to add the number of cycles for executing the program to the
number of cycles where the pipeline is stalled, and to divide
by the processor’s frequency. In fact, the algorithm is parsed
loop by loop, and the data mapping is analyzed, to determine
the number of memory conflicts which leads to the PSR.

We have estimated the execution time for the previously
presented applications and compared it with the value given
by the TI’s development tool: CodeComposer. This value is
exact, for CodeComposer, after compilation, traces the as-
sembly code on the evaluation board. We have then com-
puted the energy from the estimated power consumption
and execution time, and compared it with the energy com-
puted from the measured power consumption and execution
time. Errors less than 1% are observed. For example, the er-
ror for the MPEG-1 decoder presented in the following sec-
tion is 0.6%.

In the case of dynamic loops, the number of iterations is
not known in advance. SoftExplorer takes into account the
algorithm’s dynamic behavior thanks to pragma directives
added to the program: the user indicates a probability for the
control structures (if, then, else, etc.) and the dynamic loops.
A 50% probability is assumed whenever a pragma is miss-
ing. A dynamic profiling may be necessary; specific analysis
tools are usable for this purpose. The user could also give the
maximum limit for the number of iterations to get a maxi-
mum for the execution time and energy. At last, SoftExplorer
considers the delays for division and function calls, to further
increase the precision in estimating the execution time.

4. SOFTEXPLORER

4.1. Prediction types

All the previous estimations were performed with the help
of SoftExplorer (v 5.0). SoftExplorer includes 17 000 lines of
code and is written in C. When SoftExplorer is started, a
configuration menu appears where it is possible to choose
whether estimations will be performed at the C-level or at
the assembly level. It is then necessary to choose the targeted
processor’s power model among those available. As stated be-
fore, there are currently 5 power models included (C67, C64,
C62, C55, ARM7, though only the C62’s power model is pro-
vided in the demo version). The input file (C code in our
case, but could be also ASM code or PP-preprocessed file) is
also indicated here. The data mapping file ought to be writ-
ten in the same directory as the input file. Depending on the
chosen power model, a configuration page for the C-level es-
timation appears. In the case of the C6x and the C55, the pre-
diction model (SEQ, MIN, DATA, MAX) must be indicated,
together with the processor’s frequency. The memory mode
(mapped, cache, freeze, bypass) is required for the C67, C62,
and the C55. The prediction type has to be chosen as well.
There are three prediction types.

Coarse prediction. There is no need for any further infor-
mation from the user. The C code is parsed and the power
consumption is computed with different values for γ and
PSR from 0 to 100%. The result is a curve, or an area, dis-
played on the “C curves results” or the “C area results” page.



SoftExplorer: Power Estimation of a C Program for DSP and GPP 2649

2.2

2.6

3

3.4

3.8

4.2

P
o

w
er

(m
W

)

0 10 20 30 40 50 60 70 80 90 100

PSR (%)

Figure 3: C curve: the power is a function of PSR (here) or γ.

Indeed, if the memory mode is bypass or mapped, then γ = 0,
only the PSR varies, and a curve is computed. If the memory
mode is cache or freeze, both the PSR and γ vary, and an area
is drawn. These curves and areas are what we called consump-
tion maps. The interest of the coarse prediction is to allow an
estimation of an algorithm’s power consumption very early
in the design process. Indeed, even if the data mapping is not
settled (the data mapping is not considered in this mode),
the programmer can have an idea of the power consumption,
choose the processor, compare different algorithms, and be
guided in the optimizations to be conducted on the code.

Fine prediction. In this mode, the data mapping file is
used to determine the data access conflicts (internal and ex-
ternal) for each loop in the code. If γ = 0, which is the
case for a large number of DSP applications, these conflicts
permit to determine, for every loop, the precise number of
pipeline stalls (i.e., the PSR) and the execution time. This
local knowledge of every parameter in the power model of
the target permits to compute, for each loop, the power con-
sumption, the execution time, and the energy consumption.
An accurate optimization of each portion of the code can be
conducted that way.

Exact prediction. The execution time, the cache miss rate,
and the pipeline stall rate are no more predicted by SoftEx-
plorer, but are instead provided by the user. They can be ob-
tained with the help of the targeted processor’s development
tools (e.g., TI’s CodeComposer for the C6x). C-level profilers
can also be used for an estimation of the execution time.

We show, on an example, the results that can be ob-
tained with the three prediction types above. The applica-
tion is the MPEG-1 decoder from MediaBench. Estimation
is performed first in the coarse mode for the C62. Figure 3
shows the evolution of the power consumption P with the
PSR (memory mode is mapped). The maximal value for
P is 4400 mW when PSR = 0%, and its minimal value is
2200 mW for PSR = 100%. Figure 4 shows the evolution
of the power consumption with both the PSR and γ (mem-
ory mode is cache). This time, the max/min values for P are
5592/2353 mW. It can be observed that for the same PSR, the
power consumption is always lower in the mapped mode.
Table 6 indicates the max/min power consumption for the
four memory modes.

A fine prediction takes into account the data mapping.
In the mapped or bypass mode, the global power and energy
consumptions are presented on the “results” page, with the
execution time and the global values of parameters α and β.

0 10 20 30 40 50 60 70 80 90100

Pipeline stall rate

10
30

50
70

90

Cache miss
rate

2.5
3

3.5
4

4.5
5

5.5

P
o

w
er

(m
W

)

Figure 4: C area: the power is a function of PSR and γ.

Table 6: Power estimation in coarse prediction.

Pmax/Pmin Mapped Cache Freeze Bypass

(mW) 4400/2200 5592/2353 5690/2442 5882/5073

The power repartition in every functional part of the pro-
cessor is also given (Figure 5). The DMA unit consumes no
power for it is not used in this application. It is remarkable
that a great part (47.4%) of the power consumption is due to
the clock. The “loops” page display the power consumption,
execution time, and α and β values, for each loop (Figure 6).
These results are also presented in the form of a chronogram
on the “graphics” page (Figure 7). The power consumption
per functional part is also indicated on this graph. In the
cache or freeze mode, the variations of the power consump-
tion with γ are given on the “C curve” page.

An exact prediction is possible when the exact values for
γ, PSR, and Texe are known. In our example, the TI’s devel-
opment tool gives, after compilation, γ = 0, PSR = 0.2, and
Texe = 40 microseconds. The power and energy estimations
are displayed on the “results” page. The “loops” and “graph-
ics” pages display local values for α, β, and the power con-
sumption, assuming that pipeline stalls and cache misses are
equally scattered in the algorithm.

For the ARM7, only the memory mode, operating fre-
quency, and execution time are needed. There is no more
need for distinct prediction models, nor for the three predic-
tion types. Indeed, we measured that the program itself has
only a slight influence on the consumption (see Section 2.5).
To model the code, as well as the compiler, is therefore point-
less. The estimation is performed directly from the parame-
ters provided by the user.

4.2. Estimation time and complexity reduction

The time for SoftExplorer to parse a code and to perform
an estimation is smaller at the C-level than at the assembly
level. At the C-level, indeed, there is no need for compila-
tion or a dynamic profiling. The C program has much less
lines than the assembly code, and the overall process is faster
even if it involves a little more computation to evaluate the
consumption against the prediction model. At the assembly
level, the estimation time varies from 3 seconds for an FIR



2650 EURASIP Journal on Applied Signal Processing

Figure 5: The “results” page also gives the power repartition.

Figure 6: The “loops” page presents the results for each loop.

0 2 4 6 8 10 12 14 16 18 20 22 24 26
×102

0
5

10
15
20
25
30
35
40
45
50
×102

PLocale clock power

PLocale fetch power

PLocale processing unit power

Figure 7: A graphical display of the consumption per loop.

1024 or an LMS 1024, to 10 seconds for a DWT 512 × 512.
We have compared this time with the estimation time ob-
tained with the tool SimplePower [? ], which works cycle by
cycle at the architectural level [29]. SoftExplorer appears to
be thousands of times faster, since SimplePower treats the
FIR 1024 in 4360 seconds, the LMS 1024 in 24 700 seconds,
and the DWT 512 × 512 in 14 2000 s. SoftExplorer is even
faster at the C-level: the estimation time is less than 1 second
for every application that we have tested.

To work on the C code is much more convenient for
the user. Firstly, the code is smaller and more readable. Sec-
ondly, the number of lines to be studied is drastically reduced
once hot spots are located in the algorithm. Indeed, we have
spotted, in the applications presented above, the consuming
loops, and compared their length with the whole code [35].
Only 13% of the whole code, which represents only 10 lines,
was significant for the FFT, 37% (17 lines) for the DWT, 31%
(37 lines) for the EFR, 14% (4 lines) for the LMS, and 2% (30
lines) for the MPEG.

Table 7: Data mappings.

Mapping a b c e f

1 EXT EXT EXT EXT EXT

2 B0 B0 B0 B0 B0

3 B0 B1 B0 B1 B0

4 B0 B1 B2 B3 B4

5. APPLICATIONS

5.1. Influence of the data mapping

We demonstrate on a simple example the influence of the
data mapping on the power consumption and execution
time. The algorithm that we use as a testbench manipulates
at the same time 3 images of size 100 × 100 (a, b, c) and 2
vectors of size 10 (e, f) in 3 successively and differently imbri-
cated loop nests. For the images and vectors are manipulated
at the same time, their placement in memory has a strong
influence on the number of access conflicts, and thus on the
number of pipeline stalls. We show here that it is very quick
and easy to try different placements, and to reach an optimal
data mapping with the help of SoftExplorer. The four dif-
ferent mappings that we tried are presented in Table 7. The
results provided by SoftExplorer are presented in Table 8.

In the first mapping, all the data structures are placed in
the external memory (EXT). As a result, there are as much
external accesses as accesses to the memory, and for every
access, the pipeline is stalled (during 16 cycles for the C6x).
The relation between parameters α and β and the power con-
sumption is obvious. When the pipeline is stalled, the num-
ber of instructions that the processor executes in parallel (α)
and the processing rate (β) decrease. As a result, the power
consumption of the processor is reduced, but the execution
time is lengthened and the energy consumption increases.

In the second mapping, all the structures are placed in
the same bank in the internal memory (B0). There will be as
much conflicts as before, but this time, the conflicts are in-
ternal. The C6x’s pipeline is stalled during one cycle in case
of an internal conflict. As a result, the time necessary to re-
solve all the conflicts, expressed in number of cycles, equals
the number of conflicts itself.

The interest of the last mapping 4 is to give a minimum
bound in term of number of conflicts since every structure
in the algorithm is in a different bank. This solution will also
give the higher power consumption and the smaller execu-
tion time. Indeed, since the pipeline is never stalled, the pro-
cessor is used at its maximal capacity. The third mapping,
which is achievable with a C6x, is as good as mapping 4 since
it does not yield any conflict.

5.2. Choosing a processor and its operating frequency

Even if it is easy to obtain the power consumption and the
execution time of an algorithm with SoftExplorer, to actually
find the right processor and its operating frequency is not
straightforward. Indeed, the global energy consumed by the
application depends not only on the energy consumed when
the algorithm is executed, but also on the energy consumed



SoftExplorer: Power Estimation of a C Program for DSP and GPP 2651

Table 8: SoftExplorer results with different mappings.

Mapping α β Texe (ms) Current (mA) Power (mW) Energy (mJ) Conflicts Tconflicts

1 0.0015 0.008 9.108 870 2174 19.81 27 601 441 616

2 0.333 0.167 0.414 1378 3444 1.426 27 601 27 601

3 0.5 0.25 0.276 1644 4109 1.134 0 0

4 0.5 0.25 0.276 1644 4109 1.134 0 0

Pidle

Pexe
Power

Active

Idle

Texe Tconstraint

Time

Figure 8: Power consumption and timing constraint.

when the processor is idle:

Eglobal = Pexe × Texe + Pidle ×
(

Tconstraint − Texe

)

. (8)

Figure 8 illustrates this equation. The timing constraint
Tconstraint is the maximum bound for the execution time.
Over this limit, the application’s data rate is not respected.
Basically, if the frequency is high, the execution time is small
and the active power (Pexe) increases. The idle time also in-
creases with the frequency. On the other hand, as long as the
execution time is lower than the timing constraint, it seems
possible to slow down the processor to decrease Pexe. So, is it
better to operate with a high or a low frequency? In fact, it
actually depends on the application.

We pursue a little farther the analysis with our preceding
example, the MPEG-1 decoder (Section 4). This algorithm
treats 4 macroblocs of a QCIF image in one iteration. A QCIF
image (88 × 72) contains 396 macroblocs. Given a data rate
of 10 images/s, the timing constraint is

Tconstraint =
1

10
×

4

396
= 1.01 ms. (9)

Then we use SoftExplorer to compute, at different fre-
quencies, the execution time, power, and energy consumed
by one iteration of the algorithm. Finally, we calculate with
(8) the global energy consumed by the application at these
frequencies. The results are presented in Figures 9, 10, and
11, respectively for the C55, C62, and the C67.

The two last curves (Figures 10 and 11) present a min-
imum that gives the optimal operating frequency for this
application: about 20 MHz for the C62 and 40 MHz for the

0E + 0
5E − 6

1E − 5

1.5E − 5

2E − 5

2.5E − 5

3E − 5

3.5E − 5

4E − 5

4.5E − 5

E
gl

o
b

al
(J

)

0 50 100 150 200

F (MHz)

Figure 9: Energy versus frequency for the C55.

0E + 0
2E − 5
4E − 5
6E − 5
8E − 5
1E − 4

1.2E − 4
1.4E − 4
1.6E − 4
1.8E − 4

E
gl

o
b

al
(J

)

0 50 100 150 200

F (MHz)

Figure 10: Energy versus Frequency for the C62.

C67. This minimum is 0.076 mJ for the C62 and 0.021 mJ for
the C67, hence, the best processor/frequency couple among
those two would be the C67 at 40 MHz. The shape of these
two global energy curves is predictable when (8) is rewritten
as

Eglobal = (KF + C)×
N

F
+ K ′F ×

(

Tconstraint −
N

F

)

. (10)

In this expression, Pexe is replaced with a dynamic term
(KF), and a static one (C), while Texe is trivially replaced by
N/F, where N is the number of cycles for one iteration. Pidle is
given by the constructor as a product of F. When (10) is de-
veloped, an F term and a 1/F term appear, and that explains
the curves’ shape.

Whenever Pidle does not vary with the frequency, it may
be replaced with a constant term in (10), which, when de-
veloped, includes only a 1/F term. The resulting curve does
not present a minimum anymore; this is the case for the C55.
For this processor, the frequency that gives the lower global
energy consumption is the higher possible (200 MHz). How-
ever, since the energy consumption is almost the same at
100 MHz, this last frequency will be preferred for it implies a



2652 EURASIP Journal on Applied Signal Processing

0E + 0

5E − 6

1E − 5

1.5E − 5

2E − 5

2.5E − 5

3E − 5
E

gl
o

b
al

(J
)

0 50 100 150 200

F (MHz)

Figure 11: Energy versus frequency for the C67.

lower power consumption: cooling devices will be lighter in
this case. In fact, the global energy consumption for the C55
at 100 MHz is 0.015 mJ. As a result, the C55/100 MHz couple
is definitely better than the two preceding.

We did not represent the wake-up time on Figure 8. In
fact, we measured that this wake-up time is very small be-
fore the execution time of the algorithm, and that the en-
ergy consumption involved is negligible. Moreover, to avoid
waking-up at each iteration, it is preferable to process a whole
image with no interruption, and then to idle the processor
until the next image. This decreases again the energy contri-
bution of the waking-up. Of course, this can only be done if
the application can bare a latency of one image. In a situa-
tion where the wake-up time Twu could not be neglected, it is
still possible to evaluate the global energy. Assuming that Twu

is counted in processor’s cycles and that the wake-up power
Pwu is proportional to the frequency F, one can write (with
A and B constants)

Twu = A×
1

F
, Pwu = B × F, (11)

and the wake-up energy Ewu is a constant too:

Ewu = Pwu × Twu = A× B. (12)

As a result, the curves that give the global energy in func-
tion of the frequency are shifted from the value of Ewu. The
method to find the best processor and frequency remains the
same.

6. CONCLUSION

We have introduced a new method for estimating the power
and energy consumption of a DSP application directly from
the C program. This method is build upon the functional-
level power analysis (FLPA), which we designed initially to
estimate the consumption from the assembly code. The ad-
vantages of FLPA against instruction-level methods are a
shorter delay to obtain a model of a processor, smaller time
to achieve the estimation, and the ability to deal easily with
complex architectures. Indeed, we have demonstrated our
methodology on a wide range of architectures from the very
simple general-purpose RISC processor (ARM7) to the more
and more complex DSPs: the low-power (C55), the fixed-
point VLIW (C62), the fixed-point VLIW with L1 and L2

caches (C64), and the floating-point VLIW (C67). Moreover,
very important phenomena like pipeline stalls, cache misses,
and memory accesses are taken into account.

To be able to perform an estimation at the assembly level,
it was necessary to define two models: a model for the pro-
cessor and a model for the algorithm. The model for the pro-
cessor represents the way the processor’s consumption varies
with its activity. The model for the algorithm links the algo-
rithm with the activity it induces in the processor. Indeed, we
showed that an algorithm has some intrinsic features like the
parallelism rate or the processing rate.

At the C-level, a third model is necessary: a model for the
compiler. Indeed, given an algorithm, the processor’s activity
actually depends on the compiler behavior. A programmer
can set different options in the compiler to give the assembly
code different features. Basically, the code can be optimized
for performance (as fast as possible), or for size (as small
as possible). Our model for the compiler is what we called
the prediction model. We defined four prediction models.
The DATA (TIME optimal) and MIN (SIZE optimal) mod-
els represent the former compiler behaviors: respectively op-
timization for performance and optimization for size. The
MAX (FULL parallel) model gives a maximum bound for
the power consumption and represents a situation where all
the processing resources of the processor would be used rest-
lessly. The SEQ (SEQuential) model stands for a situation
where operations are executed one after the other in the pro-
cessor. That gives an absolute minimum bound for the power
consumption. In the case of the two first prediction models,
the data mapping was taken into account. Indeed, we have
demonstrated that the number of external accesses and the
number of memory conflicts are directly related to the pro-
cessor’s processing and parallelism rates, and to the pipeline
stall rate (PSR), which have a great impact on the final power
consumption and execution time.

We have developed a tool, SoftExplorer, which integrates
our five power models, and can perform estimation both at
the assembly and at the C-level. For DSP applications, and
with elementary informations on both architecture and data
placement, our C-level power estimation method provides
accurate results together with the maximum and minimum
bounds of the algorithm’s power consumption. The precision
of SoftExplorer was evaluated by comparing estimations with
measures for several representative DSP applications. The
precision varies slightly from a processor to the other. For the
C62, the maximal/average errors are 4/2.5% at the assembly
level, and 8/4.2% at the C-level. This definitely demonstrates
the possibility of performing an accurate power estimation
of a C-algorithm.

We exhibit the influence of the data mapping and show
how to use SoftExplorer to optimize the consumption and
to reduce the complexity by focusing only on the most con-
suming loops in the code. When the cache miss rate and/or
pipeline stall rate are not defined, a consumption map al-
lows to verify if the application constraints are respected.
We present a methodology to determine the best proces-
sor/frequency couple, for a given application. SoftExplorer
is used to estimate the algorithm’s power consumption and



SoftExplorer: Power Estimation of a C Program for DSP and GPP 2653

execution time on several targets and at different frequencies.
We show that the global energy consumed by the application
depends on the frequency. With the timing constraint, the
processor’s idle period of time is determined and the global
energy computed. The frequency which yields the lowest
consumption is adopted. The winning processor/frequency
couple has the lowest energy consumption.

Future works include the development of new power
models for the ARM9, the PowerPC, and the OMAP. A
generic memory model will be added to include the external
memory consumption in our power estimation. Power and
energy estimation will be investigated at the system level.

REFERENCES

[1] T. Hauser, “Convergence of two different worlds,” Electronic
Design Europe, February 2003.

[2] H. Baaker, “Powering up the mobile phone,” Speech Technol-
ogy Journal, November/December 2001.

[3] S. Cordova, “Power management solutions for multimedia
terminals,” in Proc. Batteries 2001 Conference, Paris, France,
April 2001.

[4] M. Valluri and L. John, “Is Compiling for performance ==

compiling for power?” in Proc. the 5th Annual Workshop
on Interaction between Compilers and Computer Architectures
INTERACT-5, Monterrey, Mexico, January 2001.

[5] A. Fraboulet and A. Mignotte, “Source code loop transforma-
tions for memory hierarchy optimizations,” in Proc. the Work-
shop on Memory Access Decoupled Architecture MEDEA, Inter-
national Conference on Parallel Architectures and Compilation
Techniques (PACT ’01), pp. 8–12, Barcelona, Spain, September
2002.

[6] S. Singhai and K. S. McKinley, “A parameterized loop fusion
algorithm for improving parallelism and cache locality,” The
Computer Journal, vol. 40, no. 6, pp. 340–355, 1997.

[7] J. Ramanujam, J. Hong, M. Kandemir, and A. Narayan, “Re-
ducing memory requirements of nested loops for embedded
systems,” in Proc. 38th IEEE Conference on Design Automation
(DAC ’01), pp. 359–364, Las Vegas, Nev, USA, June 2001.

[8] T. V. Achteren, G. Deconinck, F. Catthoor, and R. Lauwere-
ins, “Data reuse exploration techniques for loop-dominated
applications,” in Proc. IEEE Conference and Exhibition on De-
sign, Automation and Test in Europe (DATE ’02), pp. 428–435,
Paris, France, March 2002.

[9] L. Benini and G. De Micheli, “System-level power optimiza-
tion: techniques and tools,” ACM Transactions on Design Au-
tomation of Electronic Systems, vol. 5, no. 2, 2000.

[10] C. H. Gebotys, “Utilizing memory bandwidth in DSP embed-
ded processors,” in Proc. 38th IEEE Conference on Design Au-
tomation (DAC ’01), pp. 347–352, Las Vegas, Nev, USA, June
2001.

[11] C. Kulkarni, C. Ghez, M. Miranda, F. Catthoor, and H. De
Man, “Cache conscious data layout organization for embed-
ded multimedia applications,” in Proc. IEEE Conference and
Exhibition on Design, Automation and Test in Europe (DATE
’01), pp. 686–691, Munich , Germany, March 2001.

[12] P. Panda, F. Catthoor, N. D. Dutt, et al., “Data and memory
optimization techniques for embedded systems,” ACM Trans-
actions on Design Automation of Electronic Systems, vol. 6,
no. 2, pp. 149–206, 2001.

[13] F. Catthoor, K. Danckaert, C. Kulkarni, and T. Omns, Data
Transfer and Storage (DTS) Architecture Issues and Exploration
in Multimedia Processors, Marcel Dekker, NewYork, NY, USA,
2000.

[14] W.-T. Shiue, S. Udayanarayanan, and C. Chakrabarti, “Data
memory design and exploration for low-power embedded
systems,” ACM Transactions on Design Automation of Elec-
tronic Systems, vol. 6, no. 4, pp. 553–568, 2001.

[15] Mentor Graphics Corporation: The EDA Technology Leader,
[Online]. Available: http://www.mentor.com/.

[16] Synopsys Corporation: EDA Solutions and Services, [Online].
Available: http://www.synopsys.com/.

[17] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a frame-
work for architectural-level power analysis and optimiza-
tions,” in Proc. 27th International Symposium on Computer Ar-
chitecture (ISCA ’00), pp. 83–94, Vancouver, BC, Canada, June
2000.

[18] M. J. Irwin, M. Kandemir, N. Vijaykrishnan, and W. Ye, “The
design and use of simple power: a cycle accurate energy esti-
mation tool,” in Proc. 37th IEEE Conference on Design Automa-
tion (DAC ’00), pp. 340–345, Los Angeles, Calif, USA, June
2000.

[19] D. Brooks, P. Bose, and M. Martonosi, “Power-performance
simulation: design and validation strategies,” in ACM SIG-
METRICS Performance Evaluation Review, 2004.

[20] D. Brooks, P. Bose, V. Srinivasan, M. K. Gschwind, P. G.
Emma, and M. G. Rosenfield, “New methodology for early-
stage, microarchitecture-level power-performance analysis of
microprocessors,” IBM Journal of Research and Development,
vol. 47, no. 5/6, 2003.

[21] V. Zyuban, D. Brooks, V. Srinivasan, et al., “ Integrated analy-
sis of power and performance for pipelined microprocessors,”
IEEE Trans. Comput., vol. 53, no. 8, pp. 1004–1016, 2004.

[22] J. S. Hu, N. Vijaykrishnan, S. Kim, M. Kandemir, and M. J. Ir-
win, “Scheduling reusable instructions for power reduction,”
in Proc. IEEE Conference and Exhibition on Design, Automa-
tion and Test in Europe (DATE ’04), vol. 1, pp. 148–153, Paris,
France, February 2004.

[23] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embed-
ded software: a first step towards software power minimiza-
tion,” IEEE Trans. VLSI Syst., vol. 2, no. 4, pp. 437–445, 1994.

[24] B. Klass, D. Thomas, H. Schmit, and D. Nagle, “Modeling
inter-instruction energy effects in a digital signal processor,”
in Proc. the Power Driven Microarchitecture Workshop in In-
ternational Symposium on Computer Architecture (ISCA ’98),
Barcelona, Spain, 1998.

[25] S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel, “An ac-
curate and fine grain instruction-level energy model support-
ing software optimizations,” in Proc. IEEE International Work-
shop on Power And Timing Modeling, Optimization and Sim-
ulation (PATMOS ’01), pp. 3.2.1–3.2.10, Yverdon-Les-Bains,
Switzerland, September 2001.

[26] G. Qu, N. Kawabe, K. Usami, and M. Potkonjak, “Function-
level power estimation methodology for microprocessors,” in
Proc. 37th IEEE Conference on Design Automation (DAC ’00),
pp. 810–813, Los Angeles, Calif, USA, June 2000.

[27] L. Benini, D. Bruni, M. Chinosi, C. Silvano, V. Zaccaria, and
R. Zafalon, “A Power modeling and estimation framework
for VLIW-based embedded systems,” in Proc. IEEE Interna-
tional Workshop on Power And Timing Modeling, Optimization
and Simulation (PATMOS ’01), pp. 2.3.1–2.3.10, Yverdon-les-
Bains, Switzerland, September 2001.

[28] C. H. Gebotys and R. J. Gebotys, “An empirical comparison
of algorithmic, instruction, and architectural power predic-
tion models for high performance embedded DSP proces-
sors,” in Proceedings of International Symposium on Low Power
Electronics and Design (ISLPED ’98), pp. 121–123, Monterey,
Calif, USA, 1998.

[29] J. Laurent, N. Julien, E. Senn, and E. Martin, “Functional level
power analysis: an efficient approach for modeling the power

http://www.mentor.com/
http://www.synopsys.com/


2654 EURASIP Journal on Applied Signal Processing

consumption of complex processors,” in Proc. IEEE Confer-
ence and Exhibition on Design, Automation and Test in Europe
(DATE ’04), vol. 1, pp. 666–667, Paris, France, February 2004.

[30] N. Julien, J. Laurent, E. Senn, and E. Martin, “Power con-
sumption modeling and characterization of the TI C6201,”
IEEE Micro, vol. 23, no. 5, pp. 40–49, 2003, Special Issue on
Power- and Complexity-Aware Design.

[31] J. Laurent, E. Senn, N. Julien, and E. Martin, “High level en-
ergy estimation for DSP systems,” in Proc. IEEE International
Workshop on Power And Timing Modeling, Optimization and
Simulation (PATMOS ’01), pp. 311–316, Yverdon-les-Bains,
Switzerland, September 2001.

[32] TMS320C6x User’s Guide, Texas Instruments Inc., 1999.
[33] A. Sinha and A. P. Chandrakasan, “JouleTrack - A web based

tool for software energy profiling,” in Proc. 38th IEEE Confer-
ence on Design Automation (DAC ’01), pp. 220–225, Las Vegas,
Nev, USA, June 2001.

[34] A. Bona, M. Sami, D. Sciuto, C. Silvano, V. Zaccaria, and R.
Zafalon, “Energy estimation and optimization of embedded
VLIW processors based on instruction scheduling,” in Proc.
39th IEEE Design Automation Conference (DAC ’02), pp. 886–
891, New Orleans, La, USA, June 2002.

[35] E. Senn, N. Julien, J. Laurent, and E. Martin, “Power estima-
tion of a C algorithm on a VLIW processor,” in Proceedings
of Workshop on Complexity-Effective Design (WCED ’02) (in
conjunction with the 29th Annual International Symposium on
Computer Architecture (ISCA ’02)), Anchorage, Alaska, USA,
May 2002.

Eric Senn is an Associate Professor at the
University of South Brittany, France, and a
member of the LESTER Laboratory since
1999. He was a Professor at the French
Ministry of Defence in the GIP (Geog-
raphy Image and Perception) Laboratory
for the DGA (Déléguation Générale de
l’Armement) from 1995 to 1999. His re-
search interests include low-power design,
architecture synthesis, and asynchronous
circuits. He received a Ph.D. degree in electronics from the Uni-
versity of Paris XI, France, in 1998.

Johann Laurent is an Associate Professor
at the University of South Brittany and
works at the LESTER Laboratory. His re-
search interests include software consump-
tion estimation and power characterization
for complex processors. He received a Ph.D.
degree in electronics from the South Brit-
tany University, France, in 2002.

Nathalie Julien is a Professor at the Uni-
versity of South Brittany in Lorient, France;
she also works at the LESTER Laboratory in
high-level design methods applied to low-
power constraints for dedicated circuits, FP-
GAs, and DSPs. Her research interests in-
clude power estimation for complex pro-
cessors and high-level synthesis that inte-
grates power optimization and memory is-
sues. She has a Ph.D. degree in electronics
from the University of Limoges, France. She is a Member of the
ACM, SIGDA, and SIGARCH.

Eric Martin is a Professor at the Univer-
sity of South Brittany in Lorient, and Direc-
tor of the LESTER Laboratory. His research
interests focus on advanced electronic de-
sign automation dedicated to real-time sig-
nal processing applications, including sys-
tem specification, high-level synthesis, in-
tellectual property reuse, low-power design,
systems on a chip, and platform prototyp-
ing. He has a Ph.D. degree from the Univer-
sity of Paris XI, France. He is a Member of the IEEE, of the IEEE
Computer Society, and of the IEEE Circuits and Systems Society.


	1. INTRODUCTION
	2. MODEL DEFINITION
	2.1. The functional-level power analysis
	2.2. TI C62 and C67 power models
	2.3. TI C64 power model
	2.4. TI C55 power model
	2.5. ARM7 powermodel

	3. ESTIMATION PROCESS
	3.1. Prediction models
	3.2. Pipeline stalls
	3.3. Estimation versus measures
	3.4. Execution time prediction

	4. SOFTEXPLORER
	4.1. Prediction types
	4.2. Estimation time and complexity reduction

	5. APPLICATIONS
	5.1. Influence of the data mapping
	5.2. Choosing a processor and its operating frequency

	6. CONCLUSION
	REFERENCES

